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Ultrafast inter-Coulombic electron capture (ICEC) has been established as an important

energy-transfer process in open paired-quantum-dot systems which can mediate between

entrapment of free-moving electrons and release of trapped ones elsewhere by long-range

electron-electron interaction within nanowires. Previous studies indicated ICEC enhance-

ment through population and secondary decay of two-center resonant bound states, the

latter known as inter-Coulomb decay (ICD). This study investigates the quantum-size ef-

fect of single- and double-electron bound states in an established model of a quasi-one-

dimensional nanowire with two embedded confinement sites, represented by a pair of

Gaussian wells. We analyze the ICEC related electron flux density as a function of con-

finement size and are able to clearly identify two distinct capture channels: a direct long-

ranged electron-electron impulse, and a conversion of kinetic energy to electron-electron

correlation energy with consecutive ICD. The overlay of both channels make ICEC ex-

tremely likely while nanowires are a strong candidate for the next miniaturization step of

integrated-circuit components.

a)Electronic mail: annika.bande@helmholtz-berlin.de

http://hz-b.de/theochem

1

mailto:annika.bande@helmholtz-berlin.de\http://hz-b.de/theochem
mailto:annika.bande@helmholtz-berlin.de\http://hz-b.de/theochem


Quantum Size Effect in ICEC

I. INTRODUCTION

Size is a key factor in the electronic industry. While screens get bigger, electronic circuits

become gradually smaller. Quantum effects arise which offer challenges and interesting new pos-

sibilities. Semiconductor technology has already grown and shaped electronics exponentially in

the 1960s such that integrated circuits doubled the number of hosted transistors annually.1 Known

as Moore’s Law, this quest for exponential reduction in electronic component size had already just

reached the nanometer-scale with commercial transistors of 800 nm size in 19892 and has contin-

ued to fuel technological development and progress. Having reached 45 nm size in 2007,3 current

mass-produced transistors for mobile-phone processors use etched narrow fin-shaped structures

approaching 7 nm thickness,4–6 which is only three times the size of human DNA. Although the

reduced size is pursued to achieve lower form factors of electronic products and higher com-

ponent density on the individual integrated circuit, it offers significant technological challenges

as nanometer-sized electronics leave the regime of classical physics and become governed by

quantum-mechanical effects.7 The dominating electronic components remain the same four basic

elements of resistor, capacitor, (light-emitting) diode and transistor, but 100 millions of them are

assembled on less than a 1 cm2.8

Known as quantum size effect,9–11 the quasi-continuous band structure of any bulk material

splits up into discrete energy levels when its size is reduced sufficiently.12,13 Similarly, regions

of crystal defects, impurities, or atoms in contrast to their surrounding material can change op-

tical and electrical properties by inducing quantum effects. Therefore, nanostructured electronic

components which are essentially open quantum systems play a vital role in fostering a wealth of

applications: from lasers14 to solar cells,15 from data storage16 to displays,17 from their application

as sensors18 to their potential as qbits.19

To further miniaturize technology to yet unachieved component density, nanowires prove

to be strong candidates to reach the next research-and-development target – the so-called 5-nm

node.20–22 We therefore investigate the confinement-size dependent capture of a free-moving elec-

tron through long-range interaction with another nearby electron confined in the vicinity as might

be encountered in a device built from two quantum dots, A and B, within a nanowire.23–26 This

process has been discussed as environment-assisted electron capture and as inter-Coulombic elec-

tron capture (ICEC). It was predicted with electron dynamics for pairs of quantum dots as well

as27–29 with scattering theory for pairs of atoms and molecules.30,31 Most recently, ab-initio R-
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matrix computations demonstrated the importance of ICEC for Ne+ in He droplets.32 Within

ICEC, an electron in an initially charged confinement B− feels a momentum pressure through

long-range Coulomb repulsion from a moving electron penetrating a neighboring confinement A.

As the incident electron transfers energy to its distanced partner, it is captured into A and forces

the neighboring electron to leave its respective confinement according to

e−in + A+B− −→ A−+B + e−out . (1)

While choice of material composition and doping offers essential control over electronic device

performance, it remains limited by availability, material cost and technical feasibility. Tuning

the electron confinement size and thereby exploiting the quantum size effect, however, offers an

alternative which is easily portable to industrial scale. This study therefore investigates how size

affects efficiency and selectivity of ICEC. Electron dynamics of ICEC in quantum dots confirmed

an energy-selective reaction pathway through decay of a macroscopic two-center resonance state

(AB)∗ known by itself as inter-Coulombic decay (ICD), following

e−in + A+B− ICEC−→ (A−+B−)∗ ICD−→ A−+B + e−out. (2)

Like inter-Coulombic electron capture, ICD is mediated through long-range Coulomb interaction

of electrons located on two different partner sites, may it be atoms and molecules,33–35 or solid

state confinements as quantum dots.36–38 In the sense of a Feshbach resonance, an electron in the

single-electron-excited state of one partner A−∗ relaxes to a lower-energy state while its excess

energy becomes available for ionization of the other partner B−. Compared to the young predic-

tion of ICEC, however, inter-Coulombic decay is already well established in various fields, among

them helium droplets,39 hollow atoms,40 as well as biological systems,41,42 and nanostructures

as fullerenes43 or quantum films.44,45 Different ways to achieve ICD resonance have been stud-

ied: namely radiation,46, α-particle,42 and ultimately electron impact,27–29,47 the pathway we are

discussing hereafter.

The full electron dynamics of the ICEC process is going to be calculated in a charged quantum-

dot-pair model of two Gaussian binding potentials.27–29 In this comparably small system, it is

possible to solve the time-dependent Schrödinger equation at a high level of numerical accuracy

regarding electron-electron correlation by using the multi-configurational time-dependent Hartree

(MCTDH) approach48,49 with fermionic antisymmetrization of a discrete-variable-represented
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(DVR) wavefunction as implemented in the Heidelberg implementation.50,51 This grid-like ap-

proach bears the merit of offering access to the full electron dynamics while treating continuum

states on the same footing as bound ones which is not usually achieved with many other theoretical

methods.

