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Neutron studies of gauge field and charge in Ih heavy-water ice
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The distinctive character of water ice results from the partially disordered combination of covalent and
hydrogen bonds in the network of hydrogen and oxygen atoms. The nontrivial hydrogen correlations we report
in diffuse neutron scattering are analytically fit via a description of this state as a topological system exhibiting
an emergent gauge field. This allows for the density of correlation-terminating point defects to be determined
as one defect per 500 oxygen sites at 30 K. Application of an analytical model of ice paves the way towards a

detailed understanding of this ubiquitous solid.
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I. INTRODUCTION

Water ice (H,O) is a unique solid whose structure and
dynamics continue to excite interest. The special connectivity
of the 1%y polar molecules through the making and breaking
of hydrogen bonds forms a dynamic network which can
reconfigure to transport charge [1] while being of importance
in a truly interdisciplinary range of fields from food science
to biology [2]. In its common form, ice is made up of H,O
molecules within a hcp unit cell [Fig. 1(a)], referred to as
the Th phase, well known in everyday life. The oxygen atoms
form a regular lattice, and each oxygen is surrounded by
four hydrogen ions (protons, HY), each located on a line
connecting the four nearest-neighbor oxygen sites [Fig. 1(b)].
The hydrogens are displaced from the midpoints between two
oxygens, and each oxygen has two close hydrogens, keeping
the H,O molecular character. These structural constraints are
encoded by the Bernal-Fowler ice rules [4], implying the
residual ground-state entropy [5] of Rln% and the commonly
accepted picture of hydrogen disorder: in the ground state,
H,0O molecules form a quasidegenerate correlated network
where the orientation of one molecule affects the orientation
of adjacent molecules, which in turn affects the orientation of
further molecules, propagating throughout the crystal. Previ-
ous diffuse elastic x-ray and neutron scattering studies of ice
confirmed the ice rules using simulations in which molecules
were orientated along random walks restricted by the ice rules
[6-8] but lacked a description of the mechanism that led to the
structure.
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Work to combine ideas from topology and field theory
along with a simple mapping of hydrogen displacement vec-
tors onto pseudospins [9—15] has culminated in the develop-
ment of a theoretical approach by Isakov et al. [3] and Benton
et al. [16]. We present a diffuse neutron scattering experiment
that tests this topological description of the structure of water
ice at 30 K. While the scattering intensity of Bragg peaks
reveals the long-range average occupation of crystallographic
sites, diffuse scattering probes structural correlations of ma-
terials over a large spatial range from small displacement
to long-range correlations. Diffuse scattering data covering a
three-dimensional (3D) volume of reciprocal space provide a
large data set to robustly test the theoretical predictions on the
nano- to mesoscale structure.

The key idea of the topological order approach [3,16] is
that the displacement vector from the oxygen bond midpoint
to the occupied hydrogen site [Fig. 1(c)] is modeled as an
Ising pseudospin s; [13]. The locations of the occupied hy-
drogen sites are given by 7, = 7V, + d5iy, Where 70, is the
location of the midpoint between nearest-neighbor oxygen-
oxygen, d = 0.134Rpo is the length of the hydrogen dis-
placement away from the center of the bond, and Rpo is
the neighboring oxygen-oxygen distance, 2.76 A. The pseu-
dospins §;, = £1 indicate a nearby or faraway hydrogen for
the hydrogen ion labeled « in the ith unit cell and should not
be confused with any quantum-mechanical spin in the system.
In fact, the pseudospin is a manifestation of an emergent
gauge field, labeled B, aligned with the pseudospins (Fig. 1(c);
Ref. [9]). In a ground state, the total number of vectors
pointing into each oxygen is equal to the number pointing out;
therefore, the ice rules imply the averaged field is divergence
free, V - B = 0, as in conventional magnetostatics. A review
of systems exhibiting emergent electromagnetic states is given

©2019 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.174111&domain=pdf&date_stamp=2019-05-20
https://doi.org/10.1103/PhysRevB.99.174111

D.J. P. MORRIS et al.

PHYSICAL REVIEW B 99, 174111 (2019)

FIG. 1. The Coulomb liquid structure of water ice. (a) The Ih phase of water ice is made up of hexagonal unit cells (Ahex, Zhex), although an
equally justifiable unit cell is the smaller orthogonal unit cell used in this study (dort, Portn), Shown here with yellow oxygen and red hydrogen
sites. (b) The water molecules in the common form of ice (Ih) are arranged as connected tetrahedra obeying the ice rules. The oxygen sits at the
center of the tetrahedron, surrounded by four protons which can occupy one of two possible sites shown in red (vacant) and white (occupied)
between any pair of neighboring oxygens. (c) The displacement of the occupied hydrogen site away from the O-O midpoint is modeled as a
pseudospin [3]. (d) Point defects terminate the hydrogen correlations and break the ice rules locally; for example, net plus (H;0™, green) and
minus charges (OH™, pink) can form, separate via pseudospin flips, and carry electric current.

in Ref. [17], and one on topology and (spin) ice physics is
given in Ref. [18].

