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We present neutron diffraction data for the cubic-heavy-fermion YbBiPt that show broad magnetic diffraction
peaks due to the fragile short-range antiferromagnetic (AFM) order persist under an applied magnetic-field H.
Our results for H ⊥ [1̄ 1 0] and a temperature of T = 0.14(1) K show that the ( 1

2
, 1
2
, 3
2
) magnetic diffraction

peak can be described by the same two-peak lineshape found for µ0H = 0 T below the Néel temperature of
TN = 0.4 K. Both components of the peak exist for µ0H . 1.4 T , which is well past the AFM phase boundary
determined from our new resistivity data. Using neutron diffraction data taken at T = 0.13(2) K for H ‖ [0 0 1]
or [1 1 0], we show that domains of short-range AFM order change size throughout the previously determined
AFM and non-Fermi liquid regions of the phase diagram, and that the appearance of a magnetic diffraction
peak at ( 1

2
, 1
2
, 1
2
) at µ0H ≈ 0.4 T signals canting of the ordered magnetic moment away from [1 1 1]. The

continued broadness of the magnetic diffraction peaks under a magnetic field and their persistence across the
AFM phase boundary established by detailed transport and thermodynamic experiments present an interesting
quandary concerning the nature of YbBiPt’s electronic ground state.

PACS numbers: 75.30.Mb, 75.50.Ee, 75.30.Kz, 71.10.Hf

I. INTRODUCTION

Fragile magnetism is associated with strongly-correlated
low-temperature electronic states that are highly tunable by
parameters such as strain, applied pressure, and magnetic
field.1 As the temperature T → 0 K, fragile magnetism may
result in fluctuations between states separated by very small
energy differences and even lead to a quantum-critical point
(QCP) and the emergence of quantum-critical fluctuations.2–6

In this work, we present results from neutron diffraction and
electrical resistivity experiments that detail the response of the
fragile antiferromagnetism (AFM) in the heavy-fermion com-
pound YbBiPt to the application of a magnetic field H strong
enough to drive it through the magnetic phase boundary asso-
ciated with its purported field-induced QCP at µ0H = 0.4 T.7

YbBiPt is a face-centered-cubic (FCC) compound with a
remarkably large low-temperature Sommerfeld coefficient of
γ ≈ 8 J/mol-K2 and is the metallic end member of the RBiPt,
R = rare earth, series.7,8 The characteristic temperatures re-
lated to the compound’s magnetism are all small and compa-
rable: the Kondo temperature is TK ≈ 1 K,7,9 the Weiss tem-
perature is θW ≈ −2 K,7 the crystalline-electric field splitting
is on the order of 1 to 10 K,10,11 and the Néel temperature
is TN = 0.4 K.7 In light of the compound’s FCC lattice and
characterization as a low-carrier concentration semimetal, its
extremely large γ has been proposed to result from magnetic
frustration, a low TK, or a combination of both.9,12

Data from transport experiments show a jump in the com-
pound’s resistivity at TN at ambient pressure and µ0H =
0 T which is consistent with spin-density-wave type AFM
ordering.7,13 A distinct peak also occurs in the heat capacity
at TN, and signatures of an AFM transition are seen in other

thermodynamic and electrical-transport data as well.7–9,13–16

The magnetic phase diagram constructed from such data for
H applied parallel to the [0 0 1] crystalline direction shows
that the magnetic field drives TN → 0 K at a critical value of
µ0Hc ≈ 0.4 T. This point separates the AFM phase from a re-
gion characterized by non-Fermi-liquid (nFL) type electrical
transport, and increasing the field past µ0H ≈ 0.7 T results in
a crossover to Fermi-liquid (FL) type electrical transport.7 The
fragile magnetism of YbBiPt is evidenced by the experimen-
tally observed features corresponding to TN being extremely
sensitive to magnetic field, pressure, and strain,7,13–15 as well
as the presence of very broad magnetic neutron diffraction
peaks below TN.17

Neutron diffraction experiments for µ0H = 0 T and
T < TN found magnetic diffraction peaks corresponding to
an AFM propagation vector of τ = ( 1

2 ,
1
2 ,

1
2 ) and an ordered-

magnetic moment µ lying parallel to τ .17 Surprisingly, the
peaks’ lineshapes are complicated, consisting of two compo-
nents: a narrow-Gaussian peak that appears below TN and a
broad-Gaussian peak that occurs below T * = 0.7 K.17 The to-
tal integrated intensity of the peak corresponds to µ ≈ 0.8 µB,
however, the ratio of the integrated intensity of the broad
component to that of the narrow one is ≈ 12:1. Since the
narrow component appears below TN, its associated value
of µ agrees with previous reports that estimate µ = 0.1 to
0.25 µB.18,19 The narrow and broad components have cor-
responding magnetic-correlation lengths of ξN ≈ 80 Å and
ξB ≈ 20 Å, respectively,17 which are both smaller than ex-
pected for long-range AFM order.

The presence of significant structural disorder that would
limit the AFM correlation length has been ruled out by the
existence of resolution-limited structural Bragg peaks in neu-
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tron diffraction data and by clean high-energy x-ray diffrac-
tion patterns.11,17 The presence of quantum oscillations in re-
sistance data for µ0H & 6 T at low temperature also evi-
dences high-quality crystals.20 The magnetic diffraction peaks
are elastic within an energy-resolution window of ∆E =
0.09 meV, which means that within such energy resolution
they correspond to static AFM order.17

In this report, we present results from neutron diffraction
experiments performed at T ≤ 0.75 K for applied magnetic
fields strong enough to traverse the previously identified AFM
and FL boundaries7 . Data for H ‖ [1̄ 1 0] show that the
( 1

2 ,
1
2 ,

3
2 ) magnetic diffraction peak remains broad with in-

creasing H and that its height and full width at half maxi-
mum (FWHM) smoothly change. The peak’s narrow com-
ponent exists up to µ0H ≈ 1.2 T, whereas its broad com-
ponent persists up to at least 1.6 T. This indicates that short-
range AFM order is not limited to the AFM region. No sharp
changes to the diffraction peak’s lineshape occur at the AFM
and FL boundaries determined by resistivity. Rather, depend-
ing on the direction of H, the height of the diffraction peak
either reaches a maximum near the FL boundary or monoton-
ically decreases upon crossing the AFM boundary. We argue
that the field dependence of the magnetic diffraction peak pre-
dominately reflects changes to the populations of domains of
short-range AFM order for µ0H . 0.55 T.