While it was previously shown that ICD can enhance the overall ICEC probability in compar-

ison to a direct ICEC without ICD,27,29,52 we show in this study that the two reaction pathways are

distinct in their energy signature, a broadband energy transfer echoing the incoming electron in the

case of direct ICEC against energy selection through resonance criteria of ICD. As a consequence

of the quantum-size effect, ICD and ICEC must depend on the size of the electronic confinements

which has been investigated in the case of ICD.53,54 Here, we intend to use the effect to study the

particular interplay between ICD and ICEC, whereas a following empirical high-throughput study

on ICEC in quantum dots will disentangle the particular dependence of maximal ICEC probability

density on eigenenergy interrelations.47 The primary interest in the present study is the electron

flux associated with a successful inter-Coulombic electron capture in a nanowire-embedded pair

of quantum dots at different confinement sizes and constant initial states. Though theoretical in

nature, our investigation mimics the experimentally known and easiest access to energy-level vari-

ation of quantum dots via the well known quantum size effect.

In order to analyze the individual contributions of the inter-Coulombic electron capture

channels, we describe the general evolution and kinetics of free-moving Gaussian wavepack-

ets Sec. II A and generic decaying quantum states respectively in Sec. II B, before introducing

the paired-quantum-dot model (Sec. II C) and deducing expectations towards ICEC dynamics of

individual reaction channels and their distinguishability in the electron flux density (Sec. II D).

Related computational details are comprised in Sec. III. To dissect the size dependence of ICEC,

we start the discussion of numerical results by characterizing the traditional quantum-size effect

of mono- and dielectronic eigenenergies to which there has not been any analytical solution found

(Sec. IV A). Consequently, we explain an example of the evaluation of the undertaken dynamics

calculation in Sec. IV B before eventually concentrating on the size dependence of the individual

reaction pathways of ICEC.
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II. THEORETICAL BACKGROUND

A. Free Wavepackets

A free particle moving through a medium can be described by a Gaussian wavepacket of

initial average position Z, initial group velocity p0/m∗, and initial uncertainty in position σz. At

this point, we wish to consider one spatial dimension only which is to be denoted by z and reads

〈z, t0|φ〉 :=
(

1
2πσ2

z

)1
4

exp

[
−1

4

(
z−Z

σz

)2

+
i
h̄

p0(z−Z)

]
. (3)

Although the expected position of the particle is determined up to some uncertainty at initial

time t0, it becomes less certain where it may be found as time evolves or where it would have been

found at a preceding point in time. In other words, the wavepacket at t0 has minimum uncertainty,

while more generally speaking, uncertainty σz(t) and average position Z(t) of the wavepacket

depend on time according to

σ
2
z (t) =σ

2
z (t0)+

ih̄
2m∗

(t− t0), (4)

Z(t) =Z(t0)+
p0

m∗
(t− t0). (5)

Furthermore, we can deduce the initial distribution in momentum space by the Fourier trans-

formation of Eq. (3),

〈p, t0|φ〉=
(

2σ2
z

π h̄2

)1
4

exp
[
−
(

σz

h̄

)2
(p− p0)

2 +
i
h̄

Z(p− p0)

]
. (6)

By expressing the momentum in terms of energy ε as p =−
√

2m∗ε for p≤ 0 and p =
√

2m∗ε

for p > 0 in the normalization integral, 1 =
∫

∞

−∞
d p |〈p, t0|φ〉|2, and then identifying the integrand

as the particle’s initial energy distribution by Dφ (ε), we find

Dφ (ε) =

(
m∗σ2

z

π h̄2

)1
2

(ε)−
1
2

(

exp
[
−2
(

σz

h̄

)2(√
2m∗ε− p0

)2
]

+exp
[
−2
(

σz

h̄

)2(√
2m∗ε + p0

)2
])

. (7)
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B. Decaying States

In contrast to the state |φ〉 of a free wavepacket, one can also consider an arbitrary metastable

quantum state |µ〉 of some sort which is to be characterized by a decay in time t > t0 with decay

rate Γ/(2h̄), energy expectation value Eµ and initial space-time-dependent amplitude 〈z, t0|µ〉 and

reads

〈z, t ≥ t0|µ〉 := exp
[
− Γ

2h̄(t− t0)− i
h̄Eµ(t− t0)

]
〈z, t0|µ〉 . (8)

By Fourier transforming this equation, we can express the decaying state in terms of the complex

Siegert energy Eµ − iΓ

2 as quantum amplitude of energy E,

〈z,E|µ〉=
(

h̄Γ

4π

)1
2 i

〈
z,Eµ

∣∣µ
〉

E−
(
Eµ − iΓ

2

) , (9)

at the spatial position z with respect to the reference amplitude
〈
z,Eµ

∣∣µ
〉

at energy expectation

value Eµ .

It is well-known and apparent that the energy distribution Dµ(E) of such a metastable state is

given by the Cauchy-distribution probability-density function

Dµ(E) =
(

h̄
πΓ

)
Γ2

Γ2 +4(E−Eµ)2 (10)

often referred to as Lorentzian function or Breit-Wigner distribution of the resonance energy Eµ

and the full-width at half-maximum Γ.55

C. Model System

We consider charge carriers moving along a nanowire with an embedded pair of quantum

dots. This provides an example of a quasi-one-dimensional open quantum system,21,27 where

electrons can enter, pass through, and leave the medium. It allows a treatment of reduced dimen-

sionality as carrier transport through the wire is predominantly bound to one spatial dimension.

