Perovskite solar cells: International consensus on ageing measurement protocols

© Catalan Institute of Nanoscience and Nanotechnology

Experts from 51 research institutions have now agreed on the procedures for measuring the stability of perovskite solar cells and assessing their quality. The consensus statement was published in Nature Energy and is considered a milestone for the further development of this new type of solar cell on its way to industrial application.

Commercially available solar modules undergo a series of characterisation procedures that analyse their properties and ensure quality. However, these methods cannot simply be transferred to halide perovskite solar cells. Halide perovskites are hybrid inorganic-organic materials for a new generation of solar cells, which have only been investigated for about eleven years. Perovskite solar cells achieve very high efficiencies and can be processed very cost-effectively from solution as extremely thin layers. However, perovskite-based solar cells are not yet stable enough to be commercialised.

Consensus on protocols

Now, international experts from 51 research institutes under the leadership of Prof. Mónica Lira-Cantú (Institut Catala de Nanosciencia i Nanotechnologia) and Prof. Eugene A. Katz (Ben-Gurion University of the Negev) have agreed on the ageing protocols suitable for this class of materials. From the Helmholtz-Zentrum Berlin, Prof. Antonio Abate and his PhD student Hans Köbler were involved. The first author of the study, Dr. Mark Khenkin, is now also working as a postdoc at the HZB Institute PVcomB. Eugene Katz will soon complete a longer research stay at HZB. The consensus statement extends the ISOS protocols developed in 2011 for organic solar cells for the stability assessment of perovskite photovoltaics by further tests and parameters. The test procedures are tailored to the specific characteristics of perovskite solar cells and can thus also map their special properties.

Step forward to industrialisation

In particular, the consensus allows for better comparability of ageing data between international laboratories and thus promotes meaningful analyses of degradation processes. A checklist for reporting the results should further improve reproducibility. This is a major milestone on the way from the laboratory to industry, writes Nature Energy in an editorial to the publication, which has now even been highlighted by the European Commission.

The consensus statement is published in Nature Energy 2020: "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures".

DOI: 10.1038/s41560-019-0529-5

Editorial in Nature (2020): "Perovskites take steps to industrialization"

Highlight EU Science Hub: "Perovskite PV technology approaches industrialisation as researchers reach consensus on procedures for testing it"

arö

  • Copy link

You might also be interested in

  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.
  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.