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Decomposing the Bragg glass and the peak effect in
a Type-II superconductor
Rasmus Toft-Petersen 1,2, Asger B. Abrahamsen 3, Sandor Balog4, Lionel Porcar5 & Mark Laver 6

Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary

behaviour emerges that cannot be explained by perturbing the ordered state. One example is

the Kondo effect, where magnetic impurities in metals drastically alter the temperature

dependence of resistivity. In Type-II superconductors, disorder generally works to pin vor-

tices, giving zero resistivity below a critical current jc. However, peaks have been observed in

the temperature and field dependences of jc. This peak effect is difficult to explain in terms of

an ordered Abrikosov vortex lattice. Here we test the widespread paradigm that an order-

disorder transition of the vortex ensemble drives the peak effect. Using neutron scattering to

probe the vortex order in superconducting vanadium, we uncover an order-disorder transition

from a quasi-long-range-ordered phase to a vortex glass. The peak effect, however, is found

to lie at higher fields and temperatures, in a region where thermal fluctuations of individual

vortices become significant.
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It has taken many decades to unravel the effect of weak dis-
order on the vortex lattice. In the 1970s, investigations initi-
ated by the famous Russian theorist Anatoly Larkin found that

any random disorder, no matter how weak, would destroy long-
range order1. In Larkin’s perturbative approach1,2, vortex dis-
placements grow linearly with vortex separation r, as measured by

the displacement correlation function bðrÞ ¼ uj � ul
� �2D E

,

where uj is the displacement of the jth vortex. This leads to an
absence of divergent Bragg peaks. Yet resolution-limited Bragg
peaks from vortex ensembles are clearly observed in scattering
experiments3–6. It turns out the perturbative approach becomes
invalid at in-plane spacings r= rc, where displacements become
larger than ξ, the characteristic scale of the disorder potential. The
behaviour at spacings r < rc is accordingly described as belonging
to the Larkin or random-force regime. At larger scales, vortices
compete for minima in the disorder potential, slowing the alge-
braic growth of displacements to b(r)∝ r2ζ, where the roughness
exponent ζ< 1

2. In this so-called random manifold regime, theo-
retical values for ζ can be derived from the elastic Hamiltonian by
scaling estimates7,8, renormalisation group analysis9 or varia-
tional replica-symmetry breaking techniques10,11. A summary of
theoretical values for ζ is reproduced in Table 1.

At larger scales r= rA, where vortex displacements become of

order a0 ¼ 2Φ0=
ffiffiffi
3

p
B

� �1
2, the lattice spacing set by flux quanti-

sation, the periodicity of the system becomes crucial12. Here the
random manifold gives way to a Bragg glass regime. This
asymptotic regime at r > rA is characterised by a slower, loga-
rithmic growth13 b(r)∝ ln r and a translational order correlation

function cgðrÞ ¼ eig: uj�ulð ÞD E
that decays algebraically with an

exponent ηg (Table 1)9,11. The result is quasi-long-range order
with algebraically diverging Bragg peaks and so the resulting
vortex phase is referred to as the Bragg glass. Note that this term
is used to describe both the asymptotic regime and, synecdochi-
cally, all three regimes in length scale. Where clarity is called for,
we refer to the former as the Bragg glass regime and the latter as
the Bragg glass picture.

The Bragg glass picture is expected to break down when dis-
locations become important. Upon increasing field or disorder
strength, a transition to a short-range ordered vortex glass phase
is expected as the pinning energy exceeds the plastic deformation
energy14–16. Notionally, disorder affects translational order more

than orientational order, so the vortex glass is likely hexatic17.
The orientational order is characterised by the correlation func-

tion g6ðrÞ ¼ ei6 θj�θlð ÞD E
, where θ is the nearest neighbour bond

angle17,18. Experimentally g6(r) is observed to decay algebraically
/ r�η6 in both the Bragg glass and vortex glass phases. A previous
SANS study19 of the Bragg glass regime in niobium reported η6=
0.07. In the vortex glass, images of disordered vortex ensembles
on the surfaces of NbSe220 and Bi2Sr2CaCu2O8+δ

21,22 yield η6 ≈
0.06–0.35. These images also show a much faster, exponential
decay of translational order, consistent with a hexatic vortex glass.

At temperatures close to the upper critical field Bc2(T) at which
bulk superconductivity disappears, thermal fluctuations become
increasingly important. They drive a proliferation of dislocations
and a thermodynamic melting of the vortex lattice. The relative
role of thermal fluctuations is quantified by the Ginzburg num-

ber8 Gi � μ0kBTcκ2=2ξ
3B2

c2

� �2
. The thermal melting line Bm(T)

of the vortex lattice can be estimated from the phenomenological
Lindemann criterion u2h i ¼ c2La

2
0 whereby melting occurs when

displacements become a fraction cL of the lattice spacing a0.
Typically cL ≈ 0.1–0.2. This gives23,24

Bc2ðTÞ � BmðTÞð Þ=Bc2ð0Þ � 0:43c
�4

3
L Gi

1
3t

2
3ð1� t2Þ23 ð1Þ

where the reduced temperature t= T/Tc2. Since Gi∝ ξ−6, the
position of the melting line is strongly dependent on the coher-
ence length ξ. For cuprate superconductors, ξ is a few nanometres,
so Gi ≈ 10−2–10−3 and the melting line is expected 0.1–10 K
(depending on the field) below Bc2(T). The expected position of
the melting line is confirmed by experiments on the cuprates25–
27. On the other hand, in low-κ superconductors the melting line
is much more difficult to resolve5,28 due in part to the smallness
of Gi. For our vanadium sample κ= 1.3, ξ= 26 nm (see Methods)
and Gi ≈ 6 × 10−10, so Bm(T) is anticipated to lie very close to
Bc2(T). For example, at 0.3 T and with cL= 0.2, Bm(T) is within 8
mK of Bc2(T).