Solid state physics generally accounts for collisions of moving charge carriers with the me-

dium’s crystal structure and other related resistant effects. This is done by assigning a material-

dependent effective mass m∗ to the charge carrier. By this so-called effective mass approximation,

the carrier in the medium may then be treated analogously to a particle in free space as discussed in

Sec. II A. Although the effective mass is dependent on material and other experimental conditions,

the mathematical treatment becomes independent from the medium described. Consequently, it is

6



Quantum Size Effect in ICEC

possible to define effective units in analogy with the free-space entities. Atomic units define the

fundamental quanta of electron mass me, elementary charge e, action h̄, and Coulomb force con-

stant (4πε0)
−1 as respective units of reference, that is [1a.u.] each. In dependence on the material,

one can thus define an effective Bohr radius,56

a∗B =
4πε h̄2

m∗e2 , (11)

as length of reference as well as an effective energy E∗H as reference energy analogously to the

Hartree energy56,57

E∗H =
h̄2

m∗a∗B
2 . (12)

Accordingly, time scales in units of h̄/E∗H and momentum in units of h̄/a0. This takes material-

dependent quantities as dielectric permittivity ε and effective carrier mass m∗ into account. Note

that the reference scale for electric charge could similarly be adapted to the particular charge

carrier considered, but shall remain the elementary charge e for the purpose of this study.

In such an effective-mass description, a local change in material or local defect in crystal

structure may trap the charge beyond the statistical average. This can be described by an appro-

priate binding potential. The embedding of a material within another medium is thereby often

modelled by a finite square box potential. Nevertheless, a different choice of potential might also

account for effects like Schottky barriers,58 energy band bending in junctions of n- and p-doped

materials,59,60 atom diffusion and wetting layer effects,61 Fermi level unpinning22,62, or tilted po-

tentials inducing charge separations as found in superlattices of zinc-blendes and wurtzites.63,64

The nanostructure we intend to consider in this study thus consists of a virtually infinite

semiconducting wire with two embedded regions of confinement at center-to-center distance R.

Assuming injected electrons as charge carriers to be described, one might talk of a p-type host

material in junction with two n-type regions in the form of a pair of PNP heterojunctions. We

denote the longitudinal transport direction of the wire as z and distinguish the quantum dots as the

‘left’ or ‘right’ one of respective confinement length LL or LR and band steps VL/R with respect

to the surrounding wire. The smooth potential VQD for this quantum-dot pair can then be modelled

by the following equation which describes a pair of Gaussian wells as shown as blue line in the
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bottom of Fig. 1.36,

VQD(z) :=−DL exp


−2

(
z+ R

2
LL

)2



−DR exp


−2

(
z− R

2
LR

)2



(13)

−10 −5 0 5 10

0

1

2

3

4

5

z [a∗B ]

V
[E

∗ H
]

VQD(z1/2)

V12(z2 − z1)

VC(z2 − z1)

Figure 1. The binding potential VQD (blue solid line) modeling the quantum dot pair as function of z is

shown in conjunction with the true Coulomb potential VC (brown dotted line) and the effective Coulomb

potential V12 (red dashed line) as function of spatial distance |z2− z1| between the electrons.

We define the single-electronic Hamiltonian ĥ of longitudinal kinetic energy and quantum-

dot potential operator VQD(z) as

ĥ :=− h̄2

2m∗
∂ 2

∂ z2 +VQD(z). (14)

It gives rise to a set of eigenenergies {En}n and associated eigenstates {|n〉}n according to

ĥ |n〉=: En |n〉 ∀n. (15)

For simplicity, we restrict our system to cases of a single bound state |R〉 on the right quantum

dot, as well as a ground and a single excited state on the left quantum dot, |L0〉 and |L1〉, re-

spectively. As localization should be distinguishable in appropriately separated quantum dots, we

choose to label single-electron bound eigenstates according to their position. Unbound eigenstates

are named by their free energy ε within the continuum, i.e.
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{|n〉}n =:
{
|L0〉, |R〉, |L1〉, {|ε〉}ε≥0

}
. (16)

Assuming a longitudinal setup of the charge carrying medium in the form of a wire and

neglecting direct ionization out of the wire, the charge carriers are transversally bound. This means

the nanowire acts as a waveguide of transversal oscillator strength h̄ω⊥ to the particles moving

through it. This has successfully been described by the harmonic potential U⊥ and associated

transversal ground state |0〉⊥,65 where a natural length l is associated to the product of oscillator

strength h̄ω⊥ and material-dependent effective mass m∗ according to the equations

U⊥(x,y) := h̄ω⊥

(
x2 + y2

2l2

)
(17)

〈x,y|0〉⊥ :=
(
πl2)− 1

4 exp
[
−x2 + y2

2l2

]
(18)

l :=

√
h̄

m∗ω⊥
. (19)

Generally, the Coulomb repulsion between two electrons is dependent on the distance

between them with the usual 1/r dependence. The repulsion strength is medium dependent.

The Coulomb potential VC(~r1,~r2) in three spatial dimensions can therefore be expressed in terms

of aforementioned effective medium-incorporated units of natural scales of energy E∗H and length

a∗B as

VC(~r1,~r2) = E∗H
a∗B

|~r2−~r1|
. (20)

We assume energies small enough to keep electrons transversally in their spatial ground-state

distribution, i.e. E
!
< 3/2 h̄ω⊥, while they travel longitudinally through the wire. Under this as-

sumption, one can average over the transversal contributions to the full-dimensional Coulomb

potential of interaction between a transversal electron-distribution according to Eq. (18) at lon-

gitudinal position z1 and another one at z2. This reduces the problem under investigation to a

quasi-one-dimensional open quantum system with effective interaction potential

V12(z1,z2) = E∗H
a∗B
l

√
π

2 w
(

i
|z2− z1|√

2l

)
(21)

with w(iz) :=
(
1− erf[z]

)
exp
[
z2] . (22)
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and has been employed successfully.27,29,38 Note here, that w(iz) is the Faddeeva function,66 and

the effective potential V12 thus exhibits a shape related to the Voigt profile (dashed line in Fig. 1)66

compared to the diverging profile of the true Coulomb interaction VC(~r1,~r2) displayed for x1/2 =

y1/2 = 0 (Fig. 1, dotted line).