II. EXPERIMENT

A. Sample preparation

Heavy-water ice (D,0O) samples were used that contained
the deuterium isotope, instead of hydrogen, as it provides a
less incoherent background in neutron scattering [19]. High-
quality single crystals of D,O were grown with a modified
Bridgeman technique based on work by Ohtomo et al. [20]
in which a temperature gradient slowly moves along a sample
growth cell containing liquid D,O.

The crystal growth apparatus was constructed from a cold-
liquid bath (23% ethylene glycol:water solution) cooled by
a Julbo refrigeration circulator to temperatures below the
freezing point of D,0, <4 °C, into which the sample growth
cell could be immersed in a controlled way by a stepper
motor (Fig. 2), and the entire assembly was housed in a cold
room at the Helmholtz-Zentrum Berlin (HZB) which was kept
between 6 °C and 10 °C. The single crystal is selected from the
polycrystalline ice, formed at the bottom of the growth cell,
by continuous change in direction due to the lower part of the
sample growth cell having a spiral form with a narrow sealed
section at the lower end and a constriction at the upper end of
the spiral. Ideally, one crystallite emerges from the spiral and
continues to grow in a long, straight silicone-rubber tube with
a 10-mm inner diameter. The heating gradient was enforced

by a circular heater placed around the growth cell about 3 cm
above the ethylene glycol solution. Before growth, the starting
D,0 in the cell was degassed by vacuum pumping and was
sealed to prevent air contamination during growth, leading to a
vapor pressure of approximately 30 mbar during growth. This
growth method produced approximately 12-cm-long crystals
over 1 week. The crystal was removed from the cell by cutting
the rubber along its length and then cleaved perpendicular to
its length into three pieces, one of which was used for the
experiment. Crystal quality was tested using birefringence in
the cold room or, when weather allowed, outside in the cold
Berlin winter. The birefringence revealed the samples were
composed of two twinned crystallites forming half cylinders
along the entire length of the sample. One twin, a half cylinder
1 cm in diameter and 2 cm in length, was cleaved, and crys-
tallinity was tested using x-ray Laue diffraction at a number of
spots on all sides of the crystal, during which time the samples
were orientated for the neutron measurements.

B. Neutron scattering

The structural correlations were measured on the E2
diffractometer at the BER-II reactor, Helmholtz-Zentrum
Berlin, Germany [21], which uses a flat-cone geometry, and
position-sensitive area detectors allow the measurement of
the scattering intensity throughout volumes in 3D recipro-
cal space. Neutrons with a wavelength of 1.2 A were ob-
tained using a [1,1,1] Ge monochromator with a 30-arcmin
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FIG. 2. Single-crystal growth cell based on work by Ohtomo
et al. [20]. A rubber tube connected to a plastic spiral filled with
D, 0 is passed between heater coils and then lowered into a cooled
ethylene glycol solution. Polycrystalline ice forms in the spiral, and
directional changes select a single crystal which propagates into the
main sample cell.

collimation. Data were collected by rotating the sample axis
in steps of 1°, counting at each step for 1 min. The sample
was oriented with the b-c plane in the horizontal scattering
plane with data perpendicular to this plane being measured
by synchronously tilting the detector bank and sample out of
the scattering plane. Data were collected at 30 K using three
different detector inclination angles between 0° and 30°. For
the analysis, the data were transformed from angular space
into three-dimensional reciprocal space using the orthorhom-
bic unit cell [Fig. 1(a)] for Ih ice [22]. Lattice constants
were checked with the E2 diffractometer at HZB and were
found to be apy = 4.30 A, by = 7.71A, cpp = 7.27 A on E2,
agreeing with the literature [22] within the E2 instrument w
resolution of 1°. A closed-cycle refrigerator (CCR) kept the
sample cold during measurements on E2, and the sample was
transferred into the CCR under a cold N, atmosphere. To
reduce background scattering the sample mount was covered
with cadmium, and the CCR was operated without radiation
shields. The lowest achievable temperature, and the tempera-
ture used in the neutron experiment, was 30 K.