Equation (1) is obtained with consideration of thermal fluc-
tuations only. A Lindemann-like approach can also be used to
predict the field and temperature dependence of the order-
disorder transition line Bdis(T) separating the Bragg glass and the
vortex glass phases23,29,30. To do this, disorder-induced fluctua-
tions must be considered. At Bdis(T) the topologically ordered
Bragg glass phase becomes unstable to the formation of

Table 1 Properties of vortex–vortex correlations in superconducting vanadium

The topologically pristine Bragg glass phase is predicted by elastic theory with weak underlying disorder11. It has quasi-long-range positional order comprising of logarithmically growing displacements b
(r)∝ ln r and algebraically decaying translational correlations cgðrÞ / r�ηg at large length scales r > rA. At smaller scales r < rA, correlations show the behaviour of a random manifold with b(r)∝ r2ζ and
cg(r)∝ exp[−(r/Λg)2β]. Our observed exponents in the Bragg glass phase are compared with predicted values from elastic theory9,11. A slight dependence of these exponents on the elastic moduli is
expected9 and here we list values appropriate for our vanadium sample. The Bragg glass is expected to become unstable at higher fields or temperatures. As shown by the data at 2.7 K and 0.17 T, the
asymptotic regime is the first to be suppressed as the vortex ensemble disorders
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dislocations. The dislocation network is anticipated16 to appear at
scales ≈ rA where displacements are on the order of a0. This can
be shown to be equivalent to a generalised Lindemann criterion of
the form u2ða0; 0Þ ¼ c2La

2
0 where displacements u(r, l) are now

parameterised by the separations in and out of the vortex
plane29,30. Note that the order-disorder transition can be driven
entirely by disorder-induced displacements. Consequently as
thermal fluctuations vanish for T → 0, Bdis(0) remains distinct
from and less than Bc2(0) (Fig. 1), in contrast to the fluctuation-
induced melting line Bm(T), which curves up to meet Bc2(0).

Here we use small-angle neutron scattering (SANS) to probe
the long-range correlations of vortex ensembles in a vanadium
single crystal. The SANS technique provided the first experi-
mental evidence for the Bragg glass picture: a dependence of the
diffracted peak intensity upon magnetic field B that could not be
explained by perfect crystalline order3. We also find evidence
from the field dependence of the diffracted intensity for a Bragg
glass picture at intermediate fields in the phase diagram (Fig. 1).
Furthermore we demonstrate the presence of a Bragg glass regime
by characterising the shape of the diffraction peak in a high-
resolution experimental set-up (Fig. 2) and using reverse Monte
Carlo refinement to extract correlation functions from our data19.
Our manuscript proceeds as follows: first we characterise the
underlying disorder and the peak effect using magnetometry data
on our vanadium single crystal. We subsequently examine our
SANS data collected over several experiments and using different
experimental setups. These SANS experiments allow the order-

disorder transition to be located. Comparing the order-disorder
transition line Bdis(T) determined from SANS with the critical
current density jc determined by magnetometry, we discern no
jump in jc around Bdis in our sample. Instead, we observe a
nascent peak effect at fields and temperatures close to Bc2(T). This
dissimilarity is at odds to the commonly held notion that the peak
effect is underpinned by the order-disorder transition from Bragg
glass to vortex glass.

Results
Critical current from magnetometry. Our sample is a vanadium
single crystal of cylindrical shape, with length 10 mm and dia-
meter 2R= 5 mm. The [111] cubic crystal direction is coincident
with the cylindrical axis. We measured the isothermal magneti-
sation M as a function of magnetic field H applied parallel to
[111], collecting M(H) curves at several temperatures. Figure 3a
shows a typical M(H) loop, measured at T= 1.6 K. Extracting the
upper critical field from these loops, we find Bc2(T) is well
described by the empirical relationship31 Bc2ðtÞ ¼
Bc2ð0Þ 1� t2ð Þ= 1þ 2

3 t
7=4

� �
with Bc2(0)= 0.440 T. Compared to

pure vanadium where Tc= 5.47 K32, the small increase in Bc2(T)
and the small suppression of Tc= 5.31 K measured for our
sample indicate that the underlying disorder is weak. We obtain a
mean free path l= 48 nm (see Methods). From the M(H) loops,
the critical current density jc= 3ΔM/2R is calculated using the
critical-state model of Bean33. jc is seen to be small <107 Am−2

(c.f. Fig. 3b) compared to the depairing current density
j0 � Hc=λ � Bc2/

ffiffiffi
2

p
κλ

� � � 4 ´ 1012 Am−2, consistent with weak
pinning.

Underlying disorder constrains vortex displacements with a
pinning force density Fp of magnitude jcB. Close to Bc2(T),
thermal fluctuations enable vortices to ride over the pinning
potential and Fp is accordingly expected to decrease at high fields
and temperatures. It follows that there must be a maximum in Fp
as a function of B. Many models have been proposed to describe
the field dependences of Fp and jc. Motivated by data on alloy
superconductors with strong pinning, the first models estimated
the average pinning force per vortex, accounting semi-empirically
for the type and geometry of the pins34–37. For isotropic
superconductors like vanadium, these models37,38 place the
maximum in Fp(B) at fields ≥ 0.2Bc2. For our vanadium sample
we find Fp(B) does scale with Bc2(T), but the maximum is located
at 0.13Bc2, i.e. at lower fields than expected and the observed jc(B)
dependence is not accurately reproduced by these semi-empirical
models34–37.

