Doped organic semiconductors explored

x-ray diffraction on pure 4T, colored for chrismas reasons.

x-ray diffraction on pure 4T, colored for chrismas reasons. © HZB

Left, X-ray scattering reveals characteristic reflections of the pristine host lattices for 4T (top) and P3HT (bottom). In the case of heavily doped materials (right column), fundamentally different reflections occur that provide evidence for the presence of co-crystallites formed by dopant and host.

Left, X-ray scattering reveals characteristic reflections of the pristine host lattices for 4T (top) and P3HT (bottom). In the case of heavily doped materials (right column), fundamentally different reflections occur that provide evidence for the presence of co-crystallites formed by dopant and host. © HZB

Organic semiconductor materials are already being employed today in solar cells and organic LEDs (OLEDs) amongst others. Until now, however, little was known about how the doping molecules are integrated into the chemical structure of organic semiconductors. The Molecular Systems Joint Research Team of the Helmholtz-Zentrum Berlin and Humboldt-Universität zu Berlin at BESSY II have now analysed this with surprising results. The molecules are not necessarily uniformly dispersed in the host lattice, as it is usual with inorganic semiconductors, but instead form what are known as co-crystallites. The doped organic semiconductor consists of a matrix of undoped crystallites in which such “mixed crystallites” are embedded. It is this very species that takes over the role as the actually doping molecule. The results were published in Nature Communications.

The enormous application potential of organic electronics has been clearly demonstrated for example by the success of organic LEDs (OLEDs) in the recent years. Oligothiophene (4T) and polythiophene (P3HT), two typical organic semiconductors, can be doped with a second type of molecule – such as a strong electron acceptor (F4TCNQ) for example – to control the electrical conductivity. However, until recently, how these guest molecules are exactly integrated into the host structure was poorly understood. A homogenous distribution analogous to that in inorganic semiconductors had therefore always been assumed.

Unusual characteristics

An international group headed by the Molecular Systems Joint Research Team at the HZB and Humboldt-Universität zu Berlin has now been able to demonstrate that this is not the case for either oligothiophene or polythiophene. The group, co-led by Dr. Ingo Salzmann and Prof. Norbert Koch, had previously experimented with and already modelled other systems to learn how doping organic semiconductors affects their electronic structure and thus their conductivity. This produced clues about unusual characteristics of this class of materials in which hybridisation of the molecular orbitals plays a key role.

They therefore fabricated a series of organic thin films with increasingly heavy levels of doping and investigated these samples using X-ray diffraction techniques at the KMC-2 beamline managed by Dr. Daniel Többens. They were able to precisely determine the dependence of the crystalline structure on the degree of doping using this technique.

Co-crystallites as dopants

Their results for the organic semiconductors 4T and P3HT showed that the guest molecules – quite contrary to the expectations – are not uniformly incorporated in the host lattice at all. Instead, a second crystalline phase of host/guest co-crystallites is formed in the pure crystalline host matrix. These co-crystals function in the role of dopant in place of the actual, pure doping molecules in such systems.

Better understanding for more control

“It is important to understand the fundamental processes involved in the molecular electrical doping of organic semiconductors more precisely”, explains Salzmann, continuing: “If we want to successfully employ these kinds of materials in applications, we need to be able to control their electronic properties just as precisely as we customarily do today with inorganic semiconductors.”
 
Charge-transfer crystallites as molecular electrical dopants, Nature Communications  doi:10.1038/ncomms9560

arö

  • Copy link

You might also be interested in

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.
  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.