II1. DATA AND ANALYSIS

A. Three-dimensional fit to experimental data

The diffuse scattering between Bragg peaks shows broad
features which reflect the hydrogen correlations. We analyze
the 3D volume of neutron scattering data using a large-
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FIG. 3. Variation of theoretical diffuse scattering with respect
to theoretical effective temperature 7’. (a) The dependence of the
theoretical diffuse scattering along (0, k, 0) from hydrogen atoms on
the value of the theoretical parameter 7’ from the large-N theory
with L =16 (L* is the number of units cells). At finite T/, the
diffuse signal in the wings of the pinch points at Q = (0,4,0), and
(0,8,0) shows very distinct behavior as a function of Q. The yellow
(light gray) regions represent the Q regions included in the fit to the
experimental data showing a strong dependence on the calculated
scattering with 7’. Calculated neutron scattering intensity in the
(0, k, 1) plane is shown for (b) T" = 0.13J, (c) 0.54J, (d) 1.00J, and
(e) 2.00J, revealing the dependence on T’ of the diffuse scattering
at and away from the pinch points. Therefore, a reliable value for 7’
can be obtained from the fit without including pinch points and areas
around oxygen Bragg peaks [dark gray regions in (a)].

N approach [3]. Crucially, it captures both the short-range
hydrogen correlations and the long-range distance decay in
a unified analytical way. The actual analysis involves essen-
tially standard diagonalization of the interaction matrix by
the bonds of the oxygen network of ice, which is technically
straightforward to carry out. Its nonstandard character, com-
pared to conventional magnetic systems, lies in the nature
of the solution thus obtained: the system avoids long-range
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FIG. 4. Dipolar correlations in ice at 30 K. (a) A three-dimensional representation of the experimental neutron scattering data on noninteger
indexed reciprocal space planes reveals diffuse textured features that come from the nontrivial hydrogen correlations. The data shown here are
the (h, k, —0.45), (h, —0.45, 1), (h, —1.45,1),(—0.45, k, 1), (0.55, k, 1), and (1.55, k, [) planes in reciprocal space. (b) The scattering calculated
with the theory of Isakov et al. [3] using the parameters determined from the 3D fit to experimental data [Eq. (1) and Table I]. Further agreement
between experiment and theory is shown on the (¢) (0, k, 1), (d) (0.5, k, 1), (e) (1.5,k, 1), and (f) (2.0, k, [) reciprocal lattice planes. The
experimental neutron scattering data are shown inside the white lines, with black regions of the experimental data showing Bragg peaks and

air scattering not included in the fit.

order down to the lowest temperatures and instead exhibits an
extensive space of residual low-energy degrees of freedom. It
is these which encode the emergent gauge structure.

The calculated intensity 7(Q) used in the fit is given by

1Q) = bG(Q,d, T)e' Y + ag + a1|0] + a2101>. (1)

Here I is the incident neutron intensity per detector pixel
in each 0.05 x 0.05 x 0.05 reciprocal lattice unit (r.l.u.) Q-
space volume element; G(Q, d, T") is the theoretical structure
factor, where d is the proton displacement away from the O-O
bond midpoint and hence it is the length of the hydrogen
displacement vector (d = 0.134Rpo) [3]. The Debye-Waller
factor eBQ") accounts for the reduction in intensity due to
atomic vibration; the remaining three terms account for the
asymmetric background. The momentum transfer Q is the
magnitude of the reciprocal lattice vector with coordinates
(h, k,1). The model contains only one free parameter re-
sembling temperature in the effective interaction matrix (see
Ref. [3]), T’, in units of the interaction strength J. The fit
parameter T’ characterizes the energy scale of the gauge
theory J at finite temperature (Fig. 3) and is related to the
energy scale for the first excited state; that is, 7’ sets the
energy of the creation of ionic defect pairs in ice, H;0™
and OH™ [Fig. 1(d)], which are the analog to a monopole
excitation in electromagnetism. The defect-defect correlation
length & will increase proportionally with et£/3%7") (see
Fig. 3), where E is the defect creation energy. Altogether,
within the large-N model the constants d and 7" fully describe
the proton structure and a significant amount of the dynamics
of ice within this gauge theory. The other parameters used in

the fit are related to the experimental setup. The experimental
scattering data contains sharp Bragg peaks along with air
scattering surrounding the intense Bragg peaks, neither of
which is informative about the hydrogen correlations, so the fit
function does not take those artifacts into account. Therefore,
regions of Q space containing such scattering were excluded
from the fit [Figs. 4(a) and 4(c)]. The fit is quite robust
against the method of excluding such data points, with the
effective interaction temperature always between T’ = 0.54J
and 0.6J (Fig. 3), with the best-fit parameters given in Table I.
The resulting diffuse neutron scattering data and calculation
using the fit parameters are shown in Fig. 4, illustrating
good agreement; the theory analytically fits the 3D diffuse
scattering data from Ih ice.

