Helmholtz Association promotes HZB cooperation with Slovenia on perovskite silicon tandem solar cells

Marko Jošt was a PhD student in the HySPRINT-Lab in Steve Albrecht's group. Now he will continue his research on tandem solar cells at the university of Lubljana.

Marko Jošt was a PhD student in the HySPRINT-Lab in Steve Albrecht's group. Now he will continue his research on tandem solar cells at the university of Lubljana. © M. Setzpfandt/ HZB

A HZB team has successfully raised funds from the “Helmholtz European Partnering Program” of the Helmholtz Association to expand cooperation with partners of the University of Ljubljana, Slovenia. The topics of the cooperation are tandem solar cells made of perovskite and silicon and, in particular, their precise characterisation.

Currently, most solar modules consist of silicon, a semiconductor that mainly uses the red parts of the solar spectrum to generate electricity. The combination of silicon with perovskite semiconductors therefore promises great opportunities for even higher efficiencies. Semiconductor materials from this material class convert the energy-rich, blue parts of the spectrum into electricity.

Now the HZB physicist Prof. Dr. Steve Albrecht has raised funds from the Helmholtz Association to investigate such tandem solar cells with partners from the University of Ljubljana, Slovenia. The TAPAS project is funded by the Helmholtz European Partnering programme for the next three years with 250,000 euros per year each. Following an evaluation, the funding period can be extended by two years. The Helmholtz European Partnering programme was set up to strengthen the European research area, in particular cooperation with countries in Southern, Central and Eastern Europe.

The name TAPAS stands for "Tandem Perovskite and Silicon solar cells - Advanced opto-electrical characterization, modeling and stability".  Together with opto-electrical modelling, highly efficient and stable next-generation tandem solar cells are to be developed for the energy system of the future.

The Working Group for Photovoltaics and Optoelectronics at the University of Ljubljana (LPVO, headed by Prof. Dr Marko Topič) and the Helmholtz-Zentrum Berlin have established a very successful cooperation in recent years, which will be further strengthened by this funding. The aim of the cooperation is to analyse the processes that affect the stability of the modules in the field. 

arö


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.