
Predicting the Performance of the Inter-Coulombic Electron Capture from

Single-Electron Quantities

Federico M. Pont∗

Facultad de Matemática, Astronomía y Física y Computación,

Universidad Nacional de Córdoba and IFEG-CONICET,

Ciudad Universitaria, X5016LAE Córdoba, Argentina

Axel Molle

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,

Hahn-Meitner-Platz 1, 14109 Berlin, Germany and

Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany

Essam R. Berikaa

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,

Hahn-Meitner-Platz 1, 14109 Berlin, Germany and

Department of Nanotechnology Engineering,

University of Science and Technology at Zewail City, Giza, Egypt

Sascha Bubeck

Department of Chemistry, Institute for Theoretical Chemistry,

University of Cologne, Greinstr. 4, Cologne, 50939 Germany and

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,

Hahn-Meitner-Platz 1, 14109 Berlin, Germany

Annika Bande†

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,

Hahn-Meitner-Platz 1, 14109 Berlin, Germany

(Dated: June 28, 2019)

1



Abstract
The probability of the inter-Coulombic electron capture (ICEC) is studied for nanowire-embedded quantum-

dot pairs where electron capture in one dot leads to electron emission from the other. Previous studies pointed

to an interdependence of several ICEC pathways which can enhance the ICEC reaction probability. To identify

favorable criteria for such synergies in a qualitative and quantitative manner, we conducted a considerable

amount of simulations scanning multiple geometrical parameters. The focus of the paper is not only to find

the geometries which are most favorable to ICEC but most importantly to explain the basic principles of the

ICEC probability. We have thus derived a number of energy relations among solely single-electron level energies

that explain the mechanisms of the multiple reaction pathways. Among them are direct ICEC, both slowing

or accelerating the outgoing electron, as well as resonance-enhanced ICEC which captures into a two-electron

resonance state that decays thereafter. These pathways may apply simultaneously for just one single geometric

configuration and contribute constructively leading to an enhancement of the reaction probability. Likewise some

conditions are found that clearly turn down the ICEC probability to zero. The results based on single-electron

relations are so general that they can as well be used to predict ICEC probability from the electronic structure

in arbitrary physical systems such as atoms or molecules.
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I. INTRODUCTION

In the last few decades, semiconductor quantum dots (QDs) have gained much attention among

nanostructured solid-state materials. They became inherent to numerous technological applications

as e.g. photodetectors [1, 2], lasers [3, 4], or LEDs [4, 5]. Quantum dots find further use in single-

photon emitters [6–9], catalysts [10], solar cells [10–13], and other energy conversion applications [12, 14].

Last but not least, they might potentially come into application in electronic components for quantum

information technology [15–17]. Their success emerges from the rather straightforward fabrication and

control over shape and size. In turn, realized geometries sensitively determine the electronic structure

and related properties of the QD [18–21].

Recently, also the fabrication of arrays of QDs has become vastly controllable. Information technology

is predominantly driving these developments as two tunneling-decoupled QDs with two tunable and long-

range coupled spins are envisioned as qubits [15]. In more closely placed QDs, so-called quantum dot

molecules, tunneling of charge carriers is within reach and instrumentalized, for instance, to stabilize

excitons via separation of electrons and holes [22, 23].

Several routes to procure such QD pairs are being followed. Colloidal QDs can be assembled with

the aid of linker molecules [24]. Mere solid state synthesis is possible through self-assembly, where QDs

can be arranged either vertically by stacking of layers [23, 25, 26] or laterally by a pre-etching procedure

[27]. Moreover, QDs and embedding materials can be alternately grown into wires [28, 29] or can be

defined electrostatically within a wire or a two-dimensional electron-gas structure [30].

Interactions of charge carriers on different QDs and their resulting processes depend sensitively on

the inter-quantum dot distance. They vary from being tunneling-coupled via spin-coupled to Coulomb-

coupled. The latter type of interaction, which is applicable to long-distance paired QDs, has not yet

attracted much attention from an experimental viewpoint despite progress in theoretical studies [31–34].

One recently discovered process is the inter-Coulombic decay (ICD), in which excitation energy is

transferred from one electronically relaxing QD onto the neighboring QD, which is in turn ionized [31, 32].

This process appears also relevant in stacked quantum wells [34, 35]. Another process of interest here

is the inter-Coulombic electron capture (ICEC) where an impinging electron is captured by one QD in

accompaniment with the emission of another electron from the neighbor [33, 36]. A scheme of the ICEC

processes is shown in Fig. 1 (a).

Without loss of generality one may name the quantum dots left (L) and right (R) quantum dot and

assume an incident electron (e) of energy εi from the left. It is possible then to describe the ICEC

process by the equation

e(εi) +Rni
−→ Lnf + e(εf ), (1)
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Figure 1. Scheme of (a) direct ICEC and (b) its combination with resonance-enhanced ICEC (rICEC). In ICEC

the capture of the electron approaching from the left is accompanied by emission of the electron from the right

quantum dot. The process is driven by electron correlation and the transferred energy ET is conserved. In the

particular case of rICEC, a capture into a resonantly excited dielectronic state with energy ELn′
f
Rni
≈ ET with

one electron in the excited state of the left QD Ln′f and one in the right dot Rni happens. That resonance state

can decay by emission of the right electron and simultaneous relaxation of the left electron to the ground state,

a manifestation of ICD. The population of the resonance is not independent of the direct ICEC into the bound

states located in the left QD which is indicated in Fig. 1 (b). Both processes occur simultaneously.

where we used L and R to indicate the left and right localization of the paired-quantum-dot orbitals

and ni and nf for the energy levels in each QD with i(f) being the initially (finally) populated one.

