New Method for Absorption Correction to Improve Dental Fillings

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth.

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth. © Leona Bauer (TU Berlin/HZB)

A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.

 

"We can now conduct more accurate measurements," says Ioanna Mantouvalou. "The absorption correction with micro-CT and XAS takes into account how strongly different materials absorb X-rays." This has been made possible through a combination of laboratory infrastructures at BAM (Federal Institute for Materials Research and Testing) and the HZB SyncLab laboratory in combination with the BESSY II synchrotron light source. BESSY II provided tunable X-rays over a wide energy range (200 eV to 32 keV) necessary for detailed compositional analysis. The micro-CT and confocal micro-XRF investigations were then facilitated using laboratory setups that utilize X-ray tubes as sources.

One of the materials investigated by Mantouvalou's team is dentin—a mineralized tissue that makes up most of the tooth, lies beneath the enamel, and plays a crucial role in transmitting sensations such as cold and heat. Its analysis is important for dentistry because, with dental fillings, elements often diffuse from the filling material into the dentin. "Our results enable detailed studies of such diffusion processes," says Leona Bauer, a doctoral student at HZB and TU Berlin and the study's first author. They are important for improving the durability and biocompatibility of dental fillings and reducing the risk of secondary caries and other dental problems.

In addition to investigating materials for dentistry, the method offers applications in other areas where precise 3D elemental distributions are required. These include the analysis of biological tissues, the investigation of catalyst materials, and the study of materials in environmental science. The versatility of the measurement method could thus have a positive impact on various research fields.

HS

  • Copy link

You might also be interested in

  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.
  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.