More recent models for jc(B) consider the contribution to
pinning at different length scales8 and the dynamic effects of flux
creep39. These models give various jc behaviours depending on
the regime of field and temperature. For example, the large
bundle pinning regime is entered when pinning is weak and
vortex length scales are large compared to the penetration depth
λ. Here non-locality of the elastic constants can be neglected. In
our low-κ superconductor, λ ≈ 35 nm is short. The minimum
vortex lattice spacing a0 is 74 nm, the value at Bc2(0), so vortex
lattice length scales generally exceed λ and we expect to be in the
large bundle regime in most of the mixed state. In this regime, jc
is theoretically predicted to follow8

jc � j0
κ2

a0
lc

� �6

ð2Þ

where lc is the scale delimiting the Larkin regime parallel to the
vortices. The a60 dependence yields8,39 an algebraic decay of
jc(B)∝ B−3. As shown in Fig. 3b, we do find jc(B) can be
described by an algebraic decay for 0.1 T < B < 0.33 T. With values
of j0 and jc for our sample, Eq. (2) gives lc ≈ 10a0 over this field
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Fig. 1 Phase diagram. Vortex phase diagram for our vanadium single crystal
from magnetometry and neutron scattering experiments. Superconductivity
appears below the upper critical field Bc2(T) (squares and solid line), with
vortices forming between Bc2(T) and the lower critical field Bc1(T) (triangles
and dotted line). The critical current jc is observed to collapse in a region
close to Bc2(T) (circles and short-dashed line). This collapse indicates that
vortices are detaching from their pins. Vortex correlations are probed
directly by neutron scattering. Plus signs mark the temperatures and fields
where neutron scattering data were collected. The disappearance of
neutron diffraction peaks (crosses in circles) marks the vortex order-
disorder transition Hdis(T). Short-dashed and long-dashed lines are fits
based on different types of Lindemann criteria23 described in the text. The
insets schematically illustrate the vortex phases either side of the order-
disorder line. Intriguingly, the peak effect is not located at the order-
disorder line. Instead it is observed close to the depinning line
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Fig. 2 Neutron scattering geometries. Small-angle neutron scattering (SANS) instruments are usually pinhole cameras with small apertures to tightly
collimate the incoming neutron beam. The magnetic field profile presented by vortices in the sample diffracts neutrons. Rocking curves are collected by
rotating the sample, field and vortices together through the Bragg condition. Two experimental geometries may be used, exploiting the significantly better
instrument resolution in the direction probed by the rocking curve: (a) The applied magnetic field and vortices are orientated roughly parallel to the neutron
beam. Here the rocking curve is most sensitive to correlations along the vortices. A typical image of the 2D SANS multidetector at the peak of the rocking
curve of the right Bragg spot is shown. The rotation axis for this rocking curve is indicated by ω. The unscattered neutron beam in the centre of the image at
q= 0 is blocked by a beamstop. (b) The rocking curve probes correlations in the plane of the vortices when the applied magnetic field and vortices are
orientated perpendicular to the neutron beam. The detector image shows the peak of the rocking curve of the right spot at 0.13 T

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03267-z

4 NATURE COMMUNICATIONS |  (2018) 9:901 | DOI: 10.1038/s41467-018-03267-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


range. However the observed algebraic decay is slower than the
B−3 predicted, with a reduced exponent jc(B)∝ B−1.7.

Perhaps it is not too surprising that no literature model
describes our jc data precisely. All of the theoretical and empirical
models described8,34–39 focus on high-κ superconductors. Our
sample has low κ= 1.3 and a large part of the superconducting
phase diagram is occupied by a Meissner regime (Fig. 1). In what
follows we concentrate our analysis at high B, away from the
Meissner regime.

For most of the mixed state, i.e. from B= 0.10 to 0.33 T at 1.6
K (Fig. 3b), the sample supports a finite critical current, indicating
that vortices are pinned and frozen. At B= 0.34 T there is a sharp
downturn in jc and it falls rapidly up to Bc2. This indicates
vortices are depinning as thermal fluctuations take hold just
below Bc2. Just below the depinning region at B= 0.335 T, a
nascent peak in jc can be seen (Fig. 3b inset). This peak effect is
less pronounced than in other reports40, which is to be expected
given the weak underlying disorder in our sample. The location of
the peak effect is consistent with previous transport measure-
ments and magnetometry on niobium and vanadium under
neutron irradiation41–43 and with transport measurements on
niobium and Nb—Ta alloys under plastic deformation44,45. These
systematic studies all show the same development of the peak

effect: with increasing irradiation or deformation, the peak effect
emerges first at high fields close to Bc2 before developing into a
larger peak that pushes to lower fields as the density of pinning
centres increases41,42. The reverse effect, where the peak effect is
reduced and pushed back up to high fields, is also observed when
samples are annealed following neutron irradiation43.

Order–disorder line from small-angle neutron scattering. Fol-
lowing the seminal study by Larkin and Ovchinnikov2 on the
collective pinning of vortex ensembles, we might expect the jump
in jc to be associated with a loss of vortex order. Indeed, peak
effects have commonly been linked with order-disorder transi-
tions of vortex lattices in the literature23,40,46,47 To test this
paradigm, we directly probe the vortex lattice order in our sample
using SANS (Fig. 2).

Neutron scattering is sensitive to correlations between pairs of
vortices via the structure factor S ¼ P

j;k e
�iq: rj�rkð Þ where rj is

the position of the jth vortex and q is the scattering vector. The
measured scattered intensity as a function of q is the convolution
of hðqÞj j2S with the instrument resolution function, where h(q) is
the form factor of a single vortex. For a perfect vortex lattice, the
structure factor consists of δ-function Bragg peaks at reciprocal
lattice vectors, with the first such vector appearing at g ¼
2π 2B=Φ0

ffiffiffi
3

p� �1
2 in the case of a triangular lattice. Experimentally

the Bragg peak intensity is quantified by integrating the measured
scattering over three directions in reciprocal space. This is
achieved by measuring rocking curves (Fig. 4a), where the
sample, field and vortex lattice are rotated together through the
Bragg condition. An area on the 2D SANS multidetector
encompassing the Bragg spot is then summed and these summed
counts, plotted versus rocking angle (Fig. 4a), are fitted to a
Gaussian. The resulting integrated intensity I of the first order
Bragg peak is shown in Fig. 4b, for T= 1.6 K after field-cooling.
In the vortex glass, rapidly decaying translational order cg is
expected that does not support Bragg peaks. Combined with the
rapid fall-off of the form factor48, this means little, if any, neutron
scattering will be discernible from the vortex glass in our SANS
experiments.