Due to the fermionic nature of the two electrons investigated here, their total wavefunction

has to obey Pauli’s exclusion principle. The wavefunction describing an electron in an arbitrary

state |α〉 and another in an arbitrary state |β 〉 shall hence be given by their antisymmetric outer

product and denoted by |αβ 〉.

|αβ 〉 := 1√
2

(
|α〉⊗|β 〉− |β 〉⊗|α〉

)
(23)

Accordingly, a projection of the overall wavefunction onto the two-electron state |αβ 〉 is defined

by the outer product of state with itself and is being denoted

P̂αβ := |αβ 〉〈αβ | (24)

Furthermore, we wish to consider a projection P̂α of the two-electron wavefunction on an arbitrary

single-electron state |α〉, which describes the wavefunction of one electron coinciding with another

one occupying state |α〉. Such a projector is mathematically described by the symmetric outer

product of state |α〉 with the identity operator 1 as

P̂α = 1
2

(
|α〉〈α|⊗1+1⊗|α〉〈α|

)
(25)

We wish to numerically undertake an ICEC experiment. For that purpose, we charge the right

quantum confinement and send a free electron towards the paired quantum confinement from the

left. That means we prepare an electron in bound state |R〉, and another in free state |φ〉 according

to Eq. (3) at a large distance from the quantum-confinement region. We then antisymmetrize

according to Eq. (23) to reach the total state |Ψ〉. In general, |Ψ〉 is not separable into single-

electron components due to electron-electron interaction. At an infinite distance, however, the

electrons cannot interact and are effectively independent from each other. This implies the two-

electron wavefunction 〈z1,z2|Ψ〉 can be well approximated by antisymmetrically combined single-

electronic components within the large-distance limit as

〈t = t0|Ψ〉 := |φR〉 = 1√
2

(
|φ〉 ⊗ |R〉 − |R〉 ⊗ |φ〉

)
. (26)
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As we wish to consider two-electron states from here on, we use indices ‘1’ or ‘2’ to indicate

single-electronic quantities where appropriate. The Hamilton operator ĥ1, for example, shall refer

to the operator sum of quantum-confinement potential VQD and kinetic energy operator as intro-

duced in Eqs. (13) and (14) which act on the electron labelled by ‘1’. Further the electronic

interaction potential V12 is contained. We thereby arrive at the system’s Hamiltonian operator

Ĥ = ĥ1 + ĥ2 +V12. (27)

D. ICEC Dynamics

Analyzing the evolving state |Ψ〉 at large times, we can assure that inter-Coulomb electron

capture has taken place if we observe an electronic current at a large distance from the confinement

region coinciding with some occupation of the left-bound single-electron states |L0〉 and |L1〉.
We therefore define the flux operator F̂ such that its expectation value F(t) as function of time

describes the electron flux at longitudinal position zF . Respectively, F(E) describes the energy

distribution of the electron flux passing through longitudinal position zF . Electron flux through zF

that coincides with the simultaneous occupation of the single-electron state |L0〉 is consequently

described by applying the operator P̂†
L0

F̂P̂L0 . Its time- or energy-dependent expectation value is

going to be denoted by FL0(t) and FL0(E), respectively, hence as

FL0(t) :=
∣∣∣
〈

Ψ

∣∣∣P̂†
L0

∣∣∣t
〉〈

t
∣∣∣F̂
∣∣∣t
〉〈

t
∣∣∣P̂L0

∣∣∣Ψ
〉∣∣∣ , (28)

FL0(E) :=
∣∣∣
〈

Ψ

∣∣∣P̂†
L0

∣∣∣E
〉〈

E
∣∣∣F̂
∣∣∣E
〉〈

E
∣∣∣P̂L0

∣∣∣Ψ
〉∣∣∣ . (29)

Because the initial wavefunction is not equally distributed over the entire energy range, the meas-

ured flux will depend on the energy distribution

DΨ0(E) := |〈Ψ0|E〉〈E|Ψ0〉| . (30)

The probability density for a successful inter-quantum-dot Coulombic electron capture into |L0〉
within the infinitesimal range of total energy from E to E + dE is hence given by the fraction of

measured electron flux of that energy by available density distribution,

PL0(E) :=
FL0(E)
DΨ0(E)

, if DΨ0(E)> 0. (31)
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z

t
(a)

pi ERpi − EL0

pfEL0

L0
RL1

z

V
Q

(b)

z

t
(c)

pi ERpi − 1
2
EL1R

1
2EL1R

1
2EL1R

1
2EL1R − EL0 pfEL0

Figure 2. (b) The binding potential VQD modeling the quantum dot pair as function of z is shown and the

energy levels of the states L0, R, L1 are indicated. (a) shows the diagram of direct ICEC in alignment with

the binding potentials of (b). Arrows indicate the electron evolution in space and time with momentum pi/ f

or only in time when being in one state of energy EL0/R. The wiggled lines represent the transferred energy.

(c) The representation of direct ICEC is supplemented with the representation of the resonant ICEC.

Any evolution has to conserve the total energy ET of the system. So energy transferred

through a capture into |L0〉 has to equal the energy difference between right-bound |R〉 and left-

bound |L0〉

pi
2

2m∗ +ER = ET (32)

ET = EL0 +
p f

2

2m∗ . (33)

This is diagrammatically presented in Fig. 2 (a). Despite the electronic correlations throughout the

process, this means that energy transfer is solely dependent on single-electron quantities. Under

the assumption that a metastably bound two-electron excited state can be occupied which might

bear at least conceptual similarities with a state of simultaneously occupied |L1〉 and |R〉 in con-

sequential perturbation by respective repulsion, we call this state |L1R〉. If such a state is to be

populated by the evolving state |Ψ〉 at some point in time t ≥ t0, energy conservation must be

ensured equally. As such, only those fractions of incoming wavepacket can contribute which are

12



Quantum Size Effect in ICEC

appropriately energetically situated close to the energy difference (cf. see Eq. (10)) between EL1R

and ER, as depicted in diagram (c) of Fig. 2, i.e.

pi
2

2m∗ +ER = EL1R (34)

EL1R = EL0 +
p f

2

2m∗ (35)

Similarly, the kinetic energy release coinciding with a residual occupation in L0 depends on the

energy difference between EL1R and EL0 as this intermediate state decays by tunneling out of the

Coulomb-induced confinement barriers. Nevertheless, despite its particular dynamics via |L1R〉,
the overall excess kinetic energy remains independent of EL1R and depends solely on the single-

electronic quantities EL0 and ER.

