Printed perovskite LEDs – an innovative technique towards a new standard process of electronics manufacturing

Graphic representation of the printing process for the perovskite LED.

Graphic representation of the printing process for the perovskite LED. © Claudia Rothkirch/HU Berlin

A look inside the Helmholtz Innovation Lab HySPRINT. Major work on the printable perovskite LEDs was carried out here.

A look inside the Helmholtz Innovation Lab HySPRINT. Major work on the printable perovskite LEDs was carried out here. © HZB/Phil Dera

Perovskit solar cells explained: as they work so efficiently © HZB

02:15

A team of researchers from the Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin has succeeded for the first time in producing light-emitting diodes (LEDs) from a hybrid perovskite semiconductor material using inkjet printing.This opens the door to broad application of these materials in manufacturing many different kinds of electronic components.The scientists achieved the breakthrough with the help of a trick: "inoculating" (or seeding) the surface with specific crystals.

Microelectronics utilise various functional materials whose properties make them suitable for specific applications. For example, transistors and data storage devices are made of silicon, and most photovoltaic cells used for generating electricity from sunlight are also currently made of this semiconductor material. In contrast, compound semiconductors such as gallium nitride are used to generate light in optoelectronic elements such as light-emitting diodes (LEDs). The manufacturing processes also different for the various classes of materials.

Transcending the materials and methods maze

Hybrid perovskite materials promise simplification – by arranging the organic and inorganic components of semiconducting crystal in a specific structure. “They can be used to manufacture all kinds of microelectronic components by modifying their composition“, says Prof. Emil List-Kratochvil, head of a Joint Research Group at HZB and Humboldt-Universität.

What's more, processing perovskite crystals is comparatively simple. “They can be produced from a liquid solution, so you can build the desired component one layer at a time directly on the substrate“, the physicist explains.

First solar cells from an inkjet printer, now light-emitting diodes too

Scientists at HZB have already shown in recent years that solar cells can be printed from a solution of semiconductor compounds – and are worldwide leaders in this technology today. Now for the first time, the joint team of HZB and HU Berlin has succeeded in producing functional light-emitting diodes in this manner. The research group used a metal halide perovskite for this purpose. This is a material that promises particularly high efficiency in generating light – but on the other hand is difficult to process.

“Until now, it has not been possible to produce these kinds of semiconductor layers with sufficient quality from a liquid solution“, says List-Kratochvil. For example, LEDs could be printed just from organic semiconductors, but these provide only modest luminosity. “The challenge was how to cause the salt-like precursor that we printed onto the substrate to crystallise quickly and evenly by using some sort of an attractant or catalyst“, explains the scientist. The team chose a seed crystal for this purpose: a salt crystal that attaches itself to the substrate and triggers formation of a gridwork for the subsequent perovskite layers.

Significantly better optical and electronic characteristics

In this way, the researchers created printed LEDs that possess far higher luminosity and considerably better electrical properties than could be previously achieved using additive manufacturing processes. But for List-Kratochvil, this success is only an intermediate step on the road to future micro- and optoelectronics that he believes will be based exclusively on hybrid perovskite semiconductors. “The advantages offered by a single universally applicable class of materials and a single cost-effective and simple process for manufacturing any kind of component are striking“, says the scientist. He is therefore planning to eventually manufacture all important electronic components this way in the laboratories of HZB and HU Berlin.

List-Kratochvil is Professor of Hybrid Devices at the Humboldt-Universität zu Berlin and head of a Joint Lab founded in 2018 that is operated by HU together with HZB. In addition, a team jointly headed by List-Kratochvil and HZB scientist Dr. Eva Unger is working in the Helmholtz Innovation Lab HySPRINT on the development of coating and printing processes – also known in technical jargon as "additive manufacturing" – for hybrid perovskites. These are crystals possessing a perovskite structure that contain both inorganic and organic components.

 The work was published in Materials Horizons, the journal of the Royal Society of Chemistry, in an article entitled “Finally, inkjet-printed metal-halide perovskite LEDs – utilizing seed-crystal templating of salty PEDOT:PSS“ by Felix Hermerschmidt, Florian Mathies, Vincent R. F. Schröder, Carolin Rehermann, Nicolas Zorn Morales, Eva L. Unger, Emil J. W. List-Kratochvil.

DOI: 10.1039/d0mh00512f

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.