We see in Fig. 4b that at T= 1.6 K the integrated intensity I(B)
begins a downturn before quickly becoming indiscernible from
the background at 0.29 T. We may therefore locate the vortex
order-disorder line Bdis(T) at 1.6 K, 0.29 T. Similarly we locate
Bdis(T) from the field dependence of I at two other temperatures
(Fig. 5). All three Bdis(T) points identified (crosses in circles in
Fig. 1) lie well below Bc2(T). Bdis(T) may also be determined by
measuring the scattered intensity as a function of temperature at
constant field. In Fig. 6 we show the scattering measured at the
peak of the rocking curve upon warming at 0.13 T, starting from a
well-ordered vortex ensemble at 2 K. These data also demonstrate
the vanishing of neutron intensity well below the upper critical
field line and confirm that Bdis(T) lies deep in the mixed state.

Bragg glass picture from integrated neutron intensity. For a
perfect crystalline lattice, integrating the structure factor S yields a
factor 1/g at small scattering angles, so the field dependence of I is
described by hðgÞj j2=g. For the Bragg glass picture, on the other
hand, the factor3 from integrating S depends on whether the
SANS instrument resolution s is larger or smaller than the
crossover scale between random manifold and Bragg glass
regimes, at which displacements are of the order a0. For SANS
measurements with the field and vortices aligned roughly parallel
to the neutron beam, the width of the rocking curve probes
correlations along the direction of the vortices (see Methods).
Then if s < lA, where lA is the crossover scale parallel to the
vortices, integrating the structure factor in the Bragg glass picture
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Fig. 3 Magnetometry at 1.6 K. a M(H) loop for our vanadium single-crystal
with H k ½111�. b Critical current density jc calculated from the width ΔM of
the magnetisation loop. jc(B) decreases monotonically except for a small
peak, labelled Bpp, observed just before the sharp downturn where thermal
fluctuations start depinning vortices. The dashed line is a fit to an algebraic
decay jc∝ Bα. Fitted value of α=−1.7. Inset is a magnification of the region
around Bpp
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yields a 1/g, i.e. a B−1/2 dependence similar to the perfect crys-
talline case. If s > lA, the Bragg glass picture produces an addi-
tional factor B−3/2. This hypothesis was borne out by the I(B)
measured on (K,Ba)BiO3 in the first experimental report of the
Bragg glass3. Similar I(B) Bragg glass dependences have been
reported in the electron-doped cuprate Nd1.85Ce0.15CuO4 and in
underdoped La2−xSrxCuO4 (x < 0.15)49.

In Fig. 4b we compare the integrated intensity I(B) measured at
1.6 K with the field dependence expected for a perfect crystalline
lattice and that expected in the Bragg glass picture. For these
measurements, the instrument resolution s ≈ 240a0 along the
direction of the vortices (see Methods). Up to B ≈ 0.26 T, i.e.
before I falls-off more sharply as Bdis is approached, it can be seen
that the field dependence in the Bragg glass picture describes the
data rather better than for the perfect crystalline case. We deduce
that lA < s ≈ 240a0 from our experiments. In elastic theory8, length
scales along the vortices and length scales in the vortex plane are
coupled through the elastic moduli via

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c44=c66

p
. Approximate

expressions for the tilt modulus c44 ≈ BH and for the shear

modulus are50

c66 � BΦ0

16πλ2μ0
1� 1

2κ2

� �
1� B

Bc2

� �2

ð3Þ

The shear modulus c66 softens close to the upper critical field
line as vortex cores start to overlap. Deeper in the mixed state, e.g.
for fields 0.1 T < B < 0.33 T, we find the calculated aspect ratioffiffiffiffiffiffiffiffiffiffiffiffiffi

c44=c66
p

lies in the range from 2 to 30. An upper bound for the
crossover scale rA in the plane of the vortices can thus be
determined e.g. at 0.23 T, this upper bound is s=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c44=c66

p � 30a0.
In the next section, we see rA can be precisely quantified using a
high-resolution SANS setup.

Bragg glass regime from reverse Monte Carlo refinement. To
gain more detailed information about the Bragg glass and vortex
glass phases in the sample, we employ a second experiment
geometry in our SANS measurements. The SANS data in Fig. 4
are collected in the first experiment geometry where applied field
and vortices are orientated roughly parallel to the incoming
neutron beam (Fig. 2a). In the second experiment geometry, the
applied field and vortices are orientated perpendicular to the
beam (Fig. 2b). In this geometry, a high instrument resolution in
the plane of the vortices is achieved (see Methods) and rocking
curves, collected by rotating the sample, field and vortex ensemble
together through the Bragg condition, probe correlations within
the vortex plane, transverse to the reciprocal lattice vector (Fig. 7).
Such data (Fig. 7e) are seen to exhibit an algebraic decay with
rotation angle ω. This algebraic decay is characteristic of the
Bragg glass regime11,19. The observed exponent ≈ −2.8 (Fig. 7e) is
roughly consistent with the value ≈ ηg− 3 predicted11 for the
Bragg glass regime where cg(r) decays algebraically / r�ηg , with
ηg ≈ 1 (Table 1).

To uncover more information about the vortex correlations, we
use the reverse Monte Carlo (RMC) technique to refine the peak
shapes of rocking curves collected in the perpendicular field
geometry19. Up to 220,000 vortices are simulated on a computer,
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with their positions modified successively via Monte Carlo
updates, until the observed peak shape is reproduced (see
Methods). Meaningful refinements require experimental data
that span several decades of rotation angle ω. Long data collection

times are needed for the tails where the scattering is weak. We
measured such datasets at four selected fields and temperatures in
the phase diagram (Fig. 7).

