MXenes for energy storage: Chemical imaging more than just surface deep

<p class="MsoCaption">Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode (green), electrolyte/ carbonate species (red) and separator (yellow). The Transmission (bulk-sensitive) image is on the left, the electron yield (surface-sensitive) image on the right.

Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode (green), electrolyte/ carbonate species (red) and separator (yellow). The Transmission (bulk-sensitive) image is on the left, the electron yield (surface-sensitive) image on the right. © HZB

What is so special about MXenes and why is the new method so valuable? The short cartoon manages to answer these questions in just a few images. The images were created with the help of ChatGPT.

What is so special about MXenes and why is the new method so valuable? The short cartoon manages to answer these questions in just a few images. The images were created with the help of ChatGPT. © Faidra Amargianou/ChatGPT

A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.

Since their discovery in 2011, MXenes have gathered significant scientific interest due to their versatile tunable properties and diverse applications, from energy storage to electromagnetic shielding. Researchers have been working to decipher the complex chemistry of MXenes at the nanoscale.

The team of Dr. Tristan Petit now made a significant progress in MXene characterization, as described in their recent publication. They utilized SXM to investigate the chemical bonding of Ti3C2Tx MXenes, with Tx denoting the terminations (Tx=O, OH, F, Cl), with high spatial and spectral resolution. The novelty in this work is to combine simultaneously two detection modes, transmission and electron yield, enabling different probing depths.

SXM provided detailed insights into the chemical composition and structure of MXenes. According to Faidra Amargianou, first author of the study: "Our findings shed light on the chemical bonding within MXene structure, and with surrounding species, offering new perspective for their utilization across various applications, especially in electrochemical energy storage."

For the first time, SXM was employed to image MXenes, revealing details of the local bonding between titanium and terminations within the MXene structure. The researchers also examined the influence of different synthesis routes on MXene chemistry, shedding light on the impact of terminations on the electronic properties of MXene.

Furthermore, the application of SXM in analyzing MXene-based materials in lithium-ion batteries yielded valuable insights into changes in MXene chemistry after battery cycling. As Faidra Amargianou explains, “The bulk of MXene electrode remains stable during electrochemical cycling with signs of possible Li+ intercalation. Electrolyte does not lead to degradation of the MXene and lays on top of the MXene electrode”.

In summary, this study provides valuable insights into the local chemistry of MXenes and underscores the potential of SXM in the characterization of other layered materials. As Petit concludes, "This work highlights the significance of advanced chemical imaging techniques like SXM in unraveling the interactions of layered materials in complex systems. We are currently working on enabling in situ electrochemical SXM measurements directly in liquid environment. "

Further information:

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 947852).

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.