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Abstract 

The analysis of capacitance data for regular nanostructured photoelectrodes is revisited using a hematite 

nanorod array as an example. The effects of the cylindrical nanorod geometry on the capacitance-voltage 

behaviour are outlined, and the limiting case of complete depletion is discussed in terms of the residual 

geometric capacity at the base of the nanorods. Since nanorod arrays generally leave areas of the substrate 

exposed, it is necessary to consider the parallel capacitance associated with the fraction of uncovered surface. 

The sensitivity of the capacitance fitting to parameter variation is explored. The enhancement of external 

quantum efficiency (EQE) by nanostructuring is also discussed using hematite nanorod arrays as experimental 

examples. It is shown that, although very substantial EQE enhancement should be achieved by simple geometric 

effects, the performance of nanostructured hematite electrodes in the visible region of the spectrum is 

considerably lower than predicted if all charge carriers generated in the space charge region (SCR) were 

collected. Further analysis reveals that the internal quantum efficiency increases with photon energy, suggesting 

that the probability of generating free, rather than bound, electron-hole pairs in hematite depends on the excess 

energy h - Egap.  

1. Introduction 

Against a background of increasing deployment of photovoltaics for electricity generation, 

light-driven water splitting to generate hydrogen as a fuel and feedstock remains an important 

goal of energy research since it addresses the key problem of energy storage. The search for 

stable photoelectrodes with suitable optoelectronic and chemical properties has occupied 

electrochemists for decades. Since light-driven water splitting reactions involve minority 

carriers (holes for oxidation at n-type photoanodes and electrons for reduction at p-type 

photocathodes), we would like ideally to use semiconductors that have long minority carrier 

lifetimes, high carrier mobilities and suitable light harvesting properties. Unfortunately, while 

the best materials from an optoelectronic point of view (for example, silicon, III-V and II-VI 

semiconductors and, more recently, the lead halide perovskites) can be used to fabricate 

efficient solar cells, as photoelectrodes, they are prone to photo-corrosion and must therefore 

be protected by a stable impervious layer such as TiO2. This configuration corresponds to a 

‘buried’ junction in which the generated photovoltage is used to drive electrolysis at metallic 

or pseudo-metallic electrodes.[1, 2] By contrast, photoelectrolysis systems in which the light 

harvesting semiconductor is in direct contact with the electrolyte are more demanding in 

terms of stability as well as band alignment with the oxygen and hydrogen redox Fermi 
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levels. For this reason, oxide materials such as hematite (-Fe2O3)[3-6] and bismuth vanadate 

(BiVO4)[7-9] have been studied widely, despite their rather poor optoelectronic properties 

(hematite, for example, is an indirect n-type bandgap semiconductor with a very short hole 

lifetime and low hole mobility).   

An often-cited figure of merit in this context is the minority carrier diffusion length, which in 

the neutral bulk of a semiconductor is defined as                
   , where min is the 

minority carrier lifetime and Dmin is the minority carrier diffusion coefficient, which is related 

to the mobility min by       
   

       . Based on early studies, hole diffusion lengths 

for hematite are believed to be in the range of a few nm,[10, 11] many orders of magnitude 

smaller than minority carrier diffusion lengths in III-V semiconductors such as GaAs, for 

example, which can be several microns.[12] A low hole diffusion length means that the 

separation and collection of photogenerated electron-hole pairs that is essential for any 

photovoltaic of photoelectrochemical device to function only takes place in regions that are 

strongly depleted of majority carriers. In the case of a conventional planar hematite 

photoelectrode, this means that only photons absorbed in the space charge region (SCR) of 

the semiconductor/electrolyte contact contribute to the photocurrent.  Nearly all holes 

generated in the quasi-neutral region (QNR) recombine very rapidly with electrons, which are 

present in large excess. Only holes generated very close (i.e. within one ca. diffusion length) 

to the edge of the SCR have any chance of being collected at the semiconductor/electrolyte 

interface. Since the penetration depth of the incident illumination (typically close to 1m) is 

generally much greater than the width of the space SCR (a few tens of nm for a typical 

hematite electrode), the external quantum efficiency (EQE) of the photocurrent is much less 

than 100%. However, as we shall see below, even the assumption that all carriers generated 

in the SCR are collected is open to doubt in the case of hematite.  