Once the simulated rocking curve numerically reproduces the
experimentally measured rocking curve (Fig. 7), correlation
functions may be calculated from the simulated vortex positions.
A simulated vortex ensemble is not unique: there are many
possible simulated microstates that can reproduce the experi-
mental peak shape. However, similar correlation functions are
observed to result from such microstates19. In Fig. 8 we show
typical correlation functions extracted using RMC at each of the
four points measured in the phase diagram. Looking first at the
three datasets collected at T= 1.6 K and B= 0.13, 0.18 and 0.23
T, we see these show the same qualitative features, namely two
distinct regimes in length scale. At small r, the displacement
correlation function b(r) is seen to increase algebraically while
cg(r) is seen to decay as a stretched exponential. This clearly
represents a random manifold regime9–11 and accordingly here
we fit the data to b(r)∝ r2ζ and cg(r)∝ exp{−(r/Λg)2β}. The fitted
values of roughness exponent ζ, exponential decay exponent β
and the effective correlation length Λg agree well with theoretical
predictions (Table 1). The absence of an observable Larkin regime
at small r is consistent with the weak disorder of our sample11.
Using the above estimate of lc ≈ 10a0 from the critical current, the
Larkin regime would be expected at in-plane length scales below
rc � lc=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c44=c66

p � 2a0, a value which is too small to be
resolvable from the r-dependence of correlation functions.

At large r, we identify a Bragg glass regime (Fig. 8). In this
asymptotic regime, b(r)∝ ln r and cgðrÞ / r�ηg , with the fitted
ηg ≈ 1 (Table 1). The orientational order g6(r) follows an algebraic
decay / r�η6 through both the random manifold and the Bragg
glass regimes. The fitted exponent η6 ≈ 0.2 (Table 1) is rather less
than the translational exponent ηg, reflecting the longer range of
bond orientational order compared to translational order. We
conclude that a Bragg glass phase is present at fields and
temperatures below the order-disorder transition Bdis(T).

Fracturing of the vortex lattice. We turn now to the fourth
dataset collected with long counting times in the perpendicular
geometry at 0.17 T and 2.7 K, a point which lies close to the
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order-disorder transition Bdis(T) (c.f. Fig. 1). Here the rocking
curve exhibits a distinctly different shape to the other three RMC
datasets measured deeper in the Bragg glass phase. Its brow
appears broader (Fig. 7d) and its tails seem less algebraic (Fig. 7e).
The correlation functions extracted using RMC show a con-
comitant suppression of the asymptotic Bragg glass regime: the
algebraic decay at large r in cg(r) is no longer visible (Fig. 8c).
Only a stretched exponential decay remains, with fitted exponents
indicative of the random manifold regime (Table 1). b(r) also
shows the sublinear growth expected in this regime.

There is more intriguing behaviour at large r. Here, instead of
the slow logarithmic growth that would signal a Bragg glass, b(r)
is seen to saturate at ≈ 30a0 (Fig. 8a). This suggests the vortex
ensemble is fracturing into domains, with reasonable positional
order being maintained within each domain and large jumps in
displacement, with possible locally amorphous regions, at the
domain walls. Indeed, a finite crystalline domain of dimension
≈ 30a0 would produce a Bragg peak of finite width ≈ 1.6°, which
is roughly consistent with the broadening observed in the rocking
curve (Fig. 7d). The orientational order g6(r) for this RMC dataset

is reduced compared to the other three RMC datasets, but it
continues to decay slowly, with a fitted algebraic exponent η6=
0.07. Moreover, g6(r) persists beyond the domain length scale
≈ 30a0, indicating that domains share roughly similar nearest
neighbour directions.

The fracturing observed of the Bragg glass is evocative of the
prediction of a multidomain glass phase, that should separate the
Bragg glass and vortex liquid phases47. There are differences
between prediction and experiment, however. The predicted
multidomain glass phase should be confined to a thin sliver in the
phase diagram coincident with the peak effect47. Here, on the
other hand, the fracturing of the ordered phase is observed at
much lower fields and temperatures than the peak effect. The
predicted multidomain glass also has both orientational and
translational order decaying rapidly beyond the domain length
scale, but here we see the orientational order g6(r) survives to
larger length scales even in the fractured vortex ensemble.
Interestingly, qualitatively similar correlation functions were
measured by decoration experiments on the high-Tc layered
cuprate Bi2Sr2CaCu2O8+x (BSCCO)51. The formation of domains
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was proposed to be a nonequilibrium effect due to finite cooling
rates51. We have initiated further SANS explorations to clarify
this.

Discussion
The peak effect and other features in magnetometry and transport
data are frequently assumed to be underpinned by changes in the
positional order of the vortex lattice. Under this assumption,
conclusions are sometimes drawn as to the nature of vortex
phases without directly probing them. Several features can be
identified in magnetometry or transport data, including the
irreversibility line (Hirr), the peak field (Hpp) and the onset of the
peak effect regime (Hpo). In the high-Tc cuprates, a broad peak in
ΔM may also be present at low temperatures and fields deep in
the mixed state and is accordingly designated the fishtail effect or
second magnetisation peak52. There are reports of both a sharp
peak effect close to Bc2 and a broad second magnetisation peak

well below Bc2 being observed in the same sample53,54 indicating
that these two effects are distinct. Accordingly, we should add to
our list of features the onset field (Hfo), the fishtail peak field (Hfp)
and the field at which the magnetisation shows a kink (Hfk).

