World Record: Efficiency of perovskite silicon tandem solar cell jumps to 29.15 per cent

The tandem solar cell was realized on a typical laboratory scale of one square centimeter. However, scaling up is possible.

The tandem solar cell was realized on a typical laboratory scale of one square centimeter. However, scaling up is possible. © Eike Köhnen/HZB

The illustration shows the structure of the tandem solar cell: between the thin perovskite layer (black) and the silicon layer (blue) are functional intermediate layers.

The illustration shows the structure of the tandem solar cell: between the thin perovskite layer (black) and the silicon layer (blue) are functional intermediate layers. © Eike Köhnen/HZB

How does a perovskite silicon cell work?

02:15

In the race for ever higher efficiency levels, an HZB development team has once again pulled ahead. The groups of Steve Albrecht and Bernd Stannowski have developed a tandem solar cell made of the semiconductors perovskite and silicon, that converts 29.15 per cent of the incident light into electrical energy. This value has been officially certified by the CalLab of the Fraunhofer Institute for Solar Energy Systems (ISE) and means that surpassing the 30 per cent efficiency mark is now within reach.

While silicon converts mostly the red portions of sunlight into electricity, perovskite compounds primarily utilise the blue portions of the spectrum. A tandem solar cell made of stacked silicon and perovskite thus achieves significantly higher efficiency than each individual cell on its own.

Prof. Bernd Stannowski from the HZB Institute PVcomB and Prof. Steve Albrecht, who heads a team funded by the German Federal Ministry of Education and Research (BMBF) at HZB, have already jointly set new records for monolithic tandem solar cells on several occasions. At the end of 2018, the team presented a tandem solar cell made of silicon with a metal-halide perovskite that achieved an efficiency of 25.5 per cent. Then Oxford Photovoltaics Ltd. announced a value of 28 per cent.

World record certified

Now the HZB team can report the next record. The value of 29.15 per cent has been certified by the Fraunhofer Institute for Solar Energy Systems (ISE) and now appears in the charts of the National Renewable Energy Lab (NREL), USA. The NREL chart has been tracking the rising efficiency levels for nearly all types of solar cell since 1976. Perovskite compounds have only been included since 2013 – and the efficiency of this class of material has increased more than in any other material since then.

“We developed a special electrode contact layer for this cell in collaboration with the group of Prof. Vytautas Getautis (Kaunas University of Technology), and also improved intermediate layers“, explain Eike Köhnen and Amran Al-Ashouri, doctoral students in Albrecht's group. The new electrode contact layer also permitted improvement of the perovskite compound‘s composition in the HZB HySPRINT laboratory. This compound is now more stable when illuminated in the tandem solar cell and improves the balance of electrical currents contributed by the top and bottom cells. The silicon bottom cell comes from Stannowski's group and features a special silicon-oxide top layer for optically coupling the top and bottom cells.

Upscaling is feasible

All processes used to realise this one-square-centimeter cell are also suitable in principle for large surface areas. Scaling up with the help of vacuum deposition processes is very promising, as initial tests have already shown.

The realistic practical efficiency limit for tandem cells made of silicon and perovskite is about 35 per cent. Next, the HZB team wants to break the 30 per cent efficiency barrier. Albrecht explains that initial ideas for this are already under discussion.

More Information:

Steve Albrecht heads the junior research group Perovskite Tandem Solar Cells and is a junior professor at the TU Berlin. He is researching the organic-inorganic material perovskite, which is one of the biggest surprises in solar cell research: In just six years, the efficiency of perovskite solar cells has quintupled. In addition, perovskite layers can be produced from solution and in future can be printed cost-effectively on large areas.

Albrecht's team, in cooperation with other groups from HZB, has already set several world records for tandem solar cells made of perovskite in combination with inorganic semiconductors. In September 2019, they presented a tandem solar cell made of CIGS and perovskite that achieves a certified efficiency of 23.26 percent, which is still the current world record for this material combination. They also developed an industry relevant perovskit/PERC solar cell in 2019 with a PV industry partner.

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
  • Review on ocular particle therapy (OPT) by international experts
    Science Highlight
    03.09.2024
    Review on ocular particle therapy (OPT) by international experts
    A team of leading experts in medical physics, physics and radiotherapy, including HZB physicist Prof. Andrea Denker and Charité medical physicist Dr Jens Heufelder, has published a review article on ocular particle therapy. The article appeared in the Red Journal, one of the most prestigious journals in the field. It outlines the special features of this form of eye therapy, explains the state of the art and current research priorities, provides recommendations for the delivery of radiotherapy and gives an outlook on future developments.