Moreover, in the case a dielectronic resonance state (Ln′fRni
) is present with one electron in an excited

level n′f in the left QD in the system, it can be temporarily populated as

e(εi) +Rni
−→ (Ln′fRni

) −→ Lnf + e(εf ), (2)

and electron emission will occur from this state through a following ICD. This resonance-enhanced ICEC

(rICEC) is depicted in Fig. 1 (b). We stress in the scheme that, even though rICEC seems to be an

independent process, it is not, because of the correlation to the direct ICEC to Lnf . In other words,

we expect the dynamics of both channels to affect each other due to the emission at the same energy.

Therefore, although very related to ICD, rICEC is expected to have a richer physical behavior.
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Studies on ICD revealed that the inter-dot distance is not the only influential variable to inter-

quantum dot energy transfer processes. Geometry variations of the individual QDs foster changes of

the electronic structure (known as the quantum-size effect [18–20]) which, in turn, alter ICD. This

was systematically analyzed taking into account the non-trivial interdependence of several geometric

parameters [37–39]. First hints on how geometry changes also ICEC have already been collected in

computations on nanowire-embedded paired n-doped QDs [33, 36, 40].

Those recent computations on QDs have proven in accord with the first predictions for atomic systems

[41, 42] that ICEC is far more intricate than ICD. Firstly, free-electron states occur as both initial and

final states. Secondly, ICEC was shown to be energy selective [33, 36], a feature that had been overlooked

in the first scattering calculations on pairs of atoms or molecules [41, 42]. And thirdly, its efficiency can

be extraordinarily increased if the ICEC peak energy matches the two-electron resonance corresponding

to an ICD process (rICEC, see Fig. 1 (b)) for which we can recently offer a more detailed understanding

of the necessary conditions [40]. A comprehensive analysis on this multitude of requirements on the

electronic structure and a systematic understanding of the process’s dependence on them are still missing.

To this end, we employ again highly-accurate electron dynamics calculations in general binding

potentials in which we scan over a multitude of 8 613 QD pair geometries. This extensive scan itself

is possible for two reasons. On the one hand, we have found for both, the ICD and the ICEC process

that although the system is three-dimensional, calculations in a one-dimensional model are largely valid

because the continuum spans in one dimension only and an accurate approximation to the Coulomb

operator was found [36, 40, 43]. On the other hand, we have made numerous technical improvements to

fit the Coulomb potential as well as other parameters in the calculations which has led to a significant

speedup of calculations [37].

For each of the scanned configurations, we calculate the maximum of the ICEC reaction probability

(a measure of the amount of electron emission, discussed further in section III) and recognize regions of

ICEC enhancement or quenching. One strict energy requirement determining whether ICEC can occur

had already been found with a resonance pathway enhancing ICEC (Fig. 1 (b)) [33]. As we will see here,

the conjunction of two or more conditions that enhance the reaction probability (RP) is synergistic and

amplifies the probability. Moreover, a higher efficiency of ICEC compared to that of competing energy

release pathways, namely photo recombination [31] and phonon emission [44] was found to be valid in

the systems under investigation.

We start our presentation in Sec. II by describing the paired-quantum dot model, the numerical ap-

proach used in the calculations, and the definition of the computed quantities. In Sec. III, we lay out the

theory of the direct (Sec. IIIA) and resonance-enhanced (Sec. III B) ICEC process, from which we de-

duce different relations between single-electron energies which will help to decipher the scanned electron
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dynamics reaction probability results. For clarity, these relations are summarized in Section III C, which

is followed by the computational details (Sec. IV).The results for multiple inter-depending geometrical

parameter variations are presented in Sec. V where we test how the different ICEC pathways contribute

to the RP before we conclude (Sec. VI).

II. THE MODEL

In this work, we focus on nanowires with embedded QD pairs. One experimental implementation of

the device places a nanowire on top of a grid of metallic gates which can then be used to localize the

conduction band electrons through the electrostatic potential [30, 45]. Implementations with layered

semiconductors where also intensively tested experimentally [23, 25, 26, 28, 29] for which it is possible

to perform the same calculations as presented here. For the theoretical description we use a binding

potential model presented in detail in [36] to describe the electrons in the conduction band of the

semiconductor.

The Hamiltonian term imposed by the nanowire and quantum-dot pair acting on each electron is

h(ri) = − 1

2m∗
∇2
i + Vt(xi, yi) + Vl(zi). (3)

This represents a one-electron Hamiltonian in which

Vt(xi, yi) =
1

2
m∗ω2(xi + yi)

2 and (4)

Vl(zi) = −VLe−bL(zi+R/2)
2 − VRe−bR(zi−R/2)2 (5)

are the transverse confinement by the wire and the longitudinal open potentials from the embedded QDs,

where m∗ is the effective mass, R is the distance between centers of the QDs and bL,R parameterize the

sizes of the left and right QD while VL,R express their potential depths [33, 36].