If we assume ICEC to occur as an elastic scattering in the form of a direct energy transfer or

impulse between the two electrons, we would expect an electron flux energetically similar to the

initial energy distribution Dφ (ε). The energy distribution DΨ0(ET ) of the initial state |Ψ0〉 is trivi-

ally separable into its electronic components, as the incoming wavepacket |φ〉 and the right-bound

electron |R〉 are at very large distance from each other and correlative interaction is negligible,

DΨ0(ET ) = Dφ (ε)×δ (ER− (ET − ε)) , for ET =: ε +ER. (36)

Due to equations (7), (15), and (16), we expect the energy distribution DΨ0(ET ) to be a simple

superposition of continuous contributions of free energy ε and discrete eigenenergy ER,

Fφ

L0
(ε) ∝

∣∣〈ET −ER|φ〉
∣∣2

∝
p0√
2m∗ε

exp
[
−2σ2

z p2
0

h̄2

(√
2m∗ε
p0
−1
)2
]

1+ exp
[
−8σ2

z p2
0

h̄2

]

+
p0√
2m∗ε

exp
[
−2σ2

z p2
0

h̄2

(√
2m∗ε
p0

+1
)2
]

1+ exp
[
−8σ2

z p2
0

h̄2

] ,

(37)

where the second term is expected to have a very small contribution near ε = p2
0/2m∗.

On the other hand, assuming that the kinetic energy of the initially free wavepacket is trans-

ferred into correlation energy between the electrons, electron capture might occur initially without

environmental ionization. The interaction between both bound electrons then allows a secondary

energy transfer resulting in electron tunneling out of the confinement. As this two-electron bound
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state thus decays, we expect the electronic flux to reflect this decay according to Eqs. (10) and

FL1R
L0

(ET ) should show a Breit-Wigner shape, i.e.

FL1R
L0

(ET ) ∝
∣∣〈ET |L1R〉

∣∣2 ∝
Γ2

4(ET −EL1R)
2 +Γ2 . (38)

Consequently, electron capture through both processes, direct impact of |φ〉 on |R〉 and inter-

quantum-dot Coulombic decay of |L1R〉, has to show the usual quantum mechanical superposition

of amplitudes resulting in some interference term according to a complex phase difference ϕ

between both. We can therefore evaluate the probability density for the infinitesimal energy range

ET . . .(ET + dET ) for a successful inter-quantum-dot Coulombic electron capture according to

Eq. (31). Numerically, this definition proves to be limited to a certain confidence interval in

energy for which the initial energy distribution Dφ (ET −ER) is confidently non-vanishing in order

to avoid division by 0. Note that the flux FL0(ET ) can also be evaluated for regions outside the

energy confidence interval as

FL0(ET ) ∝
∣∣Kφ 〈ET −ER|φ〉+KL1R 〈ET |L1R〉

∣∣2, (39)

PL0(ET ) ∝

∣∣Kφ 〈ET −ER|φ〉+KL1R 〈ET |L1R〉
∣∣2

Dφ (ET −ER)
,

if Dφ (ET −ER)> 0. (40)

III. COMPUTATIONAL DETAILS

We numerically apply the multi-configurational time-dependent Hartree (MCTDH) approach

with antisymmetrization to describe and propagate the quantum-mechanical two-electron wave-

function of form48,49

Ψ(z1,z2, t) :=
N1,N2

∑
j1, j2=1

A j1 j2(t)χ j1(z1, t)χ j2(z2, t). (41)

It contains the Hartree product of time-dependent single-particle functions (SPFs)

χ j(z, t) :=
M

∑
m=1

c(m)
j (t)bm(z). (42)

Their primitive basis, {bm(z)}M
m=1, is given within a Sine (Chebyshev) discrete variable represent-

ation (DVR) of 431 grid points each between z = −270.0a∗B and +270.0a∗B for both electronic z

14
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coordinates (see Tab. I). The configuration space, N1×N2, taken into account is of size 14× 14

for the initial preparation of state and then reduced to configurations of triplet states by enforcing

the identical nature of both electrons and antisymmetric coefficients through

A j1 j2(t)
!
=−A j2 j1(t) ∀t. (43)

While initially separable as both electrons are at large distance from each other, electron cor-

relation grows with time when the electrons approach each other. Numerically this means that the

wavefunction is initially well-described by a single configuration, while with increasing time, the

configuration space becomes more widely populated.

As described in the theory section, Sec. II Eq. (26), the initial wavefunction is prepared by an

antisymmetric superposition of a free electron wavepacket of Gaussian form and the bound single-

electron eigenfunction of the quantum dot localized at the right |R〉. The Gaussian wavepacket is

initially centered at Z = −125a∗B with group momentum p0 = 0.335 h̄/a∗B and root-mean-square

(rms) width σz of 10.0a∗B, where all units are effective atomic units and scaled with respect to

an effective electron mass of unity. We summarize the employed parameters concisely for better

legibility and reference in Tab. I.

The transversal oscillator strength of the nanowire is set to h̄ω⊥ = 1.0E∗H . This implies a

natural length scale equal to the characteristic length scale, a∗B, of the chosen material according

to Eq. (18). The right quantum dot and inter-dot distance are kept constant throughout this study

which ensures a constant initial wavefunction. With a rms width of 1/
√

2a∗B, such that bR =

1.0a∗B
−2, the right quantum dot is set to an effective energy minimum of DR = 0.60E∗H and at a

distance from quantum-dot center to center of R = 10.0a∗B (compare Ref. 29). The left quantum

dot is fixed with an effective binding energy of DL = 0.71E∗H and is being varied in size between

a length (i.e. double rms width) of LL = 3.6a∗B and 0.7a∗B.