We further report that for H ‖ [1̄ 1 0] a magnetic diffraction
peak appears between µ0H = 0.2 and 0.4 T at T = 0.14 K
at the ( 1

2 ,
1
2 ,

1
2 ) reciprocal-lattice position. Its appearance in-

dicates that µ reorients towards H for 0.4 . µ0H . 1.2 T,
and we calculate the angle by which µ rotates as a function
H . We discuss the implications of magnetic domain growth
and the reorientation of µ with increasing field using a phase
diagram for H ‖ [1̄ 1 0] that is based on new resistivity data.

II. EXPERIMENT

YbBiPt’s unit cell may be described using space group
F 4̄3m with a room-temperature lattice parameter of a =
6.5953(1) Å.18 The nominally J = 7

2 Yb3+ cations sit at
the 4d Wyckoff positions and should experience a tetrahedral
crystalline-electric field.10,11,18 Our experiments used single
crystals grown out of Bi flux as described previously.7,8,21

Standard four-probe ac-resistivity ρ measurements were
made in an Oxford dilution refrigerator by applying a peri-
odically oscillating current I with a frequency of 16 Hz and
recording the resulting voltage along I. Pt wires were used
as leads and attached to the sample with Epotek H20E silver
epoxy. H was applied along either the [0 0 1], [1̄ 1 0], or [1 1 1]
crystalline direction, and I was always applied perpendicular
to H. More details concerning the experimental conditions are
given in Ref. 7. Since the size of the jump in ρ(T ) at TN is very
sensitive to the sample preparation and mounting conditions,7

a total of 24 samples were first screened with µ0H = 0 T.
Out of these, a few samples showing the sharpest anomalies
at TN were selected for measurement while applying a mag-
netic field.

Neutron scattering experiments used several samples con-

sisting of either one single crystal or two coaligned single
crystals. The samples had total masses of 1 to 3 g and total
mosaic spreads of ≈ 1◦ FWHM. Given the strong sensitivity
of the compound to pressure and strain,7,13,14 several methods
and glues (CYTOP or HBM X60) were used to fix the crys-
tals to a Cu sample holder which was thermally anchored to
the mixing chamber of a dilution refrigerator. Cu wire was
loosely wrapped around the crystals in order to ensure me-
chanical stability and provide another thermal path.

Neutron diffraction experiments were performed on
the SPINS cold-neutron triple-axis spectrometer at the
NIST Center for Neutron Research, and the E-4 two-
axis diffractometer22 and FLEXX cold-neutron triple-axis
spectrometer23 at the Helmholtz-Zentrum Berlin. Measure-
ments were made with the (h, h, l) reciprocal-lattice plane co-
incident with the scattering plane.

Experiments on SPINS utilized a vertically-focused
pyrolitic-graphite (PG) monochromator to select incident neu-
trons with wavelengths of λ = 5.504 Å, and cooled Be fil-
ters were inserted in both the incident and scattered beams
to suppress higher-order neutron wavelengths. The neutron
guide prior to the monochromator gave an effective collima-
tion of 53′, a 80′ Söller-slit collimator was placed between the
monochromator and sample, and a radial collimator was in-
serted after the sample. A horizontally-focusing PG analyzer
selected λ = 5.504 Å neutrons and focused the diffracted
beam to a single 3He tube detector. The energy resolution was
determined by measuring the incoherent scattering peak of a
plastic cylinder: a neutron energy transfer E scan was per-
formed across E = 0 meV, and the FWHM of the resulting
peak gave a value for the resolution of ∆E ≈ 90 µeV.

Measurements made on FLEXX used a vertically- and
horizontally-focused PG monochromator to form a λ =
5.464 Å neutron beam. A velocity selector prior to the
monochromator eliminated higher-order wavelength contami-
nation. No collimators were used, as the effective collimation
of the neutron optics was sufficient. A PG analyzer selected
λ = 5.464 Å neutrons and was horizontally focused to a 3He
tube detector. The energy resolution was found from the inco-
herent scattering from a Vanadium rod to be ∆E ≈ 70 µeV
by the same procedure used for SPINS.

Experiments on E-4 used a vertically-focused PG
monochromator that selected λ = 2.451 Å neutrons and a PG
filter was placed in the incident beam to reduce higher-order
wavelength contamination. A 40′ Söller slit collimator was
inserted between the monochromator and sample and a ra-
dial collimator was inserted after the sample. A 2-D position-
sensitive detector recorded the diffracted neutrons.

The DAVE,24 LAMP,25 and SPECTRA26 software packages
as well as in-house developed software were used for data re-
duction and analysis. Error bars and stated values of uncer-
tainties represent 1 standard deviation. Coordinates in recip-
rocal space are given in reciprocal-lattice units (r.l.u.), where
1 r.l.u. = 2π/a. Q corresponds to neutron momentum transfer
and is given in r.l.u. unless otherwise indicated.
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FIG. 1. (a) Temperature-dependent electrical resistivity ρ(T ) of Yb-
BiPt for a current I with a frequency of 16 Hz applied along [1 0 0],
[1 1 0], or [1̄ 1̄ 1]. The curves are normalized to 1 at T = 1 K,
and the legend indicates the direction of I and the sample number
corresponding to each plot. Data for I ‖ [0 0 1] are from Ref. 7. (b)-
(d) ρ(T ) curves for various values of magnetic field applied along
the [0 0 1] (b), [1̄ 1 0] (c), or [1 1 1] (d) directions with I applied
⊥ H. (e) Transverse magnetoresistivity (I ⊥ H) at T = 0.1 K for
H ‖ [0 0 1], [1̄ 0 0], or [1 1 1]

III. RESULTS

A. Resistivity for H ‖ [0 0 1], [1̄ 1 0], and [1 1 1]

Zero-field resistivity data for five representative samples are
plotted in Fig. 1(a) along with data from Ref. 7. The legend
indicates the direction of I for each dataset. A jump in ρ(T )
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FIG. 2. Magnetic phase diagrams based on resistivity data for I ⊥ H
with H ‖ [0 0 1] (a), [1̄ 1 0] (b), or [1 1 1] (c). Open symbols are from
Ref. 7 and closed symbols are new data. Lines are guides to the eye.
AFM stands for antiferromagnetic, nFL labels the non-Fermi-liquid
region, characterized by ρ ∼ T 1.5, and FL marks the Fermi-liquid
region, characterized by ρ ∼ T 2. TN labels the Néel temperature and
TFL marks the boundary of the Fermi-liquid region.

occurs at TN in each curve which is little affected by the di-
rection of I. Figures 1(b)–1(d) show ρ(T ) for specific samples
with H along either [0 0 1], [1̄ 1 0], or [1 1 1] and I ⊥ H.
The jump at TN generally shifts to lower T with increasingH ,
however, the amount by which it shifts depends on the field’s
direction. The change in TN with H is determined in the same
way as in Ref. 7 and is shown by the AFM boundaries in Fig. 2
for different directions of H.