The two-electron effective-mass Hamiltonian for the system is

H(r1, r2) = h(r1) + h(r2) +
1

εr |r1 − r2|
(6)

where εr is the relative dielectric permittivity, r1 and r2 are the respective electron position vectors in

atomic units of electron rest mass me ≡ 1 a.u., elementary charge e ≡ 1 a.u., reduced Planck constant

~ ≡ 1 a.u., and Coulomb constant 1/(4πε0) ≡ 1 a.u. In these units, the effective Bohr radius is 1 a.u.

below which strong quantization is expected. We adapt the atomic unit system to incorporate the

effective mass m∗ and the relative permittivity εr which simplifies the formulae. Realistic quantum dot

parameters for a specific semiconductor of choice are connected to the Hamiltonian parameters by the

scaling ri → εr
m∗

ri of the electronic coordinates [36]. These effective atomic units are used throughout

and noted a.u. as well.
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In the strong transversal confinement regime (ω = 1.0 a.u. > VL,R), three-dimensional simulations

are very well represented using an effective one-dimensional model [46] obtained using the wave-function

separation ansatz

Ψ(r1, r2) = ψ(z1, z2)φ0(x1, y1)φ0(x2, y2), (7)

where φ0(xi, yi) is the two-dimensional single-electron ground state function transverse to the nanowire

and ψ(z1, z2) is the longitudinal effective wave function. This approach has been successful in the

description of bound and resonance states in nanowires [36] and semiconductors in an external magnetic

field [47]. We choose the triplet state such that ψ(z1, z2), and hence Ψ(r1, r2), are antisymmetric under

exchange of electrons. The effective one-dimensional Hamiltonian has been deduced from the analysis

of the expectation value of the full Hamiltonian according to [36] as

Heff (z1, z2) =
∑
i=1,2

heff (zi) +

√
π

2l2
eζ

2

(1− erf(ζ)) , (8)

where heff (zi) = −1

2

∂2

∂z2i
+ Vl(zi) , (9)

and ζ = z12/
√

2l2 such that the distance z12 between the electrons is scaled by the characteristic

transverse confinement length l =
√
〈φ0 |x2|φ0〉 = 1/

√
ω, and ‘erf’ denotes the error function. The

asymptotic behavior of the effective potential exhibits the correct 1/z12 dependence at large electron

separation, but it does not, however, diverge at infinitely small distances between the electrons where

z1 ≈ z2.

Since we consider the center-to-center distance R between the QDs just big enough to have the

eigenstates well localized in the left or right dot and further assume different potential depths VL/R, the

electronic level structure obtained from the longitudinal potential Vl(z) can be labeled by Ln and Rn, in

the left or right quantum dot respectively with n ∈ {0, 1, . . . } and eigenenergy ELn/Rn . The symmetry

is fairly close to that of levels in a box potential: L0 corresponds to a nodeless symmetric state around

the left dot center, L1 to an antisymmetric state with one node in the left dot center, and so on. Once

there are no further energy levels accommodated in the QDs, the orbitals of the succeeding levels spread

over the entire space as continuum states of free electrons denoted with e(ε).

III. ENERGY RELATIONS FOR ICEC PROCESSES

In this section we describe the ICEC and rICEC processes for our QD pair model of Sec. II. We intro-

duce the basic quantities used to assess the processes’ effectiveness and, through physical considerations,

we derive the constraints and conditions for single-electron energies that define regions of particularly

high or low ICEC probability.
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Figure 2. ICEC schemes showing the configurations of the accelerating (a) and slowing (b) process for which the

maximum of the reaction probability is obtained through matching of energy differences ∆E with level energies

according to Eq. (17). Note that in the case of accelerating ICEC the final state is the ground state Lnf , in case

of slowing ICEC an excited state Ln′f and we assume that other existing levels do not play a role for the energy

location of the reaction probability maximum.

A. Direct ICEC

The basic set of equations for energy conservation for ICEC in quantum dots are,

ET = εi + ERni
(10)

ET = εf + ELnf
. (11)

As reflected by Fig. 1, εi and εf are incoming and outgoing electron energies, ET is the total energy and

ERni
and ELnf

are the initial and final energies of the QD pair system, i.e., the single-electron bound

state energy for the initial and final state. The one-electron threshold energy in our model is set to zero,

so the bound state energies are all negative. From Eqs. (10) and (11) we see that the outgoing electron

energy εf can be greater or smaller than εi of the incoming electron. Moreover, the ICEC channel can

be closed due to energy constraints which require the incoming electron to fulfill the energy conditions

εi > ELnf
− ERni

and (12a)

εi > 0 (12b)

Let us analyze the energy transfer between the QD pair and the free electron for either case of

Eq. (12):
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a) In the case that ERni
> ELnf

the QD pair releases excess energy to the outgoing electron which is

then faster than the incoming one (accelerating configuration, cf. Figure 2 (a)),

b) In the opposite case, ERni
< ELnf

, the QD pair absorbs energy from the incoming electron and

the outgoing electron turns out to be slower (slowing configuration, cf. Figure 2 (b)).

