Neues holografisches Verfahren nutzt „bildstabilisierte Röntgenkamera“

Als Testobjekte nutzten die Forscher den Umriss eines Geckos, der 10.000-fach verkleinert in eine Goldfolie einstrukturiert wurde und einen Ausschnitt aus dem „Siemensstern“, der hier wie eine Muschel aussieht. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern.

Als Testobjekte nutzten die Forscher den Umriss eines Geckos, der 10.000-fach verkleinert in eine Goldfolie einstrukturiert wurde und einen Ausschnitt aus dem „Siemensstern“, der hier wie eine Muschel aussieht. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern. © J. Geilhufe/HZB

Ein Team um Stefan Eisebitt hat ein neues Röntgen-Holografie-Verfahren entwickelt, das „Schnappschüsse“ von dynamischen Prozessen mit bisher unerreichter Auflösung in Aussicht stellt. Die Effizienz des neuartigen Verfahrens beruht auf einer fokussierenden Röntgenoptik, die  mit dem abzubildenden Objekt fest verbunden ist. Dadurch liefert das Verfahren zwar zunächst eine unscharfe Abbildung, diese kann im Nachhinein jedoch fokussiert werden. Gleichzeitig löst dieser Trick (nämlich die feste Verbindung zwischen Objekt und Fokussieroptik) elegant das Problem des „Verwackelns“, das auf Nanometerskala eine enorme Rolle spielt.

Professor Dr. Stefan Eisebitt, der an der TU Berlin das Fachgebiet Nanometeroptik und Röntgenoptik leitet und auch am HZB forscht, erklärt: „So wie ein lichtstarkes Objektiv am Fotoapparat auch bei schwacher Beleuchtung noch scharfe Bilder ermöglicht, ermöglicht es auch hier ein optisches Element, das Röntgenlicht effizienter zu nutzen. Gleichzeitig haben wir diese Röntgenlinse fest mit dem abzubildenden Objekt gekoppelt, so dass Vibrationen keine Rolle mehr spielen und das Bild stabilisiert wird.“ Kontrastarme oder sich bewegende Nanoobjekte können damit deutlich besser abgebildet werden.

Für die Röntgen-Holografie wird „kohärentes Licht“ benötigt, bei dem die elektromagnetischen Wellen im Gleichtakt schwingen. Solches Licht produzieren Laser oder Synchrotronquellen wie BESSY II. Bei dem verwendeten holografischen Verfahren fällt ein Teil des Röntgenlichts auf das abzubildende Objekt und ein weiterer Teil durchdringt normalerweise eine Lochblende, die sich seitlich neben dem Objekt befindet: dies ist die Referenzwelle. Durch die Überlagerung beider Wellen entsteht ein Hologramm, welches von einem Detektor aufgezeichnet wird. Eine Abbildung des beleuchteten Objekts wird dann aus dem Hologramm am Computer rekonstruiert. Doch die Lochblende besitzt einen Nachteil: Um eine scharfe Abbildung zu ermöglichen, muss sie sehr klein sein, lässt dann jedoch zu wenig Licht hindurch, um auch bei sehr kontrastarmen Objekten  ein gutes Bild zu erzeugen – ein Dilemma.

Mehr Licht durch spezielle Optik

Eine Lösung fanden die Physiker um Eisebitt mit einer speziellen Optik: einer Fresnel-Zonenplatte. Diese wird – als Ersatz für die Lochblende – auf der Objektebene selbst platziert. Dadurch gelingt es, die Referenzwelle deutlich zu verstärken. Allerdings liegt der Fokus der Optik (der einer idealen Punkt-förmigen Lochblende entspräche) eben nicht auf der Objektebene, so dass die Abbildung unscharf wird.  Im Gegensatz zu einer Fotografie lässt sich jedoch diese Unschärfe aus einem Hologramm jedoch rechnerisch präzise korrigieren. Durch die effizientere Optik können Belichtungszeiten drastisch reduziert werden. So eignet sich die Methode nun besser um Schnappschüsse von ultraschnellen Prozessen zu ermöglichen.

Gecko-Umriss als Testobjekt

Doktorand Jan Geilhufe hat diese Idee ausgearbeitet und umgesetzt, und er war es auch, der das Bild des Geckos als filigranes Testobjekt beigesteuert hat. Dessen Umriss wurde zehntausendfach verkleinert in eine Goldfolie einstrukturiert. „Uns war es wichtig, ein originelles Testobjekt zu finden um zu zeigen wie gut die Methode funktioniert“, sagt Geilhufe. Die Muschel im Zentrum des Testobjekts zeigt dabei einen Ausschnitt aus einem sogenannten Siemensstern, einer Struktur zur Auflösungsbestimmung. Ähnlich wie am Schwanz des Geckos kann man an den zulaufenden Strahlen des Siemenssterns  messen, wie gut unterschiedliche Strukturbreiten im Bild dargestellt werden. Das ganze Testobjekt hat mit sechs Mikrometern Durchmesser etwa die Größe eines roten Blutkörperchens. Die kleinsten noch aufgelösten Strukturen haben eine Breite von gerade einmal 46 Nanometern.

Röntgenkamera mit Bildstabilisator

Das altbekannte Problem des „Verwackelns“ durch Vibrationen des Bildgegenstandes relativ zur Optik wird umso dramatischer, je höher die Auflösung des optischen Systems ist. „In der Erforschung von Methoden zur hochauflösenden Röntgenbildgebung strebt man derzeit nach Auflösung von unter zehn Nanometern. Das sind weniger als hundert Atomabstände, daher machen sich selbst kleinste Schwingungen bemerkbar. Da reicht es schon, wenn einen Kilometer weiter die Straßenbahn vorbeifährt“, sagt Geilhufe. „Wir haben aber mit unserem Verfahren die Schwingungen des Objekts mit den Schwingungen der Referenzoptik fest gekoppelt, so dass die Linse exakt wie das Objekt schwingt. Wir haben sozusagen eine Röntgenkamera mit Bildstabilisator gebaut.“

„Die Kombination der weltweit anerkannten Expertise des HZB in der Herstellung von Fresnel-Zonenplatten mit den flexiblen Strukturierungsmöglichkeiten der „Nano-Werkbank“ an der TU Berlin hat diesen Fortschritt möglich gemacht“, betont Eisebitt.

Neue Methode wird an BESSY II angeboten

Heute wird die Arbeit in Nature Communications veröffentlicht, dann könnte die neue Methode von vielen Forschungsgruppen genutzt werden. Denn bessere räumliche und zeitliche Auflösungen versprechen neue Einblicke in schnelle Prozesse, zum Beispiel in schnelle magnetische Schaltvorgänge, die für die Datenspeicherung von Interesse sind. „Wir hoffen, dass unser Verfahren für viele Forschungsfragen nützlich ist und dazu beiträgt, die Welt auf der Skala weniger Nanometer besser zu verstehen“, sagt Stefan Eisebitt. Zukünftig wollen Eisebitt und sein Team ihre neue holografische Technik an BESSY II  am so genannten RICXS-Aufbau auch Messgästen aus aller Welt anbieten.

Die Veröffentlichung erscheint heute (7.1.2014) in Nature Communications (DOI: 10.1038/ncomms4008).

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Science Highlight
    04.11.2024
    BESSY II: Neues Verfahren für bessere Thermokunststoffe
    Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.