Figure 1(e) shows the transverse magnetoresistivity (i.e. the
longitudinal resistivity measured perpendicular to H), ρ(H),
at T = 0.1 K for H ‖ [0 0 1], [1̄ 1 0], and [1 1 1]. Below
µ0H = 0.4 T, ρ(H) rapidly changes for all three field direc-
tions. At higher H , depending on the field direction, ρ(H)
shows either a local minimum or levels off near µ0H ≈ 1 T.
A broad local minimum occurs at µ0H ≈ 3 T for H ‖ [0 0 1]
and a broad local maximum is seen at ≈ 5 T and ≈ 4 T for
H ‖ [1̄ 1 0] and H ‖ [1 1 1], respectively. Clear quantum os-
cillations are present for all three directions at high field. The
oscillations are analyzed in Ref. 20 for H ‖ [0 0 1] and [1 1 1].

The phase diagrams in Fig. 2 illustrate that TN is suppressed
to T = 0 K for some value of field µ0Hc, and that a nFL
region exists for all three field directions. By extrapolating the
AFM boundary to T = 0 K, we find that µ0Hc = 0.37, 0.28,
and 0.42 T for H ‖ [0 0 1], [1̄ 1 0], and [1 1 1], respectively.
Figure 3 presents fits made to ∆ρ(T ) ∼ T 1.5 [Fig. 3(a)] and
∆ρ(T ) ∼ T 2 [Fig. 3(b)] for different directions of H, where
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FIG. 3. (a) ∆ρ(T ) = ρ(T ) − ρ(T = 0 K) versus T 1.5 and (b)
∆ρ(T ) versus T 2 for H ‖ [0 0 1], [1̄ 1 0], or [1 1 1]. I was applied
⊥ H, along the directions indicated in Fig. 1. Solid lines are guides
to the eye.

∆ρ(T ) = ρ(T )− ρ(T = 0 K). These plots demonstrate how
the nFL [∆ρ(T ) = AT 1.5] and FL [∆ρ(T ) = AT 2] regions
in Fig. 2 are defined via the ρ(T,H) data,7 and the line in
Fig. 2 labeled TFL marks the upper limit for which ρ ∼ T 2.

Figure 4 shows the Fermi-liquid coefficientA versusH/Hc
for the different directions of H. A was determined from fits
to ∆ρ(T ) = AT 2 within the FL region, andA ∼ 1/(H−Hc)
for all three field directions. As discussed previously,7 the ten-
dency of A to diverge as µ0H → µ0Hc provides evidence for
the quasiparticle effective mass being enhanced due to quan-
tum fluctuations associated with a QCP.

B. Magnetic neutron diffraction with H ‖ [1̄ 1 0]

Much of the neutron diffraction data given in this paper are
for H ‖ [1̄ 1 0] rather than the H ‖ [0 0 1] configuration
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FIG. 4. The Fermi-liquid coefficient A = ∆ρ(T )/T 2 for H ‖
[1 0 0], [1̄ 1 0], or [1 1 1]. I was applied ⊥ H, along the directions
indicated in Fig. 1. Data from Ref. 7 (for H ‖ [0 0 1]) are included
for comparison. The solid line is a fit toA ∝ 1/(H−Hc), whereHc

corresponds to the magnetic field at which TN extrapolates to 0 K.
Note that the values of A are for values of H and T corresponding
to the FL region.

used for the thermodynamic and transport measurements in
Ref. 7. This is due to constraints on the neutron diffraction
experiments imposed by applying a field along [0 0 1]. In
particular, access to multiple magnetic diffraction peaks cor-
responding to τ = ( 1

2 ,
1
2 ,

1
2 ) and µ ‖ τ on the spectrome-

ters used required the sample’s (h, h, l) plane to lie horizontal.
This means that a magnet supplying a horizontal field would
be necessary to record data for H ‖ [0 0 1]. We performed
some measurements using a horizontal-field magnet and de-
termined that it too greatly limited neutron access for detailed
studies of the magnetic diffraction peaks’ lineshapes. This
was due to the magnet and its supporting structures blocking
or attenuating the neutron beam and the weak and broad na-
ture of the peaks. On the other hand, performing experiments
with H ‖ [1̄ 1 0] allowed for a vertical-field magnet to be used,
which provided for much more neutron access to the sample.

1. Q = ( 1
2
, 1
2
, 3
2
)

Figure 5 shows the magnetic field dependence of the scat-
tering intensity of the ( 1

2 ,
1
2 ,

3
2 ) magnetic diffraction peak at

various temperatures with H ‖ [1̄ 1 0]. Data were recorded on
SPINS. For T ≤ 0.30 K, the peak’s intensity grows mono-
tonically with increasing field and reaches a maximum at
µ0H = 0.55(5) T for T = 0.14 K, which is just past the
FL boundary at µ0H = 0.52 T. There is no clear feature as-
sociated with the AFM-nFL boundary identified in Fig. 2(b).
The intensity maximum diminishes and shifts to lowerH with
increasing T and is no longer discernible at T = 0.38 K.
Nevertheless, the scattering intensity is still slightly higher at
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for various temperatures and H ‖ [1̄ 1 0]. Data were taken on SPINS.
Vertical dotted lines mark the boundaries identified in Fig. 2(b) at
T = 0.14 K determined from resistivity data.