On the other hand, the route from ordered vortex ensemble to
vortex liquid is envisaged to occur in only one or two sharp steps,
i.e. a direct melting from Bragg glass to vortex liquid, or an order-
disorder transition to a vortex glass followed by melting to the
liquid. Recent scanning tunnelling microscope (STM) experi-
ments on Co-doped NbSe2 indicate that there may be two vortex
glass phases—a hexatic vortex glass and an amorphous vortex
glass55—though it is not clear whether the two phases identified
are truly distinct. Nonetheless, there are far fewer disordering
transitions than there are features in ΔM and jc. It is an open
question as to which of these features, if any, should be tied to an
underlying order-disorder transition in the vortex ensemble. The
irreversibility line may reasonably be associated with the melting
transition25, since a vortex liquid phase cannot ordinarily support
a finite critical current. To which feature, on the other hand,
should we associate the Bragg glass to vortex glass transition?

To date only a handful of studies have directly probed the
order of the vortex ensemble and simultaneously pinpointed
features in magnetisation or critical current. The first such study
found the SANS intensity disappeared at the irreversibility line in
BSCCO25. This occurred at temperatures consistent with esti-
mates of the melting line using the Ginzburg number and the
Lindemann criterion, signalling a link between vortex lattice
melting and Hirr. In addition, the diffracted neutron intensity was
found to vanish abruptly with increasing fields at temperatures
well below the irreversibility line, with no reported corresponding
features in the bulk magnetisation25. A subsequent muon spin
rotation study indicated that this vanishing was due to a 3D to 2D
crossover, where the pancake vortices in BSCCO, which arise due
to its highly anisotropic layered structure, become decoupled
between the superconducting layers56.

Subsequent studies have focussed on the quasi-two-
dimensional layered 2H-NbSe2 system. Here, due to coexisting
charge order, the vortex cores are strongly anisotropic in the
plane, adopting a sixfold star shape57,58. Magnetic impurities in
2H-NbSe2 are adorned by bound states with the same sixfold star
shape59 which, we suggest, may drive the additional transition
from hexatic glass to an amorphous vortex glass observed recently
in Co-doped NbSe2 samples55. Interestingly this transition
appears to coincide with the peak field Hpp(T) in these samples55,
indicating that the Bragg glass to hexatic glass transition should
lie at lower fields and temperatures, e.g. perhaps at the onset
Hpo(T). This scenario is consistent with a recent SANS study6 on
clean NbSe2 where the SANS intensity all but disappears at
Hpo(T).

Unfortunately the experimental picture is neither so simple nor
general. In Fe-doped NbSe2, a well-ordered vortex lattice can be
observed by SANS at fields much higher than Hpp, leading to the
conclusion that the peak effect is unrelated to a bulk
order–disorder transition60. This conclusion is shared by an
earlier decoration study on clean and Fe-doped NbSe261. The
picture is muddied further by studies on isotropic conventional
superconductors, like niobium, vanadium and V3Si, where vor-
tices have the usual line structure. In V3Si62, the diffracted SANS
intensity disappears at Hpp(T) but in Nb there are conflicting
reports: in one SANS study Hpp(T) appears to coincide with the
loss of in-plane positional order63 but in another study a clear
SANS signal indicating good vortex order is observed above the
peak effect4. Together with our observation of a Bragg glass to
vortex glass transition lying at much lower fields and tempera-
tures than Hpp(T), we are drawn to the inevitable conclusion that
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bðrÞ ¼ uj � ulð Þ2

D E
. (b) Hexatic orientational order g6ðrÞ ¼ ei6 θj�θlð Þ� 	

is
fitted with a single algebraic decay / r�η6 . (c) Translational order cgðrÞ ¼
eig: uj�ulð Þ� 	

and b(r) comprise three regimes in the Bragg glass picture: the
Larkin, random manifold and Bragg glass regimes (see text). Here the
Larkin regime lies at indiscernibly small length scales and two-part
functions fit b(r) and cg(r) (solid lines) for the three datasets at 1.6 K. For
the 0.17 T, 2.7 K dataset, which lies close to the order-disorder line, a single
function fits cg(r) corresponding to the random manifold regime

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03267-z ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:901 | DOI: 10.1038/s41467-018-03267-z |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the origin of the order–disorder transition and the origin of the
peak effect are not a priori the same.

Recent experimental investigations also show that metastability
of the vortex configuration and the associated dependences on
history affect the vortex order and consequently the perceived
position of the order–disorder transition4,6,55,62. Bulk character-
istics from transport46,62 and magnetic susceptibility6 are also
similarly affected. Here we note that our data point for Bdis(T) at
0.13 T and 3.74 K (Fig. 6) is obtained by warming the sample at
constant field, so it is possible that the vortex configuration is
superheated at the perceived order–disorder transition tempera-
ture of 3.74 K. If this were the case however, the equilibrium
order–disorder transition would lie at even lower temperatures
than we report here. Our conclusion, that the order–disorder
transition and the peak effect are not necessarily related, would
abide.

What are the origins of the order–disorder transition and of
the peak effect? One possibility is a change in the nature of the
underlying pinning such as a crossover from weak collective to
strong pinning64. For weak pinning, the pinning force density

Fp ¼ jcB ¼ f 2p np ξ=a0ð Þ2=Vc

h i1=2
, where fp is the elementary

pinning force and np= 1/ξ2l is the density of pins, Vc ¼ lcr2c is the
correlation volume over which displacements reach the super-
conducting coherence length ξ following the random force
model2,64. Strong and/or single pinning is identified when fp
overcomes the Labusch force64 fL � Φ2

0=4πμ0λ
2 � 10�11 N for

our sample. Since our data do not provide a direct measure of lc
or rc, we make an overestimate of Vc �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c44=c66

p
r3A to yield an

upper bound for fp, which is maximal at low inductions, reaching
≈10−13 N. Thus throughout the mixed state fp � fL and weak
collective pinning is effective. There is no change in pinning
regime at Bdis(T) or at the peak effect in our sample.

