Moreno, M.; El Azhari, I.; Apel, D.; Meixner, M.; Wan, W.; Pinto, H.; Soldera, F.; Mücklich, F.; García, J.: Design of comb crack resistant milling inserts: A comparison of stresses, crack propagation, and deformation behavior between Ti(c,n)/α-Al2O3 and Zr(c,n)/α-Al2O3 cvd coatings. Crystals (Basel) 11 (2021), p. 493/1-16
10.3390/cryst11050493
Open Access Version (externer Anbieter)
Abstract:
Investigations on comb crack resistance of milling inserts coated with chemical vapor deposition (CVD) Ti(C,N)/α-Al2O3 and Zr(C,N)/α-Al2O3 showed a distinct wear evolution in both systems. Wear studies revealed that the appearance of comb cracks is connected to the initial CVD cooling crack network. Micropillar compression tests indicated a brittle intergranular fracture mechanism for the Ti(C,N) layer and a transgranular fracture accompanied with signs of plastic deformation for the Zr(C,N) coating. Additionally, for the Zr(C,N) based system, a compressive stress condition in the temperature range of interest (200–600 °C) was determined by in-situ synchrotron X-ray diffraction. The set of residual compressive stresses together with the ability of the Zr(C,N) layer to deform plastically are key features that explain the enhanced resistance to comb crack wear of the Zr(C,N) based system in milling of cast iron.