T = 0.38 K than at 0.5 K for 0.3 . µ0H . 1 T.
Since we previously showed that the narrow-Gaussian com-

ponent of the ( 1
2 ,

1
2 ,

3
2 ) diffraction peak appears at TN for

µ0H = 0 T,17 the presence of the intensity maximum for
T < TN suggests that it is associated with the magnetic
diffraction peak’s narrow component. On the other hand, the
maximum occurs at a higher field than expected for the AFM
boundary given in Fig. 2(b). This is shown for T = 0.14 K
by the dashed vertical lines in Fig. 5, which mark the bound-
aries given in Fig. 2(b) for T = 0.14 K and indicate that the
maximum occurs near the FL boundary. To gain more insight
into the field dependence of the magnetic diffraction peaks,
we next present data that detail the ( 1

2 ,
1
2 ,

3
2 ) peak’s lineshape.

Figure 6 shows SPINS rocking scan data for the ( 1
2 ,

1
2 ,

3
2 )

magnetic diffraction peak at T = 0.13 K and µ0H = 0,
0.6, and 1.6 T. Similar to our previous report,17 the peak
is fit to a two-Gaussian lineshape composed of broad- and
narrow-Gaussian components and a constant offset. The fits
in Fig. 6(a) for µ0H = 0 T give FWHM for the broad and nar-
row components of 11.5(5)◦and 4.2(3)◦, respectively, and the
fits in Fig. 6(b) for µ0H = 0.6 T give FWHM of 5.7(1)◦and
1.67(3)◦, respectively. Hence, both of the peak’s components
are sharper for µ0H = 0.6 T. This means that their associated
magnetic-correlation lengths are larger than for µ0H = 0 T.

On the other hand, Fig. 6(a) also shows scaled data for the
(1, 1, 1) structural Bragg peak. This peak occurs at a value of
2θ (scattering angle) that is only 5◦ higher than that for the
( 1

2 ,
1
2 ,

3
2 ) peak, and should give a measure of the experimental

resolution which is close to the resolution for the ( 1
2 ,

1
2 ,

3
2 ) po-

sition. An estimation of the resolution based on a calculation
using the DAVE software package gives an expected FWHM of
≈ 0.6◦ for both peaks. The FWHM of the (1, 1, 1) Bragg peak
determined from the measurement is 0.70(1)◦, which is larger
than but close to the estimated resolution. Since the FWHM of
the (1, 1, 1) structural peak is much smaller than the FWHM
of either component of the ( 1

2 ,
1
2 ,

3
2 ) magnetic peak for both

µ0H = 0 and 0.6 T, we conclude that short-range AFM per-
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FIG. 6. Rocking curves for the ( 1
2
, 1
2
, 3
2
) magnetic diffraction peak

at T = 0.13 K for µ0H = 0 (a) and 0.6 T (b) applied parallel to
[1̄ 1 0]. Data were taken on SPINS using λ = 5.504 Å neutrons.
Solid curves are fits to the two-Gaussian lineshape described in the
text, and the lineshape’s components are shown by dashed curves.
The small peak at ≈ 10◦ is due to residual Bi flux from the crystal
synthesis process and was masked while performing fits. Data for
µ0H = 0, 0.6, and 1.6 T are plotted altogether in (c). A scaled
rocking curve for the (1, 1, 1) structural Bragg peak at T = 0.13 K
is also shown in (a).

sists at 0.6 T.
The ( 1

2 ,
1
2 ,

3
2 ) peak is almost suppressed for µ0H = 1.6 T,

and Fig. 6(c) compares scans taken at T = 0.13 K for 0, 0.6,
and 1.6 T. The value for µ corresponding to the total integrated
intensity of the peak for µ0H = 0 T and T = 0.13 K is µ =
0.76(6) µB/Yb, which is similar to the value of 0.8 µB/Yb
previously reported.17 Figures 7(a)–7(f) exhibit data for other
values of H .
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FIG. 7. Rocking scan data from SPINS (λ = 5.504 Å) for the
( 1
2
, 1
2
, 3
2
) (a)–(f) and ( 1

2
, 1
2
, 1
2
) (g)–(l) reciprocal-lattice positions

taken at T = 0.13 and 0.14 K, respectively, for various values of
H ‖ [1̄ 1 0]. Data in (g)–(l) are subtracted by data for µ0H = 0 T.
The solid curves are fits to either a two-Gaussian [( 1

2
, 1
2
, 3
2
)] or Gaus-

sian [( 1
2
, 1
2
, 1
2
)] lineshape.

Figure 8 details the changes to the ( 1
2 ,

1
2 ,

3
2 ) peak’s line-

shape at T = 0.14(1) K induced by H ‖ [1̄ 1 0]. The vertical
dashed lines mark the AFM and FL boundaries at T = 0.14 K
given in Fig. 2(b), which were determined from resistivity
data. Figure 8(a) shows that with increasing H the integrated
intensities of the peak’s narrow and broad components both
rise between µ0H = 0 and 0.4 T. For µ0H > 0.4 T, the
integrated intensity of the narrow component continues to in-
crease until reaching a maximum near the FL boundary, and
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FIG. 8. The integrated intensities (a) and magnetic-correlation
lengths (b) versus field for H ‖ [1̄ 1 0] and T = 0.14(1) K from
fits to the rocking curves for the ( 1

2
, 1
2
, 3
2
) and ( 1

2
, 1
2
, 1
2
) magnetic

diffraction peaks shown in Figs. 6, 7 and 11. Narrow and broad refer
to the components of the two-Gaussian lineshape fit to the ( 1

2
, 1
2
, 3
2
)

peak, and total refers to the sum of the integrated intensities of the
two components. Vertical dotted lines mark the boundaries identified
in Fig. 2(b) at T = 0.14 K determined from resistivity data. Solid
lines are guides to the eye.

then falls to 0 past 1.2 T. The integrated intensity of the broad
component gently decreases over 0.4 ≤ µ0H . 0.8 T , and
falls more rapidly for µ0H > 0.8 T, approaching 0 at 1.6 T.

Next, Fig. 8(b) shows the magnetic-correlation lengths as-
sociated with the peak’s broad (ξB) and narrow (ξN) compo-
nents as a function of field. These lengths were determined af-
ter calculating the trajectory of the rocking scan in Q space in
terms of reciprocal-lattice units. The corresponding FWHM
of the peak in reciprocal-lattice units was then converted to Å.
ξB increases from 19.8(9) to 39.7(9) Å between µ0H = 0
and 0.6 T, and fluctuates around a slightly lower value for
0.6 . µ0H ≤ 1.6 T. ξN grows from 54(4) to136(2) Å be-
tween µ0H = 0 and 0.6 T, reaching a maximum at 0.6 T, just
past the FL boundary. It decreases between µ0H = 0.6 and
1.0 T, and ξN = 73(5) Å for both 1.0 and 1.2 T.