We return to the effect of thermal fluctuations. These allow the
vortices to ride over the pinning potential and result in a collapse
of the critical current. The onset of fluctuations in our sample is
marked by the sharp downturn in jc close to the upper critical
field. At T= 1.6 K, this depinning of vortices occurs at B= 0.34 T
(Fig. 3b). At 0.3 T, the depinning line lies ≈ 140 mK below Bc2(T),
substantially below the thermally driven vortex lattice melting
line, which we recall is 8 mK below Bc2(T) from Eq. (1). One can
quantify how far a (B, T) point in the phase diagram lies from
Bc2(T) using the scaled Thouless temperature aT from the lowest
Landau level of the Ginzburg-Landau theory. Thermodynamic
melting is expected65 at aT=−9.5. Isotherms of constant aT have
approximately the same form as the melting line Bm(T) from Eq.
(1), so we may identify �aT � 0:43c

�4
3

L , e.g. aT=−9.5 corre-
sponds to a Lindemann number cL ≈ 0.1. The depinning line in
our sample corresponds to aT ≈−60 or cL ≈ 0.02. The peak effect
lies just below this line, i.e. on the edge of the regime where
thermal fluctuations dominate. The possibility that thermal
fluctuations induce the peak effect has been pointed out pre-
viously66,67, however this view must be reconciled with the
reported observations of well-ordered vortex lattices at tempera-
tures and fields above the peak effect4,60. We suggest that thermal
fluctuations sufficiently reduce the order parameter Ψ, such that
weak underlying pinning is suddenly accommodated by a rapid
but local change in the structure of the vortex cores at the peak
effect. This instability, localised to the cores, is not significant at
larger scales such as λ or a0 so lattice order is not necessarily
disturbed through the peak effect.

At the order–disorder transition, on the other hand, the role of
thermal fluctuations is insignificant. The four data points for
Bdis(T) (Fig. 1) lie close to the cL= 0.006 or aT=−360 isotherm,
i.e. far from the fluctuation dominated regime. Disorder can be

incorporated into lowest Landau level theory via random com-
ponents in the Ψj j2 term (δTc pinning)65 and in the Ψj j4 term68,
yielding order–disorder lines where the value of aT varies along
the line. We do not find these provide sensible fits to our four
data points. We do find a sensible fit is provided by the
order–disorder line derived for δTc pinning using a Lindemann-
like approach23. In the limit of vanishing thermal fluctuations, i.e.
Gi → 0, Bdis(T) then takes the form23

1� BdisðTÞ
Bc2ðTÞ �

2π
c4L

� �1
3

D2 1� t2
� ��1

3 ð4Þ

D measures the strength of the disorder and is equal to ξ/lc at 0
K in the Larkin model23. We fit this parameter (Fig. 1), taking cL
= 0.2 and obtaining D= 0.12, which is a reasonable value for
weak pinning. This yields lc ≈ 3 a0 at 0 K, consistent with our
earlier estimate from jc and with our RMC results. As Bdis(T) is
approached upon warming (Fig. 6), the SANS intensity falls
continuously to zero, indicating that Bdis(T) is a thermodynamic
phase transition from Bragg glass to vortex glass. The radial width
of the Bragg diffraction spot on the 2D SANS detector also
increases as Bdis is approached (Fig. 4d), signalling a collapsing
translational correlation length. We infer that continuous trans-
lational symmetry is broken at the Bragg glass to vortex glass
transition. It is still a matter of debate, however, as to which
symmetry—if any—is broken between the depinned vortex liquid
and pinned vortex glass phases. We expect an exciting era in
vortex matter physics, where intriguing possibilities such as the
vortex glass being no more than a pinned, hexatic liquid18 are
experimentally explored using increasingly available high-quality
STM apparatus.

Overall, our data show that the peak effect and similar features
in magnetometry or transport data may not a priori be due to a
vortex order–disorder transition. SANS provides a direct probe of
vortex order and reveals the order–disorder transition Bdis(T) in
our sample. It is mediated only by the weak underlying disorder,
lying deep in the mixed state, far from the regime dominated by
thermal fluctuations. A jump in jc around Bdis, as might be
expected following the theory of Larkin and Ovchinnikov2, can-
not be detected in our jc data derived from magnetometry
(Fig. 3b). In contrast, these data show a nascent peak effect at
high temperatures and fields, where thermal fluctuations become
apparent.

Methods
Laboratory characterisation. Bulk magnetic measurements were carried out using
a high-field cryogen free measurement system (CFMS) at the DTU Risø Campus.
The field was applied parallel to the [111] crystal axis. We used the Goodman-
Gor’kov relations69 to compare the upper critical field Bc2(T) and superconducting
critical temperature Tc of our sample to the values reported by ref.32 for varying
sample purity. We calculate a mean free path l= 48 nm, impurity parameter α=
0.84, superconducting coherence length ξ0= 26 nm and London penetration depth
λ(0)= 35 nm implying κ= 1.3 for our sample.

Neutron scattering. SANS experiments were performed on three instruments:
D22 at the Institut Laue-Langevin (Fig. 4), NG7 at the NIST Center for Neutron
Research (Fig. 6) and, SANS-II at the Swiss Spallation Neutron Source (Figs. 5, 7
and 8). In a typical setup on D22, neutrons of wavelength λ= 0.9 nm with spread
Δλ/λ= 0.1 were collimated over a 18 m distance, providing a beam of angular
spread a= 0.077°. Scattered neutrons were detected using a 2D multidetector
placed 18 m behind the sample (Fig. 2). NG7 and D22 are at reactor sources where
the neutron flux at the sample position is constant over experiment time scales.
SANS-II is at a continuous spallation source with varying neutron flux, so in these
experiments multidetector count rates are normalised with a monitor detector
situated upstream of the sample. Rather than plotting detector counts/monitor
counts, in Fig. 5a and in Fig. 7e the ordinates are scaled to a typical monitor value
that was used for measurements containing low or zero vortex signal. When the
spallation source is stable, this corresponds to a measurement time of 5 min per
rocking angle.
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The [111] axis of our vanadium crystal was aligned to within 0.2° of the applied
magnetic field direction. Unless otherwise noted, vortex ensembles were prepared
by cooling in the desired magnetic field from the normal state, i.e. field-cooled. Any
misalignment between the applied field and the vortex directions due to crystalline
anisotropy would have been much smaller than the observed peak widths. In
niobium, which has a larger crystalline anisotropy than vanadium, 0.2° of
misalignment from [111] would distort the vortex direction by 0.007°70. The edges
of the sample were masked from the incident neutrons in view of possible
demagnetisation effects.