In order to prevent unphysical reflections of the electron wavefunction at the edges of the

grid and to avoid consequent self-interference, complex absorbing potentials Ŵ with

− iŴ :=−iη
( |z− zcap|

a∗B

)n

×Θ

[
−k
(

z− zcap

a∗B

)]
(44)

of quadratic order, n = 2, have been placed with the Heaviside function Θ(z) at zcap =±168.75a∗B
in order to collect outgoing fractions of the wavepacket.67–70 The parameter η is computed to

maximize the absorption and minimize reflection from the edges. See Tab. I for details.
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Table I. Collection of computational parameters of the system.

Incident electron parameters, see Eqs. (3), (19)

p0 = 0.335 h̄/a∗B Z =−125a∗B σz = 10.0a∗B l = 1.0a∗B

Quantum-dot-pair parameters, see Eq. (13)

LL ∈ {0.7a∗B, . . . , 3.6a∗B} DL = 0.71E∗H

LR = 0.707a∗B DR = 0.60E∗H

R = 10.0a∗B

DVR type grid points z range

Sine 431 −270.0a∗B +270.0a∗B

SPF configurations 14×14, id

CAP zcap η n k

−168.75a∗B 5.79 ·10−6 E∗H 2 −1

+168.75a∗B 5.79 ·10−6 E∗H 2 +1

IV. RESULTS

Before we analyze the dynamics of ICEC, we need to characterize the variation of static quant-

ities with the confinement size. We thus wish to study the observed changes in single-electron

eigenenergies EL0 and EL1 first, before discussing electron-electron correlation energies and dis-

tances in the two-electron states |L0R〉 and |L1R〉. With that at hand, we plan to explain an example

of the undertaken flux analysis on the full electron dynamics and eventually show six different

cases of ICEC flux profiles indicating the contributions via direct ICEC and secondary ICD.

A. Quantum-Size Effect of Stationary Quantities

In the investigated range of sizes between LL = 0.7a∗B and 3.6a∗B, the numerical results of the

dependence of single-electron eigenenergies EL0 , ER and EL1 are depicted in Fig. 3 (a) as lines in

violet with diamonds, in blue with triangles, and in turquoise with pentagons. As the right quantum

dot has not been changed throughout, ER is constant over the whole range of LL, whereas both

left quantum dot energies decrease monotonically with increasing LL. Note that the quantum dot

contains a second L1 level only for LL ≥ 0.9a∗B and that the drop in EL1 is slow in the beginning
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until it starts to follow that of EL0 from approximately LL ≥ 2.2a∗B onward.

We find that the observed trend is empirically well-described by a second-order polynomial of

powers of square-roots of length, ELk(LL) = P(k)(
√

LL) = a(k)0 + a(k)1
√

LL + a(k)2 LL, for both

left-located eigenenergies ELk available in the regime. In fact, due to the limited range of bound

L1 in our sampling, the linear offset energy, a(1)0 , can be set to zero and the two parameters,

a(1)1 and a(1)2 , suffice to describe the size effect efficiently for the 11 data points of negative EL1

with a relative uncertainty of less than 1.3% in either parameter and a root-mean-square resid-

ual of 1.5× 10−3E∗H . We find thus a(1)1 = 0.289(4)E∗H/
√

a∗B and a(1)2 = −0.199(3)E∗H/a∗B
2. Re-

spectively, the 21 data points for L0 are empirically described by parameters a(0)0 = 0.472(4)E∗H ,

a(0)1 =−0.864(5)E∗H/
√

a∗B and a(0)2 = 0.184(2)E∗H/a∗B
2 with respective relative uncertainties below

1.0% rms residual of 0.7×10−3E∗H .

While known analytical solutions to eigenvalue problems of quantum mechanical potentials

– like the quantum-harmonic oscillator, the infinite or finite square well, the Pöschl-Teller or Morse

potential – suggest an expansion in powers of n and L −1
L rather than square roots of length, such

a second order Polynomial only yields a rms residual of 3.2×10−3E∗H for the quantum size effect

in L0 and deviates from the numerical results in its behavior which is particularly perceptible at

lower sizes around 1.0a∗B. A third order term is able to correct this behavior and to reduce the rms

residual to 0.2×10−3E∗H for L0. It also allows a smoother transition of the L1 eigenenergy towards

zero. Nevertheless, this suggested otherwise little advantage over the simpler description in orders

of
√

L for the investigated size range.

In Fig. 3 (a) we also depict the constant total 〈ET 〉 (green line with hollow squares, cf. Eqs. (32)

and (26)) as well as the energy difference 〈ET 〉−EL0 (red line with⊕ symbols) and the unchanged

initial momentum p0 (ocre triple line with ⊗ symbols). From all the curves together we can make

out distinct crossing points. Just above the selected LL region the crossing of EL1 and ER as

well as 〈ET 〉 is expected. Another point that was highlighted in earlier investigations on ICEC

as function of DL, is the crossing of 〈ET 〉 with EL0 −ER and EL1R all together, where the highest

ICEC probability due to favorable energy conditions for resonance ICEC was found.29 Here we

only see crossing points near LL = 1.125a∗B where the left confinement has only one bound state.

EL0 crosses with ER and 〈ET 〉−EL0 with p0. The specialty of the system at this length can be

revealed when considering the two-electron quantities as well.

In Fig. 3 (b) we plot the expectation values of the interaction strength, the effective Coulomb

energy V12, as a function of LL. It was calculated according to ELkR− ELk − ER for the two-
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Figure 3. The key figures of the system of two quantum dots in a nanowire are displayed as function of LL

in a∗B. (a) Energy and momentum contributions are shown. For the single-electron energies, lines with violet

diamonds represent EL0 , with blue triangles ER, and with turquoise pentagons (setting on for LL ≥ 0.9a∗B)

EL1 . The constant transferred energy 〈ET 〉 is shown as green line with hollow squares. The range of

available final energies 〈ET 〉−EL0 is indicated by a red line with ⊕ symbols, adjacent red lines mark three

standard deviations σ±ε = h̄/(2m∗σz)(p0± h̄/(4σz)). The unchanged initial kinetic energy p2
0/(2m∗)±3σ±ε

with three standard deviations is displayed by ochre triple line with ⊗ symbols. (b) Coulomb interaction

〈V12〉 for |L0R〉 (blue dots) and |L1R〉 (red squares) obtained from ELkR−ELk −ER and scaled by 1/R. (c)