The field dependencies shown in Fig. 8 are not those we
anticipated from Fig. 2(b). Specifically, we expected the in-
tegrated intensity and correlation length associated with the
( 1

2 ,
1
2 ,

3
2 ) peak to decrease as the AFM-nFL boundary is ap-

proached and crossed with increasing field. Another way of
seeing this disagreement is to overlay in Fig. 9 the region for
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FIG. 9. Diagram showing the region for which magnetic diffraction
peaks are found for H ‖ [1̄ 1 0]. The AFM and FL boundaries de-
termined via resistivity are also shown. Squares (triangles) mark the
onset temperatures and magnetic fields of the broad (narrow) com-
ponent of the ( 1

2
, 1
2
, 3
2
) magnetic diffraction peak, and the shaded

region indicates where short-range AFM exists. Lines are guides to
the eye. nFL and FL label the non-Fermi-liquid and Fermi-liquid
regions, respectively.

which the ( 1
2 ,

1
2 ,

3
2 ) magnetic diffraction peak exists on top of

the phase boundaries for H ‖ [1̄ 1 0] determined via resistivity
data and shown in Fig. 2(b). The points at µ0H = 0.4 T are
from Fig. 10 (described below), and points from the neutron
diffraction study in Ref. 17 are also incorporated. The region
where the peak exists is shaded, and dashed lines are estimates
for the boundaries of its broad and narrow components. The
figure clearly demonstrates disagreement between the neutron
diffraction data and the AFM boundary determined by resis-
tivity. The reason for this disagreement is currently unknown.

To end this subsection, we show in Fig. 10 data from trans-
verse scans taken across the ( 1

2 ,
1
2 ,

3
2 ) diffraction peak for

µ0H = 0.4 T and various temperatures. Measurements were
made using FLEXX and on a different sample than the one
used on SPINS. Similar to data in Fig. 6, the magnetic diffrac-
tion peak has narrow and broad Gaussian components for
T = 0.15 and 0.25 K, however, only the broad component ex-
ists at 0.55 K. The diffraction peak appears to be completely
suppressed at T = 0.75 K. This is similar to the temperature
dependence of the peak for µ0H = 0 T.17 In Sec. IV we argue
that the broadness of the ( 1

2 ,
1
2 ,

3
2 ) diffraction peak likely re-

flects the presence of magnetic domains of short-range AFM
order, and that within the AFM phase determined from resis-
tivity data, a changing magnetic field changes the domains’
populations. Once a high enough field is reached, µ then re-
orients towards H.

2. Q = ( 1
2
, 1
2
, 1
2
)

Rocking curves for the ( 1
2 ,

1
2 ,

1
2 ) reciprocal-lattice position

at T = 0.14 K for µ0H = 0 and 0.6 T applied along [1̄ 1 0]
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FIG. 10. Data from transverse scans taken on FLEXX, using
λ = 5.464 Å neutrons, showing the temperature dependence of the
( 1
2
, 1
2
, 3
2
) magnetic diffraction peak for µ0H = 0.4 T. Data are suc-

cessively offset by 400 counts per minute. Solid red curves are fits
to the two-Gaussian lineshape described in the text. The lineshape’s
components are shown by dashed curves. Bragg peaks due to resid-
ual Bi flux from the crystal synthesis process are also marked.

are shown in Fig. 11(a). These data were taken on SPINS. No
peak is observed for µ0H = 0 T, as expected, since µ ‖ τ
and neutron scattering is sensitive only to the component of
µ ⊥ Q.27 However, a peak is found for µ0H = 0.6 T. This
means that µ is rotated away from τ for this value of field.
To account for the θ dependence of the background, which
is likely dominated by absorption due to the sample holder,
we consider the µ0H = 0 T data to arise from a nonmag-
netic background and subtract them from the µ0H = 0.6 T
data. The result is shown in Fig. 11(b), wherein the solid
line is a fit to a Gaussian lineshape with a FWHM of 2.9(1)◦.
This is much larger than the estimated experimental resolu-
tion of 1.1◦ found from a calculation using the DAVE software
package. The FWHM of the peak corresponds to a magnetic-
correlation length of ξ 1

2
= 152(8) Å, which is slightly larger

than ξN(µ0H = 0.6 T).

Rocking scan data for other values of field are given in
Figs. 7(g)–7(l), and Fig. 8 plots the field dependencies of
the peak’s fit parameters. Their magnetic-field dependencies
qualitatively follow those of the narrow component of the
( 1

2 ,
1
2 ,

3
2 ) magnetic diffraction peak for µ0H ≥ 0.4 T. Note

that even though both the narrow-component of the ( 1
2 ,

1
2 ,

3
2 )

peak and the ( 1
2 ,

1
2 ,

1
2 ) peak have FWHM which are larger

than the resolution, the FWHM are only a couple of degrees
of rocking angle. Thus, we expect that the FWHM approxi-
mately correspond to those that would be obtained from trans-
verse scans.
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FIG. 11. (a) Rocking curves taken on SPINS, using λ = 5.504 Å
neutrons, for the ( 1

2
, 1
2
, 1
2
) reciprocal-lattice position at T = 0.14 K

for µ0H = 0 and 0.6 T applied ‖ [1̄ 1 0]. (b) Difference of the
µ0H = 0.6 and 0 T data. The solid line is a fit to a Gaussian line-
shape.

C. Magnetic neutron diffraction with H ‖ [0 0 1]] or [1 1 0]

The effect of the direction of H on the ( 1
2 ,

1
2 ,

3
2 ) magnetic

diffraction peak was investigated by recording data on E-4
while applying H within the (h, h, l) scattering plane along
either [0 0 1] or [1 1 0]. Figure 12 shows the peak’s intensity
versus H at T = 0.13(2) K, along with the data from SPINS
for H ‖ [1̄ 1 0] (i.e. applied perpendicular to the scattering
plane) originally shown in Fig. 5. For easier comparison, the
datasets are plotted according to the equation

S(µ0H)− S(µ0H = 2 T))

S(µ0H = 0 T)− S(µ0H = 2 T)
, (1)

where S stands for the scattering intensity, and scattering
recorded for µ0H ≥ 2 T is assumed to be due to a con-
stant nonmagnetic background. This scaling is consistent with
Fig. 8(a), because Fig 8(a) shows the scattering intensity ap-
proaching 0 at µ0H ≈ 1.6 T for H ‖ [1̄ 1 0] at T = 0.14 K.

