The BER II neutron source is back in operation and available for experiments following the interruption in availability

<br />The High-Field Magnet (HFM) has attained 26 tesla in an initial test and thereby exceeded expectations. The HFM team is pleased about the well-deserved success.<br /><br />


The High-Field Magnet (HFM) has attained 26 tesla in an initial test and thereby exceeded expectations. The HFM team is pleased about the well-deserved success.

© HZB/Ingo Kniest

Maintenance work has been successfully concluded – the High-Field Magnet has successfully attained 26 tesla in initial testing. New scientific experiments have become possible.

Berlin, February 2015: following conclusion of more than a of year of repairs and refurbishing, the BER II neutron source will shortly be available to its international user group again. The facility was powered up on Wednesday, February 18 and attained its nominal power level of 9,5 megawatts. Scientists of HZB are meanwhile preparing the measurement equipment so that experimental work can resume following a brief start-up period.

During the service interruption, a weld joint was eliminated that was known to be a potential weak point. This involved a weld joint for a seal located in the area of the separator between the two reactor pool halves. Damage to this weld joint was discovered in 2010 and has been carefully monitored since that time. This did not involve a component critical to safety; nevertheless, it was decided in 2013 to completely remove the weld joint.

At the same time, the new High-Field Magnet went through final assembly and was setup in its final operating position inside in the Neutron Guide Hall. Its 26-tesla magnetic field was first generated in December 2014 and it maintained this value stably over a longer period of time. So it even exceeded its target value of 25 tesla.

Following the maintenance period, an important objective was reached with the successful resumption in BER II operations: participants of the international Neutron School can again be offered actual neutron experiments of the customary high quality. The 12-day advanced course for young scientists will be taking place in Berlin for the 35th time, from February 26th to March 6th.

Developing and successfully setting up the High-Field Magnet, unique for neutron experiments, has only taken 7.5 years. All of the comparable hybrid magnet construction projects worldwide during the past 25 years have taken between 9.5 and 16 years. The brief project length can therefore be viewed as top of its class. In addition, the project remained within its planned budget of just under 21 mil. EUR after adjusting for inflation.

The High-Field Magnet represents yet another first-class instrument that is being connected to the neutron source for the final BER II support period. Completely new kinds of experiments become possible that will open up access to new science, such as researching superconduction and magnetic phase transitions in solid-state materials, for example.

IH

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • The future of energy: recommendations from science to politics
    News
    21.03.2025
    The future of energy: recommendations from science to politics
    Experts from HZB have contributed their expertise to the position papers briefly presented here. The topics include the development of innovative materials for a sustainable energy supply and the circular economy. Experts from different areas have jointly formulated solutions and recommendations for action.