In previous works it was shown for the accelerating configuration that the direct ICEC process gives

a peak in the energy-dependent RP at a given incoming electron energy [33, 36]; the underlying flux

profile has a Gaussian shape [40]. Hence, in case of accelerating ICEC, the reaction probability peak

position is where the outgoing electron takes exactly all the energy initially contained in the QD pair,

i.e. |ERni
|. The respective condition

ε
(acc)
f = |ERni

|, (13)

was also found in [36]. Owing to this interpretation, it is straightforward to perform the same analysis

for the case of the slowing ICEC process, which was not previously addressed. Accordingly, the peak of

the reaction probability as function of the incident electron energy is to be found where the incoming

electron energy εi can be completely absorbed by the QD pair in its final state Lnf , thus

ε
(slw)
i = |ELnf

|. (14)

Using Eqs. (13) and (14) in Eqs. (10) and Eqs. (11), respectively, one can obtain the initial energy

for the accelerating case and the final energy for the slowing case,

ε
(acc)
i = |ERni

|+ ELnf
− ERni

= ELnf
− 2ERni

(15)

ε
(slw)
f = |ELnf

|+ ERni
− ELnf

= ERni
− 2ELnf

. (16)

These two results can be used to compute the value of the total energy for the configuration at which

the peak in the RP is found. For the two cases of ICEC processes, accelerating and slowing, the total

energy turns out to have the same expression

E
(slw,acc)
T = −|ELnf

− ERni
|. (17)

In any case, the incoming and final electron energies need to be positive for ICEC to be open. We

consequently arrive at the following equations for the binding energies

2ERni
< ELnf

(accelerating), (18)

2ELnf
< ERni

(slowing). (19)
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B. Resonance-enhanced ICEC

The reaction probability obtained for direct ICEC has been found to be very small and barely

reaching 1% at peak values [33, 36]. This can render ICEC being impossible to observe, even when

it is an ultrafast process happening in times estimated around 10 ps in GaAs. However, the presence

of two-electron resonance states has shown to give an extraordinary reaction probability enhancement

when energy suffices to populate them [33, 36]. We call this process a resonance-enhanced ICEC, or

rICEC.

In our current system shown in Fig. 1 (a), the left dot binds besides Lnf an additional Ln′f level.

Potentially, the two-electron resonance
∣∣Ln′fRni

〉
can be populated, as shown in Fig. 1 (b). Its decay

time and energy were computed in many cases when describing ICD in quantum dots [31, 37] along the

path ∣∣Ln′fRni

〉
−→

∣∣Lnf〉+ e−(εf ). (20)

We are going to approximate the resonance energy at large distances R by

ELn′
f
Rni
≈ ELn′

f

+ ERni
+

1

R
, (21)

throughout this study. This implies that we calculate it solely from single-electron energies which are

easy to access in a potential device. The validity of this approximation is discussed in detail in [40]. To

ensure the decay
∣∣Ln′f〉 −→ ∣∣Lnf

〉
in the left quantum dot allows for ionization

∣∣Rni

〉
−→ e−(εf ) of the

right electron, the energetic constraint

∣∣ELn′
f

− ELnf

∣∣ > ∣∣ERni

∣∣ . (22)

has to be met. Upon electron capture as in ICEC, the energy of the resonance state ELn′
f
Rni

can in

principle be above or below the initial QD pair energy ERni
, but since ET > ERni

(see Eq. (10)) the

resonance state can only be populated if it is above. Hence the condition that the resonance must fulfill,

derives as

ELn′
f

+ ERni
+

1

R
≈ ELn′

f
Rni

> ERni
(23)

|ELn′
f

| < 1

R
. (24)

Once this condition is met, it may be possible to match the direct ICEC peak condition of E(acc,slw)
T

and the resonance energy ELn′
f
Rni

, to render a huge enhancement of the reaction probability at resonance

energy. Direct ICEC can occur to any
∣∣Lnf〉 state for which the condition of Eq. (12) is fulfilled. Different

final states change the total energy, and hence to observe rICEC, the resonance energy must match one
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of the total energies defined by Eq. (17) at which the reaction probability has a peak. We write this

condition as,

ELn′
f
Rni

= −
∣∣ELnf

− ERni

∣∣ (25)

where we assume the direct ICEC can be related to a bound state
∣∣Lnf〉 that is different from the one

forming the resonance state, in this case
∣∣Ln′f〉.

The schemes in Fig. 3 display two examples for electronic level and state configurations as may occur

upon changing the geometry. In both panels the energy of the resonance, EL1R0 , is shown as green dashed

line. The slowing ICEC related quantities are depicted in red and those corresponding to accelerating

ICEC in blue. The PR peak conditions, E(slw)
T = ER0 −EL1 and E(acc)

T = EL0 −ER0 (see Eq. (17)), are

fulfilled in both panels. In panel (a) the resonance state energy is not matching any of the total ICEC

energies E(slw)
T and E(acc)

T and hence Eq. (25) is not fulfilled. Conversely, in panel (b), both slowing and

accelerating ICEC energies match that of the resonance (i.e. for the resonance with n′f = 1 and ni = 0,

Eq. (25) is fulfilled for both final states nf = 0 and nf = 1), showing the coalescence of three processes

at one single energy.

Non matching (a) 

Matching (b) 

Figure 3. Schematic representation of the quantum dot pair with different level arrangements (note that

for simplicity we did not change the shape of the QDs accordingly). In both panels, condition a maximum

of the slowing ICEC peak, E(slw)
T = ER0 − EL1 , is fulfilled and is represented by red lines and arrows (see

Eq. (17)). Condition E(acc)
T = EL0 − ER0 for the accelerating ICEC peak is also fulfilled and is shown in blue.