In contrast to the H ‖ [1̄ 1 0] data, Figs. 12(b) and
12(c) show that the magnetic scattering intensity generally
decreases throughout the nFL and FL regions for both H ‖
[1 1 0] and [0 0 1]. The reason behind the scattering inten-
sity’s dependence on magnetic field direction is discussed be-
low. For now, we note that data in Fig. 12(c) do show a change
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FIG. 12. Intensity of the ( 1

2
, 1
2
, 3
2
) magnetic diffraction peak versus

magnetic field at T = 0.13(2) K for a vertical field applied along
[1̄ 1 0] (a), or a horizontal field applied within the scattering plane
along either [1 1 0] (b) or [0 0 1] (c). Data are scaled to 1 at µ0H =
0 T and 0 at 2 T, as described in the text. Data in (a) are the SPINS
data shown in Fig. 5, and data in (b) and (c) were taken on E-4.
Vertical dotted lines correspond to the boundaries at T = 0.14 K
given in Figs. 2(b) and 2(a).

in behavior near the AFM-nFL boundary determined in Ref. 7,
however, the magnetic scattering persists well past this bound-
ary.

IV. DISCUSSION

A. Antiferromagnetic domains and the reciprocal lattice

We begin our discussion by examining the diagram of Yb-
BiPt’s (h, h, l) reciprocal-lattice plane given in Fig. 13, which
shows the connection between the structural and magnetic
reciprocal lattices for τ = ( 1

2 ,
1
2 ,

1
2 ). We assume collinear

AFM order with µ ‖ τ , as described in Ref. 17. The posi-
tions of the magnetic diffraction peaks and the body-centered-
cubic reciprocal-lattice symmetry leads to 4 equivalent AFM
propagation vectors: τ1 = (1

2 ,
1
2 ,

1
2 ), τ2 = (1

2 ,
1
2 ,

1̄
2 ), τ3 =

( 1
2 ,

1̄
2 ,

1
2 ), and τ4 = ( 1̄

2 ,
1
2 ,

1
2 ). Each vector may be thought

of as representing AFM domains with an ordered moment
µi oriented along τi. For example, Fig. 13 shows that the
( 1

2 ,
1
2 ,

3
2 ) and ( 1

2 ,
1
2 ,

1
2 ) positions are connected to the struc-

tural reciprocal lattice by τ2 and τ1, respectively. Thus, any
magnetic Bragg peaks found via neutron diffraction at these
positions would be associated with either τ2 or τ1 magnetic
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FIG. 13. Diagram of the (h, h, l) reciprocal-lattice plane showing
structural (squares) and magnetic (circles) Brillouin zone centers,
as well as the AFM propagation vectors connecting them. Q =
( 1
2
, 1
2
, 3
2
) is also shown. A circle with an × in its interior indicates

a magnetic zone center with zero diffraction intensity due to the as-
sociated magnetic moments being oriented along τ , as occurs for
µ0H = 0 T.

domains. In the case of ideal long-range AFM order, neu-
tron diffraction experiments would find similar resolution lim-
ited magnetic Bragg peaks at symmetry equivalent reciprocal-
lattice positions corresponding to each domain. For the case of
YbBiPt, we find broad magnetic diffraction peaks at these po-
sitions which indicate short-range AFM order. The magnetic-
correlation length determined by fitting such a diffraction
peak may be interpreted as being the average size of the τi
domains being probed.

We next consider that the expected response of a collinear
AFM to an increasing magnetic field includes changes to the
populations (hence the average sizes) of magnetic domains
and the eventual reorientation of µ towards H. For low values
of H , magnetic domains with the largest component of µ per-
pendicular to H are energetically favorable, and the sizes of
these domains will increase with increasing H at the expense
of unfavorable domains. This will occur until a sufficiently
high H is reached for which it becomes energetically favor-
able for µ to reorient towards H. Such a response has been
detailed, for example, through neutron diffraction results for
Cr and UPdSn.28–30 For YbBiPt, we will show in Sec. IV B
that at T = 0.13(2) K application of a field within the AFM
region changes the relative populations of magnetic domains
and that the field-induced domain repopulation continues into
the nFL region. In Sec. IV C we will show that µ starts to re-
orient with increasing H approximately halfway through the
nFL region, and turns away from τ for 0.4 . µ0H ≈ 1.2 T.

B. Changes to the populations of magnetic domains

For H ‖ [1̄ 1 0] (i.e. ⊥ τ1 and τ2), magnetic domains
with µ ‖ τ1 or τ2 are energetically favorable and will grow
in size with increasing H as domains corresponding to τ3

and τ4 shrink. The field dependence of the ( 1
2 ,

1
2 ,

3
2 ) mag-

netic diffraction peak at T = 0.14 K appears to follow this
behavior throughout the AFM and nFL regions: Figure 8(a)

shows that the integrated intensities of both components of
the peak increase between µ0H = 0 and 0.55 T, and Fig. 8(b)
shows that both ξN and ξB also increase over this field range.
Thus, the average size of the τ2 domains grows, and either
the number of ordered moments within them increases or µ2

becomes larger. Note that Figs. 5 and 12(a) show that the H
dependence of the peak’s intensity reflects the field-induced
changes to its FWHM and integrated intensity. Assuming that
this holds for other directions of H, we next consider data for
H ‖ [1 1 0] and [0 0 1] using the intensity versus field data in
Figs. 12(b) and 12(c).

For H ‖ [1 1 0] (i.e. ⊥ τ3 and τ4), domains corresponding
to τ3 and τ4 are energetically favorable, and Fig. 12(b) shows
that the diffraction peak’s intensity begins to decrease near
the same value of field at which the data in Fig. 12(a) begin to
increase. This is expected since when H increases the AFM
domain being probed shrinks for H ‖ [1 1 0] and grows for
H ‖ [1̄ 1 0]. A magnetic field applied parallel to [0 0 1] makes
the same angle with all four τis, which means that none of
the magnetic domains are more energetically favorable than
the others. Thus Fig. 12(c) shows that the scattering intensity
at ( 1

2 ,
1
2 ,

3
2 ) is constant for µ0H . 0.4 T. This encompasses

most of the region for which the intensity in Fig 12(a) grows,
and, as we discuss in the next subsection, is the region for
which no reorientation of µ occurs.