Two experimental geometries were used in our SANS measurements: (a) the
magnetic field was applied roughly parallel to the incident neutron beam (Fig. 2a);
(b) the field was applied perpendicular to the beam (Fig. 2b). The parallel geometry
was used with a= 0.077° on D22 to survey the field dependence (Fig. 4). This
geometry also confirmed the absence of transitions in vortex lattice shape away
from the hexagonal symmetry expected for fields along [111]. The perpendicular
geometry was used on NG7 with vertical applied field (Fig. 2b) for the temperature
dependence (Fig. 6). It was also used on SANS-II with horizontal applied field to
further map the phase diagram (Fig. 5) and to collect rocking curves with high
resolution (a= 0.035°) (Fig. 7) suitable for educing in-plane correlations by reverse
Monte Carlo refinement. To describe the field dependences of the intensity I
integrated over the rocking curve (Figs. 4b and 5c), we used the form factor h
calculated for a hexagonal vortex lattice48.

As an initial approximation, the instrument resolution and mosaic spread of the
vortex ensemble may be modelled as Gaussian distributions. All widths quoted in
this manuscript are full-width half maxima. In either experiment geometry, the
measured rocking curve width Wω (Fig. 4a) is given by71

W2
ω ¼ a2 þ c2 þ σ2 ð5Þ

where c is the combined width parallel to the scattering vector: c2=θ2B ¼ ðΔλ=λÞ2 þ
γ2 with θB the Bragg angle and γ the mosaic spread of the vortex ensemble parallel
to the reciprocal lattice vector g. In the parallel geometry, σ probes correlations
along the vortices. In the perpendicular geometry, σ probes the direction
perpendicular to both the field and to g. The scattering angles are small, e.g. θB=
0.2° for 0.9 nm neutrons when B= 0.1 T, so c is small in Eq. (5) and the angular
spread a of the incoming beam sets the minimum measurable width of the rocking
curve.

The radial width Wr of the spot on the 2D multidetector measured at the peak
of the rocking curve (Fig. 2a) is given by

W2
r ¼ a2c2 þ a2σ2 þ 4σ2c2

a2 þ c2 þ σ2
ð6Þ

Equations (5) and (6) may be solved simultaneously to find the unknowns σ and
c, and therefore γ. However, due to the smallness of θB, it is difficult to quantify γ
without significant uncertainty. As an alternative, in Fig. 4d we calculate Wr

assuming γ= 0 and with σ determined from Wω. The Wr values calculated
reproduce the measurements for fields up to 0.27 T at 1.6 K (Fig. 4d), indicating
that γ � Δλ=λ ¼ 0:1 in this field range. At higher fields the measured values
diverge from the γ= 0 line. This indicates that γmust increase to the order of Δλ/λ
= 0.1, i.e. the autocorrelation length parallel to g shrinks to ≈ 3a0.

Reverse Monte Carlo refinement. In reverse Monte Carlo (RMC) refinement, the
in-plane positions of vortices are simulated on a computer. These positions are
recursively modified using a Monte Carlo procedure with cost function χ2 ¼P

RsimðωÞ � RexpðωÞ
� �2

=δexpðωÞ2 where Rexp(ω) is the experimentally determined
angular dependence of the rocking curve measured in the perpendicular geometry,
with corresponding uncertainty δexp(ω). Simulated rocking curves Rsim(ω) are
calculated by convolving the elastic structure factor with the experimental reso-
lution before scaling by a factor F, chosen to minimise χ2. Simulated vortex
ensembles are chosen to be sufficiently large that finite size effects are insignificant
compared to the experimental Rexp(ω) widths, varying from 40,000 vortices used
for the 0.17 T, 2.7 K dataset (intrinsic simulation width ws= 0.29°) to 220,000
vortices used for the 0.13 T, 1.6 K dataset (ws= 0.12°). Our implementation here
extends that used previously for niobium19 by incorporating a simulated annealing
procedure to assure a global minimum in χ2 and to speed up the refinement. Once
the minimum in χ2 is reached, in-plane vortex-vortex correlation functions are
calculated directly from the simulated ensemble. The simulated ensemble is not
unique. For example, it is possible that the measured rocking curve at 0.17 T, 2.7 K
(Fig. 7d) could also be reproduced by an ensemble containing large (� 30a0)
domains in which the Bragg glass regime persists, but with average bond angles of
neighbouring domains differing to reproduce the observed 3.5° wide distribution in
ω. This scenario, for which we note that fracturing of the vortex lattice still occurs,
is not accessible in our RMC refinements as the exceptionally large ensemble sizes
required lie beyond the computational resources currently available. Similarly, the
extra degree of freedom realised by F leads to a gradual decay of correlations with
increasing simulation time even after χ2 is minimised19, so many different vortex
ensembles are generated in each RMC run that all reproduce the shape of the
experimental rocking curve. These ensembles are observed to yield the same form
for each correlation function19, though the ordinate scale should not be taken too

seriously. The ensembles obtained here are all found to be essentially free of dis-
locations: there is no need to impose minimum nearest neighbour distances or
planarity constraints19.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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