In (a) conditions 3 and 4 are not fulfilled because E(acc,slw)
T 6= EL1R0 (green dash-dotted), and condition 5

(EL1 − ER0 = ER0 − EL0) also fails. In (b) all three conditions are fulfilled; for clarity reasons we only slightly

shifted the three energies.
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C. Summary of relevant energy relations

The maximum of the reaction probability is strongly dependent on the geometry of the QD pair.

In Sec. IIIA and III B we derived relations between the one-electron energies and the approximated

resonance energy that define areas in the parameter space (bL, VL) with zero or very high maximum RP.

These relations are implicit equations that define curves in the two-dimensional parameter space. We

will show that some of them follow the maximum peak. Others define boundaries that divide the plane in

regions where the respective condition is fulfilled or not. In the relations we assume ELn′
f

≥ ERni
≥ ELnf

.

1. ELn′
f

= 0

The autoionizing resonance state
∣∣Ln′fRni

〉
is labelled after the one-electron states Ln′f and Rni

.

The condition ensures that the Ln′f energy level is below the single-electron threshold energy E = 0.

2. ELn′
f
Rni

= ERni

The resonance can only be populated if it is above the initial energy ERni
.

3. ELn′
f
Rn

i
= ERni

− ELn′
f

Here we match the total energy E(slw)
T as obtained for the ICEC peak to ELn′

f

(Eq. (17)) to the

resonance energy. This means that both the slowing ICEC to ELn′
f

and rICEC coincide.

4. ELn′
f
Rni

= ELnf
− ERni

Here we match the total energy E(acc)
T as obtained for the ICEC peak in Eq. (17) to the resonance

energy. This means that both the accelerating ICEC to ELnf
and rICEC coincide, as was mentioned

in [36].

5. ELn′
f

− ERni
= ERni

− ELnf

Coincidence of direct ICEC into Ln′f (slowing) and Lnf (accelerating). This condition can be used

to detect an increase or decrease (interference) of the reaction probability due to a contribution

from two different ICEC processes.

6. ELn′
f

= ERni

The crossing of ELn′
f

and ERni
. This is relevant since it changes the direct ICEC to the Ln′f state

from slowing to accelerating. It also helps to understand the behavior of the lines defined by other

conditions that also involve these two energies. Note that the energies do not cross in the actual

spectrum (they show an avoided crossing), what changes is the ordering of the states.

7. ELnf
= ERni

The crossing of ELnf
and ERni

. This is relevant since it changes the direct ICEC to the Lnf state

from accelerating to slowing.
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8. ELn′
f
Rni

= −|ELn′
f

− ELnf
|

The condition 6 points to the crossing of ELn′
f

and ERni
. This affects the behavior of the curves

defined by condition 4, and the present condition helps to understand such behavior.

IV. COMPUTATIONAL DETAILS

We have performed numerical calculations of the dynamics of ICEC for various QD distances R,

potential depth VL and size parameters bL for the left quantum dot using the two-electron effective

Hamiltonian presented by Eq. (8) and determined how the geometric parameters influence the ICEC

probability. The quantum-dot center-to-center-distance was varied between R = 6.0 a.u. and R =

12.0 a.u., the potential depth of the left QD between VL = 0.40 a.u. and VL = 1.10 a.u., and its size

parameter between bL = 0.09 a.u. and bL = 0.60 a.u. This parameter region includes configurations with

one or two bound states within the left dot and configurations where the left dot is deeper or shallower

than the right one.

The numerical calculations where performed using the MCTDH algorithm [48, 49] as implemented

in the MCTDH Heidelberg package [50, 51]. The underlying basis in discrete variable representation

(DVR) is a Sine-DVR grid expanding over 431 points and ranging from −270 a.u. to +270 a.u. in the z

direction which allows for an accurate representation of the continuum electron.

The one-electron states of the QDs and their energies ELn/Rn were obtained from the exact diagonal-

ization of the effective Hamiltonian heff (zi) according to Eq. (9). When turning to two-electron states,

the full Hamiltonian Heff applies. It includes the Coulomb interaction potential which is brought into a

sum-of-product (Tucker) form as required by MCTDH using the Potfit algorithm including all possible

terms such that a full representation of the potential in the primitive basis is achieved [50, 52, 53].

Furthermore, a total of 14 SPFs for the two modes, i.e. the coordinates of the electrons, sufficed to

retain orbital occupations below about 10−6 for the highest-energy orbital.

In all two-electron dynamics calculations, we have used the same initial wave function, i.e. incoming

wave packet and initial state. One electron is always initially bound in
∣∣Rni

〉
=
∣∣R0

〉
with the right QD

kept constant having parameters bR = 1.0 a.u. for the size and VR = 0.60 a.u. for the potential strength.

The wave packet is described by a Gaussian wave initially centered at z0 = −125 a.u. with group

momentum p0 = 0.335 a.u. and a width ∆zwpi
= 10.0 a.u. The initial energy is εwpi

≈ 56.1 × 10−3 a.u.

and its energy width ∆εwpi
≈ 2.50 × 10−3 a.u. We based this choice on the fact that we know the

reaction probability can be computed in an energy range as wide as the energy distribution of the

incoming wave packet. The RP needed to asses the emission of electrons coming from an ICEC process

is defined as the percentage of electron emission from the state with energy ERni
that is correlated

with the other electron having a specific energy distribution undergoing capture into the state with
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energy ELnf
as exactly defined in Refs. [36, 40, 50]. For its computation absorbing boundary conditions

are mandatory and were implemented through complex absorbing potentials (CAPs) [54] of quadratic

order located outside the reaction region at zcap = ±168.75 a.u. The strength of the CAPs was tuned

to 5.79× 10−6 a.u. in order to obtain a minimal value of the reflection and transmission coefficients for

the given CAP parameters together with the energy range of the system.