Effective distances 〈R12〉 = 〈|z2− z1|〉 for states as in (b). Note the scale breaking. (d) Maximal flux Fmax
L0

(turquoise with peak at LL ≈ 2.6a∗B) and integrated flux
∫

FL0dE (green line with peak at LL ≈ 2.45a∗B with

distinct scales of the ordinate.

electron ground state |L0R〉 (blue dots) and the resonance |L1R〉 (red squares). In Fig. 3 (c), lines

with the same color code are used to depict the respective electron-electron distance | 〈z2− z1〉 |
from |L0R〉 and |L1R〉 of (b). These quantities have been determined to quantify their difference

from the estimate of V12 ≈ 1/R. For the lowest two-electron bound state of the system, |L0R〉,
the average expectation of ground state interaction strength in our sampling lies 2.75% above the
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approximation of 1/R = 0.10E∗H . Peaking with an expectation value of 〈VL0R〉 = 0.1136E∗H at a

quantum-dot length of 1.13a∗B around where the single-electronic eigenenergies EL0 and ER cross,

the limited resolution suggests a lambda transitional shape. For a narrow left quantum dot below

1.0a∗B, the expectation value appears to significantly increase as the bound electron delocalizes due

to the close threshold energy. For lengths above 1.5a∗B, electronic interaction increases slowly as

separation between the quantum dots reduces together while the left quantum dot grows equally to

the left. Within the investigated range, the minimal interaction strength in the two-electron ground

state is found with 0.1017E∗H at longitudinal quantum-dot size of 1.84a∗B.

In comparison, the resonant energy level |L1R〉 shows a mean expectation value of interaction

strength 〈V12〉 10.58% above the approximated 1/R = 0.10E∗H . It deviates from the approximate

by the order of the system’s kinetic energy. This estimate proves therefore only a crude approx-

imation. From its minimal electronic interaction of 0.1096E∗H at left quantum dot size of 3.24a∗B,

electronic repulsion increases with EL1 as the quantum dot narrows. It climaxes with 0.1124E∗H at

a size of 2.39a∗B where increase in eigenenergy is balanced by the increasingly available localiz-

ation range as the quantum dot potential spreads with length LL. Electronic interaction therefore

drops steeply around the zero transition of |L1〉 as the wavefunction extends toward −∞ when the

eigenvalue is being pushed out of the binding potential. Similarly to electronic repulsion in the

ground state |L0R〉, we observe a slow repulsive rise for higher sizes as the quantum-dot barrier

reduces until the quantum-dot pair amalgamates.

While the electrons are bound by the respective quantum-dot potentials, we expect elec-

tronic repulsion to polarize the individual quantum dot such that the average electron densities are

slightly shifted and one could naïvely assume the repulsive force to hold the electrons outwards

from their original non-interacting equilibrium position, | 〈z2− z1〉 | & R. Surprisingly, we find

the expectation value of inter-electronic distance (see Fig. 3 (c)) in the ground state |L0R〉 continu-

ously slightly smaller than the distance between the respective quantum-dot centers with a mean

electron-electron distance of 9.995(12)a∗B with the uncertainty given in parentheses. We particu-

larly observe a general reduction of electronic distance at LL < 2a∗B and an intermediate drop at

LL = 1.13(15)a∗B as the left and right-localized eigenenergies cross and direct tunneling opens up

the available space. This behavior partially counteracts the trend in 〈V12〉 of Fig. 3 (b).

For the two-electron excited state |L1R〉, we find a strong quantum size dependence of the ex-

pectation value of inter-electronic distance. We measure an expectation value 〈R12〉= | 〈z2− z1〉L1R |=
9.982(4)a∗B at left quantum-dot size LL = 3.50a∗B and 〈R12〉= 10.25(7)a∗B at LL = 2.50a∗B. Nar-
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rowing the left quantum dot further raises the inter-electronic distance with the eigenenergy

EL1 . This opens up a wider range between the potential reflection points as the potential ap-

proaches the continuum, such that 〈R12〉 = (19± 6)a∗B at LL = 2.125a∗B before the localization

of |L1〉 breaks down. The overall trend is inverse to the behavior of 〈V12〉. Only in the range

2.39a∗B < LL < 3.20a∗B, interestingly, the system simultaneously allows an increased expectation

value of Coulomb interaction 〈V12〉L1R > 1
R despite an expanded expectation value in electron-

electron distance 〈R12〉 > R for most of the investigated quantum-dot-size range before the

vanishing of |L1〉 into the continuum.

B. ICEC Dynamics

Having investigated single-electron eigenenergies of the system and electron-electron correl-

ated two-electron intermediate states as precursors to analyze the full ICEC dynamics, we would

like to discuss with LL = 2.83a∗B an exemplary case of the flux analysis at this point. Investigating

the time-dependent spatial probability-density |Ψ(t)|2 based on Eqs. (26) and (41) as depicted in

the lower panel of Fig. 4, we find that for the first times up to 210 h̄/E∗H the incoming electron ap-

proaches the right-bound one coming from the negative z direction. During this time we observe

a broadening of the incoming wavepacket in time due to its dispersion. From impact, we observe

a spray of electron probability density leaving in positive z direction with increased velocity in

comparison to the incoming one notable at the steeper slope ∆z/∆t. At the same time, we observe

interference ridges in negative z direction, as fractions of the incoming wavefront are being reflec-

ted back to the left and interfere with fractions still traveling towards the double confinement. Note

that immediately from the impact, we also observe a double line at the position of the left quantum

dot indicating a binding to the left-excited state |L1〉. The first wave of right-bound electron re-

lease terminates around 550 h̄/E∗H . We further observe a revival of a second wave of right-bound

electron release around 650 h̄/E∗H to 1050 h̄/E∗H . At the same time, we note a loss of resolution

in the left-bound double peak which indicates consecutively with the simultaneous right-bound

ionization an active ICD process. Both of those electron probability waves were measurable as

flux of time FL0(t) (Eq. (28) and upper panel of Fig. 4) in coincidence with an occupied left-bound

ground state |L0〉 with maximum at time 550 h̄/E∗H and therefore confirm to be the result of an

inter-quantum-dot Coulombic electron capture.
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Figure 4. Lower panel: evolution of the spatial probability density |Ψ(t)|2 with time (see Eqs. (26) and (41).