TABLE I. The best-fit parameters from a simultaneous fit of the
3D experimental data at 30 K. Here “arb. units” represents arbitrary
units, and “arb. units A” and “arb. units A2” refer to the same arbitrary
units multiplied by angstroms and angstroms squared, respectively.

Fit parameter Standard error

ag (arb. units) 0.2699 0.0011
a; (arb. units A) 0.064 0.002
ay (arb. units A”) —0.066 0.002
T' () 0.57 0.08
Iy (arb. units) 0.68 0.02
B (A% 0.161 0.08
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FIG. 5. Defect density at 30 K. To determine the defect correlation lengths the pinch points at the (a) (4,0,0), (b) (0,4,0), and (c) (0,0,4)
positions in reciprocal space in the theoretical data (black squares) were fitted using an asymmetric background and Lorentzian line shapes

(line).

B. Defect-defect correlation lengths, pinch points,
and defect density

This analytic approach provides a method of probing ice
properties that so far have not been accessible experimentally,
namely, the determination of the defect density that is highly
relevant, e.g., for electrical transport properties of ice. At
sufficiently low temperatures, the ice rules are essentially al-
most perfectly obeyed, modulo the presence of dilute defects.

The experimental hydrogen correlations terminate at dilute
point defects in the hydrogen structure, either ionic defects
(OH~, H30™") or Bjerrum defects (either zero or two hydrogen
ions between nearest-neighbor oxygen atoms, referred to as L
and D defects, respectively [23]), or defects in the molecular
structure (e.g., impurity ions, voids). In the ice literature,
many properties are explained by the presence and mobility
of such electrically charged defects [24,25]. Natural ice is
usually impure, and partly for this reason a lot of studies
have focused on doped ice, in particular for electrical trans-
port properties. Within the ice literature a separation of the
ionic and Bjerrum defect signals from impurities is therefore
difficult.

In the diffuse scattering from matter described by gauge
fields (e.g., water ice, spin ice) correlations are evident as
broad features which narrow into a pinch point, resembling
a bow tie, at specific locations in reciprocal space [3,17]. At
finite temperature, the field lines, and therefore the hydrogen
correlations in water ice, terminate at defects separated, on
average, by the defect-defect correlation length, which ex-
perimentally is the inverse of the pinch-point width. In an
ice crystal without defects, i.e., a crystal with only closed
field lines, these pinch points would be perfectly sharp, and
as defects are created, e.g., as temperature increases, the
pinch points would be expected to broaden. The low-intensity
pinch points and the intense Bragg peaks from the average
structure unfortunately appear at the same positions in Q
space in the experimental data, and in practice a reliable
separation of these intensities at the pinch-point location is
impossible. Since the experimental hydrogen correlations are
quantitatively described by the theoretical fit to the experi-
mental data, details of the pinch-point widths are nonetheless
accessible in the neutron scattering intensity calculated using
the parameters used to fit the experimental data [Eq. (1) and
Table I]. In order to determine orthogonal correlation lengths,
the (4,0,0), (0,4,0), and (0,0,4) pinch points in the theoretical
data are fit with a Lorentzian function and an asymmetric
background along the &, k, and [ reciprocal space directions,

respectively [Figs. 5(a)-5(c)], using

IL 2
% +
$*+(Q — Omu)
The first term is the Lorentzian line shape, where IOL is the
intensity at (h, k, [); ¢ is the full width at half maximum of the
Lorentzian at (h, k, I) measured in reciprocal lattice units and
therefore related to the defect-defect correlation length & by
¢ =1/&. Q is the magnitude of the reciprocal lattice vector;
Oni 1s the magnitude of the reciprocal lattice vector at the
position of the (#, k, [) pinch point. The second term accounts
for a low-intensity asymmetric background [Eq. (3)] with the
asymmetry being needed to fit the wings of the theoretical
data, although with little impact on the Lorentzian width due
to the low asymmetry:

1(6]) = Iasym- (2)

Iro
—gmog T e (3)
l4+e

Iasym(q ) =
where I is the intensity at the center of the smoothed step
function which is centered on Qy9, = and F control whether
the background has higher intensity at low Q or high Q,
o is the width of the step function, and I, is a constant
background term. Other background functions, e.g., constant
background and linear background, were used but did not fit
the wings of the data well. The fit parameters are given in
Table II; the three orthogonal defect-defect correlation lengths
are approximately 9Rpo, resulting in a defect density of one
defect per 500 sites.