Table I. Choice and range of computational parameters.

electron parameters

zwpi
= −125 a.u. pwpi

= 0.335 a.u. ∆zwpi
= 10.0 a.u.

quantum-dot-pair parameters

bL ∈ [0.09 a.u., . . . , 0.60 a.u.] bR = 1.0 a.u.

VL ∈ [0.40 a.u., . . . , 1.10 a.u.] VR = 0.60 a.u.

R ∈ [6.00 a.u., . . . , 12.0 a.u.]

DVR type z range grid points

sin −270.0 a.u. . . . + 270.0 a.u. 431

SPF configurations 14× 14, id

CAP zcap η (n, k)

−168.75 a.u. 5.79 · 10−6 a.u. (2,−1)

+168.75 a.u. 5.79 · 10−6 a.u. (2,+1)

V. RESULTS

For simplicity and easier understanding, we summarize the energy conditions derived in Sec. III C

using the states that we considered in our calculations. Namely, Lnf is always the ground state of the

left quantum dot L0, Ln′f the first excited state of the left QD L1, and Rni
the ground state of the right

QD R0. The energy relations of Sec. III C specified for this system are thus summarized in Table II

together with their line types.

Electron dynamics was used to calculate the ICEC process for 8 613 different configurations of QD

pair geometries to deduce the geometry dependence, or the quantum-size effect, of the ICEC RP. The

size parameter bL and potential depth VL of the left dot were varied for different inter-dot separations R.

For each configuration the maximum of the RP was computed resulting in the color maps of Fig. 4 and

Fig. 6. All plots show a more or less pronounced Y shape of highest reaction probability in orange-red

colors that lies diagonally in the color maps as well as surrounding zero-probability areas in black. From

such common features we can assume certain conditions for ICEC to function in a favorable way or
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Table II. List of the conditions parametrizing the curves in Figs. 4 to 6 used to explain the areas of differently high

reaction probability. The energies of the levels are functions of the geometrical parameters bL, bR, VL, VR, and R.

Condition Line Type Expression

1. Second level in left quantum dot White, dash-dotted EL1 = 0

2. Two-electron resonance above initial threshold Red, dash-dotted EL1R0 = ER0

3. Coincidence of slowing ICEC and rICEC Yellow, solid EL1R0 = ER0 − EL1

4. Coincidence of accelerating ICEC and rICEC Cyan, solid EL1R0 = EL0 − ER0

5. Coincidence of direct ICEC to L1 (slw) and L0 (acc) Dark blue, solid EL1 − ER0 = ER0 − EL0

6. Crossing of EL1 and ER0 Light blue, dashed EL1 = ER0

7. Crossing of EL0 and ER0 Green, dashed EL0 = ER0

8. Coincidence of resonance with L1-L0 energy gap Magenta, solid EL1R0 = EL0 − EL1

not. In Sec. III A and III B we have already introduced the different flavors of ICEC, a slowing and

an acceleration direct process as well as a resonance-enhanced one that will eventually coincide under

certain energetic conditions and make ICEC extremely probable. The summary of the most directive

conditions (Sec. III C) will be used here to explain the maximum reaction probability shape as function

of geometry, which will be done first for the R = 8 a.u. case in the right panel of Fig. 4, before the

trends for other R are discussed.
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Figure 4. Reaction probability (RP) in % according to the color bar as a function of the left dot size bL and

depth VL. The panels are labelled with the distances 6.0 a.u. ≤ R ≤ 8.0 a.u. between the two quantum dots.

Note that the RP maxima follow closely the triple coincidence of conditions 3 (yellow), 4 (cyan) and 5 (blue)

according to the interpretation provided in the text. The condition number and line types of the curves are

given in Tab. II.
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As was already found in previous works [33, 36, 40], the strongest RP enhancement occurs when,

besides direct ICEC pathways, there is also an rICEC channel in which the resonance
∣∣L1R0

〉
is available

for population by the incoming electron and successive ICD. This is possible under two conditions. On

the one side, the bound state
∣∣L1

〉
has to exist at all, i.e. EL1 ≤ 0. This is bound by condition 1 which

is shown in the color maps and in the diagram of Fig. 5 as a white dashed-dotted line. Geometrically,

QDs that are either too shallow (small VL) or too narrow (large bL) allow only for one bound level. On

the other side, condition 2, EL1R0 = ER0 , says that the resonance energy is not high enough to lead to

ionization of the right QD. The region to the left of the red dashed-dotted line in Fig. 4 for R = 8 a.u.

(and in Fig. 5) shows that the geometries causing this behavior have a wide and deep left dot with a

low-lying
∣∣L1

〉
state and thus also a low resonance energy EL1R0 .