It is clear that the intensity of the ( 1
2 ,

1
2 ,

3
2 ) magnetic diffrac-

tion peak does not disappear upon crossing the AFM bound-
ary for any of the three field directions discussed above, and
Fig. 8(b) also shows that its magnetic-correlation length be-
haves differently than typically expected for an AFM phase
transition. In particular, a second-order paramagnetic to AFM
transition would involve the growth of dynamic AFM corre-
lations on the paramagnetic side of the transition as the phase
boundary is approached. These correlations would evolve into
magnetic diffraction peaks at reciprocal-lattice positions cor-
responding to τ upon crossing into the AFM phase. For exam-
ple, data for CeCu5.8Au0.2 taken for an increasing magnetic
field at T = 0.06 K (< TN) show broadening of its magnetic
Bragg peaks due to a transition out of its AFM ordered state
at µ0Hc = 0.35 T.31,32 Such broadening would correspond to
a decrease in the magnetic-correlation length as the material
loses its AFM order.

In the case of YbBiPt, instead of ξB(H) and ξN(H) be-
ing maximum in the AFM phase, we find that both increase
as the AFM boundary is approached with increasing field at
T = 0.14 K, and that they are both largest within the nFL
phase. No rapid increases or decreases in ξB(H) and ξN(H)
are observed at either the AFM or FL boundaries. Thus, we do
not observe the typical critical behavior expected for a second-
order magnetic transition at either the AFM or FL boundaries.
The absence of such critical behavior at the AFM boundary is
particularly surprising because in addition to a jump in ρ(T )
at TN,7 heat capacity, thermal expansion, and magnetostric-
tion data show features at TN which may be associated with
an AFM transition.7,9 Whereas transport measurements may
be affected by scattering associated with magnetic domain
boundaries, the existence of domain boundaries is, in general,
not expected to greatly affect these three measurements.
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C. Reorientation of µ towards H

Figure 8 shows that for H ‖ [1̄ 1 0] and T = 0.14 K a
magnetic diffraction peak appears at ( 1

2 ,
1
2 ,

1
2 ) within the nFL

region and persists into the FL region. As noted in Sec. IV A,
reorientation of the moments towards the field direction is
expected to occur once a certain threshold value of field is
reached. Here, we assume that the appearance of the ( 1

2 ,
1
2 ,

1
2 )

peak signals thatH is strong enough to reorient µ1 away from
τ1 and towards H. Since Fig. 8 shows that the field-induced
changes to the peak’s lineshape mimic those that occur for
the narrow component of the ( 1

2 ,
1
2 ,

3
2 ) peak, which is related

to τ2, we propose that the angle by which µ rotates out of
the scattering plane toward H may be found by comparing
the integrated intensity of the narrow component to the inte-
grated intensity of the ( 1

2 ,
1
2 ,

1
2 ) peak. This is because, for

H ‖ [1̄ 1 0], H should influence the τ1 and τ2 domains in
the same manner, and the ratio of the integrated intensities of
magnetic-diffraction peaks corresponding to τ1 and τ2 is ex-
pected to depend only on the underlying magnetic order and
moment orientation. We present this analysis below.

The equation relating the integrated intensity of a magnetic
Bragg peak to its structure factor is27

I = CLp2µ2 |F |2 〈1− (µ̂ · Q̂)2〉, (2)

where 〈 〉 indicates averaging over magnetic domains,33 I
is the integrated intensity of the magnetic diffraction peak,
p = 0.2695 × 10−14 m, L is the Lorentz factor,34,35 F is
the magnetic structure factor with its dependence on the angle
between µ and Q factored out, and C is a constant related to
the instrument. The Yb3+ magnetic form factor is included
in F . Equation 2 allows us to write the ratio of the integrated
intensity of the narrow component of the ( 1

2 ,
1
2 ,

3
2 ) peak to the

integrated intensity of the ( 1
2 ,

1
2 ,

1
2 ) peak:

I( 1
2 ,

1
2 ,

3
2 )

I( 1
2 ,

1
2 ,

1
2 )

=
F 2

( 1
2 ,

1
2 ,

3
2 )
L( 1

2 ,
1
2 ,

3
2 )〈1− (µ̂( 1

2 ,
1
2 ,

3
2 ) · Q̂( 1

2 ,
1
2 ,

3
2 ))

2〉

F 2
( 1
2 ,

1
2 ,

1
2 )
L( 1

2 ,
1
2 ,

1
2 )〈1− (µ̂( 1

2 ,
1
2 ,

1
2 ) · Q̂( 1

2 ,
1
2 ,

1
2 ))

2〉
,

(3)
The subscripts in Eq. 3 refer to the peaks’ positions.

Next, we consider the specific case of H ‖ [1̄ 1 0], for
which magnetic domains corresponding to τ1 and τ2 are en-
ergetically favorable, and assume that H causes µ to rotate
out of the (h, h, l) scattering plane by an angle β but the AFM
order remains collinear. With the aid of Fig. 14, and the facts
that the ( 1

2 ,
1
2 ,

3
2 ) peak is associated with τ2 and the ( 1

2 ,
1
2 ,

1
2 )

peak is associated with τ1, Eq. 3 gives

β = sin−1

√
32

33N − 1
, (4)

where

N =
I( 1

2 ,
1
2 ,

3
2 )L( 1

2 ,
1
2 ,

1
2 )F

2
( 1
2 ,

1
2 ,

1
2 )

I( 1
2 ,

1
2 ,

1
2 )L( 1

2,
1
2 ,

3
2 )F

2
( 1
2 ,

1
2 ,

3
2 )

. (5)

We assume that the τ1 and τ2 magnetic domains are equally
populated, and remain so with increasing field.
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FIG. 14. Diagram showing the angles between H, Q, and µ for
Q = ( 1

2
, 1
2
, 3
2
) and ( 1

2
, 1
2
, 1
2
), and H ‖ [1̄ 1 0]. µτ1 and µτ2 refer

to moments associated with domains corresponding to τ1 and τ2,
respectively. β is the angle by which µ is rotated out of the (h, h, l)
plane by H.