A popular approach aimed at tackling this problem of mismatched characteristic lengths is to 

nanostructure the water-splitting photoelectrode. The often-repeated argument is that if the 

scale of the nanostructure is comparable with the minority carrier diffusion length, this will 

enhance the chance of photogenerated minority carriers reaching the 

semiconductor/electrolyte interface, increasing the EQE. We show here that this 

interpretation of the beneficial effects of nanostructuring does not stand up to scrutiny. For 

highly doped materials like hematite (here we take highly doped to mean a doping density 

greater than 10
18

 cm
-3

), we show that it is the collection of holes in the SCR and not the hole 

diffusion length in QNR that explains why nanostructuring can enhance the EQE. 

To be able to model the EQE of regular nanostructured systems such as nanorod arrays with 

cylindrical geometry, we need to have reliable estimates of the doping density. Reliable 

determination of the doping density, Nd, is important since it allows us to distinguish between 

cases where the space charge layer thickness is either smaller than or larger than the 

characteristic lengths of the nanostructures. However, the conventional Mott Schottky 

analysis used to determine Nd for planar electrodes cannot be applied to non-planar 

electrodes. Instead, the geometry (spherical, cylindrical etc.) of the nanostructure needs to be 

considered. In addition, we need to have some idea of how rapidly minority carriers are 

consumed at the interface with the electrolyte, either by reaction with electrolyte species or 

by recombination with majority carriers. The well-known analysis of the external 
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photocurrent quantum efficiency by Gärtner[13] assumes that the interface acts as a perfect 

sink for minority carriers. However, water splitting involves multiple electron/proton transfer 

steps, and the reaction of holes in the photooxidation of water, for example, is remarkably 

slow. It follows that the rate of the water splitting reaction cannot be controlled by the rate of 

hole transport to the interface (except as insofar as this affects recombination in the SCR: see 

below). Consequently, arguments about the benefits of nanostructuring that are based on 

matching the feature sizes of the electrode to the diffusion length of holes in the QNR are 

unconvincing. In this paper, we explore some of the difficulties encountered in the 

determination of doping densities for a hematite nanorod array and discuss an alternative 

explanation for the superior performance of nanostructured oxide electrodes. We also 

examine the performance of hematite nanorod electrodes by comparing it with the 

performance predicted by assuming that all electron-hole pairs generated in the SCR are 

collected. We show that recombination in the SCR is a likely to be a major limiting factor in 

the performance of hematite electrodes. 

2. Capacitance measurements of nanostructured semiconductor electrodes 

2.1 The planar case 

We begin by revisiting the classical theory of the semiconductor electrolyte interface before 

moving on to discuss the case of an array of cylindrical nanorods. For simplicity, we initially 

ignore the effects of inversion, which are discussed later. Instead we assume that deep 

depletion is possible because the rate of thermal generation of minority carriers is smaller 

than the rate of their removal at the electrolyte contact. Furthermore, we omit consideration 

of surface states and Fermi level pinning. 

The width of the SCR, WSCR, formed at a planar semiconductor-electrode junction depends on 

the doping density (Nd), the relative permittivity () of the material and the potential drop, 

SCR, across the space charge region. 

      
         

   
 
   

        (1) 

For low-doped semiconductors, this potential drop is equal to the difference between the 

applied potential E and the flat band potential Efb, but in the cases that we consider here, the 

doping is sufficiently high that a significant part of the change in potential difference with 

applied voltage appears across the Helmholtz double layer. Following the approach of De 

Gryse et al.,[14] we therefore separate the overall potential drop into two terms. 