As a first conclusion one can classify three regions. Two for large and small left dots, respectively,

where rICEC is energetically forbidden and one area for intermediate quantum dot sizes where it is

allowed and the RP is largest. Those regions are summarized graphically in Fig. 5. Grey shows where

rICEC occurs. In the lower red region rICEC is not possible because the resonance state
∣∣L1R0

〉
does

not exist. In the upper region it is below threshold.
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Figure 5. Diagram of the color-coded curves obtained from the energy conditions listed in Tab. II. The grey-

shaded area is where the maximum reaction probability is expected because there is a resonance above the

incoming threshold energy and rICEC is possible. The red dashed circle encloses the matching of conditions 3,

4 and 5. It is thereby the point where maximum RP is expected.

.

Now we turn to discuss the structure of the reaction probability maxima observable within the rICEC

region for the R = 8 a.u. case. Immediately it becomes evident that the main contribution to the RP
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follows the yellow solid line from the lower left to the upper right corner, that is from shallow wide

to narrow deep left quantum dots all accommodating two energy levels L0 and L1. The line is drawn

to visualize condition 3, which is EL1R0 = ER0 − EL1 in Figures 4, 5 and 6. Physically it means the

coincidence of direct ICEC with capture into the
∣∣L1

〉
level slowing the outgoing electron (see Fig. 2

(b)) and of the resonance-enhanced ICEC through electron capture into the resonance state
∣∣L1R0

〉
.

Mathematically it comes from the matching of the energy of the slowing ICEC peak (Eq. (17)) to the

resonance energy EL1R0 .

In the color maps (Figures 4, 5, 6) condition 4 is drawn as a cyan solid line. It curves from large

VL with small bL, a configuration where even three levels may occur, to intermediate values for each

parameter, finishing at VL ≈ 0.6 a.u. and bL ≈ 0.4 a.u. for the case of R = 8 a.u., where the L1 level

disappears (white dashed-dotted line).

In Fig. 4, it further becomes evident that there is a crossing of the implicit curves for both conditions 3

and 4 matching direct and resonance-enhanced ICEC. It occurs near the point where the reaction

probability maximum gets its maximal value in the whole scanned 2D area. Conditions 3 and 4 will

both be fulfilled whenever EL1 − ER0 = ER0 − EL0 , which is made a self-standing condition number 5

drawn as dark blue solid line diagonally ranging from low VL and bL values to large ones (however less

steeply than the yellow line of condition 3). The triple-coalescence point of all conditions 3, 4 and 5 at

the RP maximum, is highlighted in scheme of Fig. 5 with a red circle. The energetic matching is to be

seen from Fig. 3 (b).

Condition 5 is basically the energy difference between single-electron levels. Hence, any connection

to the resonance energy is lifted and actually condition 5 can be fulfilled by direct ICEC only without

resonance enhancement. It only signifies the coincidence of direct ICEC into the L0 state (accelerating

case) and into the L1 state (slowing case). This becomes most apparent in the R = 8 a.u. panel of Fig. 4

in the region where there is no resonance, that means below the white dashed curve on the right side

of the Y-shaped area of maximal reaction probability. The contribution to the RP here is small when

compared to the rICEC cases on the left branch of the Y shape, which was to be expected from our

previous findings [33, 36, 40].

There are two further conditions associated only with the direct ICEC pathways and these are

condition 6 (light blue dashed lines) and 7 (green dashed lines). Both are equalities of single-electron

levels energies, EL1 = ER0 and EL0 = ER0 , respectively. They apply when two levels, one located in the

left and the other in the right QD, change their order. For the case of condition 6 this means that in

deep and broad left QDs the energy of the L1 state drops under that of the R0 state and actually leads

to a change of quality of the direct ICEC process from slowing to accelerating. Condition 7 applying to

narrow and shallow left quantum dots leads to a strong lift in energy for the L0 state above the R0 state
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and therefore a change from accelerating to slowing ICEC. Both conditions are limiting the reaction

probability maximum, but they do effectively not have much impact, as the reaction probability in the

transition region is anyway extremely small.

Condition 6, however, limits together with condition 4 and our last condition 8, a region of non-zero

reaction probability to the very left of all panels in Figs. 4 and 6. Condition 8 (magenta solid line) is a

resonance condition that mixes with condition 4, due to the crossing of EL1 and ER0 (light blue dashed

line). It is drawn in the plots to understand the discontinuities that may appear in the cyan curve near

the light blue dashed line.
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Figure 6. Reaction probability (RP) in % according to the color bar as a function of the left dot size bL and

depth VL. The panels are labelled with the distances 9.5 a.u. ≤ R ≤ 12.0 a.u. between the two quantum dots.

Note that the RP maxima follow closely the triple coincidence of conditions 3 (yellow), 4 (cyan) and 5 (blue)

according to the interpretation provided in the text. The condition number and line types of the curves are

given in Tab. II.

As we have now discussed the basic trends of a representative reaction probability map for R = 8 a.u.

(Fig. 4 bottom left), of which the most important ones are also summarized in the scheme of Fig. 5, we

would like to discuss the trends across the full range of distances 6 a.u. < R < 12 a.u. that can be traced

in Figs. 4 and 6. Although the absolute reaction probability maximum of this study is encountered
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at the triple coincidence point of R = 9 a.u. lying on the most pronounced RP maximum area along

the yellow line representing condition 3 where rICEC and slowing ICEC into L1 coincide, the overall

intensity of the line of RP maxima according to condition 3 is highest for R = 6 a.u. and diminishes

with increasing R. From R ≥ 10 a.u. the RP maximum lines separates into two distinct areas for deep

confinements VL > 0.75 a.u. and for shallow ones in establishing a zero-reaction probability point near

VL = 0.7 a.u. and bL = 0.3 a.u. The overall decrease originates in the fact that for shorter distances, the

resonance energy is above ER0 (cond. 1) and also the slowing ICEC peak energy is found above that

energy (Eq. (19)). For larger distances (R ≥ 10.0 a.u.), the rICEC contribution is notably diminished,

because the slowing ICEC peak energy is found for energies below the minimum for the channel to be

open. This is rather surprising, since there is a strong effect on the RP maximum along the rICEC line.