Figure 15(a) shows the ratio of the integrated intensities
of the two peaks versus field at T = 0.14 K and Fig. 15(b)
shows that β(H) at T = 0.14 K smoothly changes between
µ0H = 0.4 and 1 T. µ points ≈ 39◦ out of the (h, h, l)
plane by µ0H = 1 T, and β(H) appears to level off be-
tween µ0H = 0.8 and 1 T. However, it is unclear if the short-
range AFM order associated with the narrow component of
the ( 1

2 ,
1
2 ,

3
2 ) peak disappears within the FL region before µ

reorients parallel to H, because β cannot be determined for
µ0H = 1.2 T due to ( 32

33N−1 )
1
2 being > 1. This is an invalid

argument for sin−1. Our alignment scans show no increase
in the integrated intensity of the (1, 1, 1) Bragg peak between
µ0H = 0 and 1.37 T which would indicate a field-induced
ferromagnetic component of µ along its direction. However,
a small value for µ would make it challenging to detect the
weak magnetic signal on top of a structural Bragg peak.

Lastly, we comment on the persistence of the broad compo-
nent of the ( 1

2 ,
1
2 ,

3
2 ) magnetic diffraction peak with increas-

ing field. A possibility is that the component corresponds to
magnetic quasielastic or inelastic scattering arising from lon-
gitudinal magnetic fluctuations rather than static magnetism.
The energy scale associated with such fluctuations would need
to be very small, i.e. within the ∆E ≈ 0.09 and 0.07 meV
energy resolutions of the SPINS and FLEXX instruments, re-
spectively, which are quite good for triple-axis neutron spec-
trometers. A problem with this interpretation is that such scat-
tering would also be expected to appear around ( 1

2 ,
1
2 ,

1
2 ) once

µ reorients away from τ . This is not observed in our data.
Further, one may typically expect a magnetic field to open
a gap in the spin excitation spectrum of the AFM order. A
large enough gap would cause some dynamic spectral weight
to move out of the diffraction measurement’s energy window,
and the intensity of the diffraction peak to consequently de-
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FIG. 15. (a) The ratio of the integrated intensity of the narrow com-
ponent of the ( 1

2
, 1
2
, 3
2
) magnetic diffraction peak to the integrated

intensity of the ( 1
2
, 1
2
, 1
2
) magnetic diffraction peak for H ‖ [1̄ 1 0]

and T = 0.14(1) K. (b) The angle β by which the field causes µ
to rotate out of the scattering plane. A point at µ0H = 1.2 T is
absent, because

√
32/(33N − 1) is outside of the valid range for

sin−1 (see Eqs. 4 and 5). Vertical dotted lines correspond to the
boundaries identified in Figs. 2(a) and 2(b) for T = 0.14 K which
were determined from resistivity data. Solid lines are guides to the
eye.

crease with increasing H . Future, highly-specialized inelastic
neutron scattering experiments on YbBiPt will be necessary to
determine if the diffraction data include a dynamic component
or correspond solely to static magnetism.

V. CONCLUSION

We have presented resistivity and neutron diffraction data
that illustrate the response of YbBiPt’s fragile AFM to ap-
plied magnetic fields along [1̄ 1 0], [0 0 1], and [1 1 0]. Our
results establish that short-range AFM order characterized
by τ = ( 1

2 ,
1
2 ,

1
2 ) persists across the previously determined

AFM boundary and into the FL region despite clear signatures
of an AFM transition in data from transport and thermody-
namic experiments.7 The diffraction data for H ‖ [1̄ 1 0] and
T = 0.14 K show that a broad magnetic diffraction peak exists
at ( 1

2 ,
1
2 ,

3
2 ) which can be fit by a two-Gaussian lineshape con-

sisting of broad- and narrow-Gaussian components, similar to
previous results for µ0H = 0 T.17 Both of the peak’s compo-
nents exist for 0 ≤ µ0H . 1.4 T, and the peak’s total inten-
sity reaches a maximum at µ0H = 0.55(1) T, which is near
the FL boundary. The magnetic correlation lengths associ-
ated with its components more than double between µ0H = 0
and 0.6 T, reaching maximum values of ξN = 136(2) Å and
ξB = 39.7(9) Å. Thus, the intensity of the magnetic diffrac-
tion peak and the magnetic-correlation lengths associated with
the short-range AFM are not maximized within the AFM re-
gion, but are largest near the nFL-FL boundary, well away
from the AFM-nFL boundary determined via resistivity. The
facts that the domain sizes are maximized and that moment
reorientation begins, at least for T = 0.14 K, near this bound-
ary is intriguing, as it may signal a change to the magnetic
exchange, or anisotropy, or both concurrent with a change in
the fermiology.

Using data for H applied within the scattering plane along
either [1 1 0] or [0 0 1], and assuming the collinear AFM struc-
ture reported in Ref. 17, we have further shown that field-
induced changes to the ( 1

2 ,
1
2 ,

3
2 ) diffraction peak’s intensity

are consistent with magnetic domains changing size through-
out the AFM and nFL regions. This agrees with the growth of
ξN and ξB with increasing H ‖ [1̄ 1 0] for these regions. We
have also shown that a magnetic diffraction peak at ( 1

2 ,
1
2 ,

1
2 )

appears in the nFL region between µ0H = 0.2 to 0.4 T for
H ‖ [1̄ 1 0], and that its appearance signals a reorientation of
µ away from τ for 0.4 . µ0H . 1.2 T.

For H ‖ [1̄ 1 0], the lineshapes of the narrow component
of the ( 1

2 ,
1
2 ,

3
2 ) peak and the ( 1

2 ,
1
2 ,

1
2 ) peak follow a similar

field dependence and disappear at µ0H ≈ 1.4 T. On the other
hand, the broad component of the ( 1

2 ,
1
2 ,

3
2 ) peak exists up to

at least µ0H = 1.6 T, and we discussed that its persistence in
field may mean that it is associated with very low energy AFM
spin fluctuations rather than static order. The broadness of the
magnetic diffraction peaks, their apparent two-component na-
ture, and their survival across the AFM boundary determined
via detailed thermodynamic and transport experiments present
an interesting quandary that warrants future investigations into
YbBiPt’s fragile magnetic properties.
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