                         (2) 

Treating the Helmholtz capacitance CH as constant (capacitance and charge are expressed per 

unit area), the potential drop, H, across the Helmholtz layer is given by  

    
    

  
            (3) 

where QSCR, the charge in the SCR, is given in the Mott Schottky approximation by 

              
          

   

 
 
   

      (4) 
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The potential drop across the Helmholtz layer therefore changes according to the 

expression[14]  

     
       

  
         

   

 
 
   

       (5) 

From equation 2 and equation 5 we obtain a more general form of the Mott Schottky equation 

that is applicable to highly-doped electrodes in the deep depletion approximation (i.e. 

ignoring the effects of inversion).[14]. Equation 5 must be replaced by the more general form 

 

   
 

  
  

 

      
       

   

 
        (6) 

where C is the measured total capacitance.[14] It can be seen from equation 6 that the Mott 

Schottky plot passes through the point 1/CH
2
 on the y-axis when E - Efb – kBT/q = 0 and 

intercepts the voltage axis at an electrode potential E0 given by 

       
   

 
 

      

   
         (7) 

Equation 6 was derived for deep depletion conditions.  However, for the case of hematite 

under water splitting conditions, the deep depletion condition cannot be achieved, as 

demonstrated by the fact that water oxidation occurs in the dark.  This process must involve 

holes generated at the surface by thermal excitation of electrons from the valence band or by 

tunnelling of electrons through a narrow space charge region from the valence band at the 

surface.  The latter process could be assisted by thermal excitation of electrons to surface 

states located in the band gap. The presence of mobile holes gives rise to a very narrow 

charge region and a correspondingly high capacitance, as shown below in Figure 1. Under 

these conditions most of the potential drop will occur in the Helmholtz layer, and the 

electrode will behave more like a metal.  

The general expressions for the space charge capacitance including accumulation depletion 

and inversion conditions can be found in textbooks, for example Sato.[15]  Figure 1 

illustrates the three regions in the capacitance plot calculated for the case of n-type hematite 

with a doping density of 10
19

 cm
-3

 assuming thermal equilibrium is established. In what 

follows, we restrict attention to the depletion region, but note that this region will be limited 

by the onset of inversion when the band bending exceeds half the band gap. 
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Figure1. Capacitance voltage plot calculated for hematite to illustrate the accumulation, depletion and inversion 

regions. Donor density as shown. 

2.2 The cylindrical case 

An example of the kind of nanorod array electrode that we have chosen to look at in detail in 

this paper is shown in Figure 2. It consists of a regular array of approximately cylindrical 

hematite nanorods with an average diameter of around 50 nm and a length of ca. 350 nm 

grown on an FTO substrate by a hydrothermal process followed by annealing at 550
o
C.[16]  

 

Figure 2. Hematite nanorod array grown on an FTO substrate. (a) Plane view image of the electrode showing 

the nanorod packing. The inset shows the cross-sectional FESEM image of the sample. (b)TEM image of a 

single nanorod and the respective selective area electron diffraction pattern showing the degree of crystallinity. 

These nanorod electrodes have been characterized by measuring their capacitance as a 

function of electrode potential,[17] and a typical result is shown in the Mott Schottky plot in 

Figure 3. The plot appears to have a linear section, although it shows clear evidence for 

inversion at potentials beyond ca. 1.2 V vs. RHE since the fall in 1/C
2
 corresponds to the 

rapid rise in electrode capacitance under inversion conditions that is shown in Figure 1. It 

would be tempting to ignore the cylindrical geometry and fit the data to equation 6 for a 

planar electrode as shown by the broken line.  As we show below, this approach implicitly 

assumes that the space charge layer thickness is much smaller than the rod radius over the 

voltage range where the linear fit is made. If we take this simple approach, we need to 
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consider the true surface area of the electrode when calculating the doping density. For high 

aspect ratio nanorods, the ratio of the internal surface area to the geometric area is given to a 

good approximation by A = 2NrodRL, where Nrod is the number density of rods of radius R 

and length L. For values estimated for the array shown in Figure 2 (Nrod = 3.5  10
10

 cm
-2

, R 

= 25 nm, L = 350 nm), the ratio is 19.2.  If we take this ratio and a reasonable value of 33 for 

the relative permittivity of hematite,[18] the doping density obtained from equation 6 is 6  

10
18

 cm
-3

.  At first sight, this value seems reasonable, but as a quick check for consistency we 

could estimate the width of the space charge region using equation 1. The apparent flat band 

potential from the linear fit in Figure 3 is 0.5 V vs RHE, so a potential of 1.25 V (the end of 

the linear fit) corresponds to a band bending of 0.75 eV. The width of the space charge region 

predicted by equation 1 is then 24 nm, which is almost equal to the mean radius of the rods. 