Upper panel: time-dependent electron flux FL0(t) through wire at longitudinal position zF in coincidence

with the capture of electron density in the left quantum dot’s ground state |L0〉 for the case of LL = 2.83a∗B.

In order to consequently investigate the confinement-size dependent ICEC through the meas-

ured flux, we Fourier transform the measured electron release in time to arrive at an energy de-

pendent flux profile FL0(E) (Eq. (39), red solid lines and left axis labels in panels of Fig. 5, and

solid lines in Fig. 6). Already for the discussed geometry with LL = 2.83a∗B in the bottom left

panel of Fig. 5, we observe as expected a superposition in the electron flux profile of a Breit-

Wigner resonance shape (left peak) and an energy distribution related to a normally distributed

momentum (right peak). The flux profile fits expectations according to Eq. (39) (see Fig. 5 gray

solid line beneath red one, left axis labels). As discussed, we can attribute the Breit-Wigner, or

Lorentzian contribution according to Eq. (10) to a decay process of an intermediate state which

energetically bears the energy signature of a double-electronic occupation of |L1R〉 with electron-
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Figure 5. All panels show the electron flux density F(E) of Eq. (29) as red solid line, together with the

fitting result to it (Eq. (39)) as adjacent grey solid line. Further the initial wave packet energy distribution

(see Eq. (7), yellow dotted line) and the ICEC probability density P(E) (see Eq. (40), blue dashed line) are

displayed. Panels differ by underlying LL with values 2.95a∗B (top left), 2.83a∗B (bottom left), 2.83a∗B (top

middle), 2.72a∗B (bottom middle), 2.54a∗B (top right), and 2.39a∗B (bottom right).

electron correlation energy. We further find that the other contribution coincides with the shape of

the initial free wavepacket according to Eq. (7).

While the panels of Fig. 5 show flux profiles for particular confinement sizes, Fig. 6 compares

their intensities and maximal positions directly. As we pass through the geometries along decreas-

ing LL the resonance energy for the ICD decay varies with the quantum size effect, while the

wavepacket energy distribution is a constant throughout our study (thin dotted lines in Fig. 5).

As a result, the F(E) maxima of ICD resonances lie at different energies than the wavepacket

maximum but are modulated in maximal intensity by the underlying shape of the wavepacket.

As the flux profile exhibits the usual quantum mechanical superposition according to Eq. (39),

we note the variation in composed shape of the flux profile as the ICD resonance passes through

the contribution of direct impulse. As both energies get closer, the process signatures become

harder to distinguish as can be seen from the last three panels of Fig. 5. As they overlap, the flux

profile appears to be of Breit-Wigner shape at first glance in accord with former predictions,29

but remains a superposition of both processes. Nevertheless, it is still numerically obvious that

a decay-describing Lorentzian function can only partially account for the entire shape. We note
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Figure 6. Visualization of the quantum size effect of the ICEC flux densities (Eq. (29)). They are displayed

as solid lines for the full range of LL, where the red curve with peak maximum to the left belongs to

LL = 2.77a∗B and the blue one to the right to LL = 2.11a∗B. The overall energy density distribution (dashed

line) of Eqs. (7) and (36) is also shown.

that the impulse related contribution exhibits a dispersed root-mean-square width with respect to

the initial minimum-uncertainty wavepacket which we attribute to the time passed between the

release of the initial wavepacket and the impact on the initially bound electron. Last but not least,

we observe that for the extended range of confinement sizes above LL = 2.83a∗B (Fig. 3, top left),

major contributions to the flux from the ICD subprocess lie partially outside the confidence inter-

val provided by the initial energy distribution. The definition of the electron capture probability

Eq. (40) shown as blue dashed line in Fig. 5 with ordinate on the right hand side is therefore of

limited use in cases where the flux maximum position differs largely from the energy distribution

maximum. As the capture probability partially encrypts the signature of the probing wavepacket,

so does to a lesser extent the maximum of released electron flux density. In the overview of Fig. 6

we hence used F(E). In addition, in Fig. 3 (d) we plot the electron flux density and its integral

as function of confinement size LL. One can observe how ICEC becomes negligible outside a

certain region of LL and corresponding energies E. For LL < 2.11a∗B no |L1〉 level exists and

this corresponds to flux maxima at larger energies E > −0.16E∗H whereas in the inverse case for

LL > 2.77a∗B at energies E <−0.21E∗H the two ICEC pathways do start to not overlay in energy. In

between maximal fluxes are reached for energetically overlapping channels which not only agrees

with former results,29 but reveals further the detailed reason. Note that of all quantities 〈V12〉 and
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∫
FL0(E)dE in Fig. 3 (b) and (d) align most closely indicating that the flux probability follows

tightly the Coulomb interaction.

V. CONCLUSION

In this study, we investigated the quantum size effect of inter-Coulombic electron capture

(ICEC) within an established linear model of a nanowire, where a free-moving electron is being

confined into an embedded quantum dot through long-range energy transfer onto a bound electron

in a nearby confinement. We used electron-dynamics computations to analyze the ionization flux

density coinciding with a ground state population in the capturing quantum confinement region

and were able to identify and distinguish contributions of direct impulse and kinetic-to-correlation

energy conversion with secondary inter-Coulombic decay (ICD). While the ICEC related elec-

tron flux density has served here to distinguish between the reaction pathways and their respective

contributions at different quantum-dot sizes, we intend to investigate energy relations optimizing

or restricting ICEC probability density in a following study.47 The first hint in that direction was

already obtained here, as we numerically evaluated the size dependence of single-electron eigen-

states for the investigated confinement sizes, expectation values of electron-electron distance and

Coulomb interaction energy of correlation-perturbed doubly-bound two-electron states and found

that the Coulomb interaction and the integrated flux density follow each other.
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