We can say that there is a below-threshold contribution to rICEC from that ICEC channel.

The RP maximum of condition 3 is in the low-VL region, where also condition 5 holds (blue solid

line). It reflects the correlation between the slowing and accelerating direct ICEC processes. condition 5

is valid even when there is no matching with a resonance-enhanced ICEC, that is e.g. also for larger

bL. For the short distances 6 a.u. ≤ R < 9 a.u. (Fig. 4) the blues line lies exactly on top of the second

branch of RP maxima. However, for long distances (Fig. 6) it lies towards higher VL, while at the same

time condition 4 (cyan line), the coincidence of rICEC and accelerating direct ICEC into L0, determines

the position of the reaction probability maximum until it also is shifted to higher VL. The matching of

the RP to an extension of the cyan line could be attributed to the coincidence of a one-electron shape

resonance of the binding potential representing the quantum dots (related to the binding of an L1 level

as a virtual bound level) with a direct ICEC peak. Such matching was found to be responsible for a

significant reduction of the decay time of the ICD resonances in quantum wells [34].

The description of the correlations between energy levels imposed as system geometry that we give

here has, off course, its limitations. In QD pairs where the distance between the dots is small, the

single-electron orbital description as well as the approximation of the resonance energy using 1/R for

the Coulomb terms fails. Small coupling among electrons on both dots enable then other channels that

also contribute to the transmission of electrons and are not governed by the simple analysis we described

above. The lifetime of the resonance is affected as well when changing the distances as found in ICD

studies [31, 34] which may render the population of the resonance by the incoming electron to change

as well. Nevertheless, it is clearly demonstrated that, within the studied distances, most of the features

depicted by the RP maximum can be explained to great accuracy with our interpretations.
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VI. CONCLUSION

We employed a highly-accurate electron-dynamics method to calculate the ICEC process in quantum

dot pairs for a multitude of QD geometries with the target to find which of them renders the highest

reaction probability. The exhaustive scan brought forth that the RP maximum is enhanced or quenched

along characteristic curves in configuration space. Those are in total eight conditions with high predictive

power that are solely based on the electronic structure of the QD pairs or, to be more specific, only

on single-electron energies as well as an approximation to the two-electron resonance energy, where the

latter is calculated from the one-electron energies itself. Two conditions are already known [33]: One is

a strict energy condition which determines whether direct ICEC can happen at all. The other defines

a resonance pathway enhancing the ICEC probability was also described in [33]. All further conditions

are new. It was discovered that the conjunction of two conditions enhances the probability maximum,

and conjunction of three is synergistic and enables an even stronger increase of the ICEC probability.

The main result is that the highest ICEC probability maximum is obtained under coincidence of three

conditions in the studied system and most pronounced for distances between the dots of R = 7−11 a.u.

Regarding the physical understanding of the maximum is based on the energetic conditions, it was

explained in previous works [33, 36] that the contribution to the resonance-enhanced ICEC process’s ex-

traordinary probability enhancement occurs when there is a coincidence of the energy of the accelerating

ICEC peak to L0 (Eq. (13)) with the resonance energy EL1R0 . Here we find that the ICEC probabil-

ity is even more enhanced, when the coincidence is at the same time true for the slowing ICEC peak

to L1 (Eq. (14)), or even when only slowing and accelerting ICEC occur together. The collaborative

enhancement of two ICEC processes with one resonance was not expected, since they could interfere

destructively, in principle. However it seems that the bigger the amount of processes that contribute to

the reaction probability at a given energy, the higher is the ICEC RP.

A deeper analysis of the enhancements related to the slowing ICEC (Sec. V) also points to an

interesting characteristic: a below threshold contribution. More specifically, ICEC always requires that

a the total energy is above the final QD one-electron state energy ELnf
(above EL1 for slowing ICEC).

However, there are cases where the energy of the ICEC peak is could be found for total energies below

ELnf
in the case of the slowing ICEC (see Eq. (17)). If so we have a matching between the energy of

the resonance and that of the slowing ICEC peak (Eq. (12)). This is the case for R > 9 a.u. (Fig. 4)

where there is still a strong reaction probability contribution to rICEC from the slowing ICEC (cond.

7) along the yellow line. This contribution is enhanced when the distance between the dots is smaller

(R < 9 a.u.), because the total energy of the slowing ICEC peak is closer to be above ELnf
. This kind of

below- threshold energy matching can be difficult to detect in other systems, but must not be discarded

as possible pathway to enhancement.
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We finally want to stress that the total ICEC process is complex as it is composed from several

different ICEC pathways depending on each other. As coincidences of the pathways determine the

ICEC probability we offer here a single-electron energy scheme for the prediction of its maximum,

applicable also for more complex systems as the one studied here. This may be the key to design an

efficient electronic device in which ICEC plays the main role for the needed response.
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