IV. DISCUSSION AND CONCLUSION

The experimental and theoretical methods shown here are
promising tools to get more insight into the physics of ice. In
principle the structure factor of the different defects could be
used to distinguish between ionic and Bjerrum defects, but
the Q-space range here and current data statistics preclude
such an identification. Nevertheless, the technique reported
here allows for a reliable determination of the density of the
total number of defects. It is of interest to note that within
the model, hopping of a hydrogen from one site along the
OH-O bond to another site is described as reversal of the
emergent field between a neighboring oxygen-oxygen pair,
resulting in the flipping of an individual pseudospin, creating
a pair of emergent gauge charges. As the pseudospins also
correlated with electric dipole moments on bonds (note that
the molecular electric dipole moment would be the sum of the
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TABLE II. Fit parameters of the (4,0,0), (0,4,0), and (0,0,4) pinch points in the large-N theoretical fit to the experimental data [Figs. 5(a)—

5(c)], where au indicates arbitrary units.

¢ (rlu) & Iy (au) 1o (au) o (r.lu.) qpo (r.lu.)
(h,0,0) 0.1766 5.663a = 25.5A 7.6339 12.04 0.0464 4.35
0,k,0) 0.3138 3.186b = 249 A 2.7 x 107 25.23 0.0574 3.855
0,0,1) 0.2985 3.351c =24.7A 2.7 x 107* 16.76 0.057 3.85

pseudospins coming into a particular oxygen), the result-
ing excitations in the theory also carry conventional electric
charge and can be thought of (roughly) as plus (H3;O") and
minus (OH™) defects [Fig. 1(d)]. The ionic defects, once
created, are mobile through the reversal of neighboring pseu-
dospins (i.e., neighboring protons moving between occupied
and vacant sites), leading to molecular rotation along the path
traveled by the ionic defect, retaining some of the structural
mutability of the liquid phase and accounting, in part, for ice’s
electrical conductivity [1,26,27]. It is important to note that
the flipping of pseudospins to account for electrical conduc-
tivity is not in the quantum tunneling regime as predicted by
Benton et al. [16], which occurs at much lower temperatures
than were probed in this study.

The correlation length estimate here reveals an average
defect density of one defect per 500 oxygen sites, correspond-
ing to 1.2 x 10> mol~! in our sample at 30 K. That may
be compared to previous high-temperature work in which a
higher concentration would be expected: Grénicher reported
that the defect densities at 263 K are 1.6 x 10'2mol~" for
ionic defects and 1.1 x 10'7 mol~! for Bjerrum defects [25].
Khamzin and Nigmatullin [28], when using a model of
electrical relaxation due to ion hopping [29], showed that
Grinicher’s defect densities are not sufficient to account for
the experimentally observed dielectric strengths at 200 and
250 K [30]. Indeed, a defect density of 5.9 x 10*> mol~!,
approximately 50 times the density we found in our sample
at 30 K, would be needed at 200 and 250 K to account
for the dielectric strengths. Further temperature-dependent
measurements of the defect density, such as ours, and of the
dielectric constant would be instructive and shed more light
on this problem, but they are beyond the scope of the present
study.

In summary, using neutron diffraction we showed that the
highly degenerate low-temperature structure of ITh ice is de-
scribed by an analytical theory mapping ice-rule constrained
hydrogen displacements onto an emergent electromagnetic
field with U(1) symmetry. The hydrogen correlations follow

its field lines, and the field, mostly divergence free, locally
contains dilute point defects in the hydrogen correlations
corresponding to weakly interacting gauge charges. These
charges terminate the field lines and therefore degrade the
hydrogen correlations. The success of the theory in fitting ice
data is of general importance as it provides another tool in
the analysis of diffuse scattering data which probes the nano-
and mesoscale disorder which in many functional materials
underpins their sensitivity to external stimuli [31]. The useful-
ness of this technique is exemplified by the determination of
the density of intrinsic point defects which play an important
role in the response of Ih ice to stimuli such as applied fields,
with these defects being found to be present at one defect per
500 sites at 30 K in our sample. Whether cooperative effects
of these point defects become more important to structural
correlations or dynamics, e.g., as their density and quantum
coherence vary with temperature, is an intriguing question
which now is open to investigation.

Data sets containing neutron diffraction data and theoreti-
cal calculated data are available in Ref. [32].
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