The test for consistency has apparently been failed since the condition WSCR << R is not met. 

However, as we show below, this test can be misleading since the width of the space charge 

region in a cylindrical nanorod is not described by equation 1.  

 

Figure 3. Experimental Mott Schottky plot for the undoped hematite nanorod array electrode illustrated in 

Figure 2. Electrolyte 1.0 M NaOH. Note that the capacitance values are expressed in terms of the geometric area 

of the electrode rather than the true internal surface area, which is around 20 times larger. For calculations of 

doping based on the conventional Mott Schottky equation (i.e. assuming that the width of the space charge 

region is much smaller than the rod radius), it is necessary to take the internal surface area into account. 

Having shown that the planar approximation breaks down, we move on to consider the 

cylindrical geometry. We consider high aspect ratio nanorods and ignore the contribution 

from the tips. The potential distribution and space charge capacitance of a single nanorod 

have been discussed in terms of an analytical model by Mora-Sero et al.[19] and by Tena-

Zaera et al.[20] in studies of electrodeposited ZnO nanorod arrays. Tornow et al.[21] have 

also analysed the capacitance behaviour of ZnO nanorods prepared by chemical bath 

deposition and have compared the results of analytical and more exact numerical finite 

element modelling. Although the work of Mora-Sero et al. is widely cited in papers dealing 

with nanorod arrays for water splitting, few attempts have been made to apply the modelling 

approach quantitatively. Here we explore the approach developed by these authors and 

extend it to model the EQE response of nanorod arrays.  We find that the expressions given in 
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Mora-Sero et al.[19] for the voltage drop across the space charge layer and for the space 

charge capacitance are incorrect. The correct expressions and their derivation are given in the 

following section. 

We begin by applying the abrupt depletion approximation (the limits of this approximation 

when applied to the cylindrical case have been discussed by Tornow et al.[21]). As shown in 

Figure 4, the width, of the space charge region is defined by R – x, where R is the radius of 

the nanorod and x is the distance of the edge of the SCR to the centre of the rod.  

 

 

Figure 4. The space charge region in a partially depleted nanorod exists between the surface of the nanorod and 

a distance x from the centre, where x is related to the voltage drop across the space charge region by equation 

10. 

In the abrupt depletion approximation, the space charge per unit surface area of the nanorod 

is given by  

         
 

 
     

           (8) 

The electric field E(r) in the radial direction across the SCR can be found by application of 

the Gauss theorem. 

     
        

   
 

   

    
   

  

 
       (9) 

Integration between r = x and r = R then gives the potential drop across the space charge 

layer 


       

 
   

    
 
 

 
             

 

 
       (10) 

This expression differs from equation 3 in Mora-Sero et al.[19], but is identical with equation 

9.64 in Bisquert.[22]. The corresponding space charge capacitance is obtained by calculating 

the derivatives of the space charge and SCR,rod with respect to x to obtain the required 

derivative of the space charge with respect to the voltage drop. 

        
         

        

 
         

  

  

        

 
   

    
 

 
 
    (11) 

Again this expression differs from equation given in Mora-Sero et al.,[19] but is identical 

with equation 9.68 in Bisquert.[22] 
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The width of the space charge region in the cylindrical case (defined as R - x) can now be 

obtained as a function of the voltage drop across the space charge layer using equation 10.  

Whereas equation 1 predicts that WSCR varies with the square root of band bending without 

limit, the variation in the cylindrical case diverges and then saturates as the space charge 

expands to fill the whole cylinder and WSCR reaches the limiting value R. Figure 5 contrasts 

the potential dependence of the width of the space charge regions for the two electrode 

geometries. For the nanorods, the SCR reaches a limiting value depl when WSCR,rod = R and 

the rods are completely depleted of majority carriers. For further increases in potential, 

inversion can occur, and the charge region will collapse as mobile holes are formed. 

 

Figure 5. Comparison of the variation of space charge layer width for the planar and cylindrical cases. Note that 

the x-axis is the square root of the potential drop across the SCR. Nanorod radius 25 nm, Nd = 5  10
18

 cm
-3

, 

Fe2O3 = 33. In the case of the nanorod, full depletion is reached when the space charge region expands to occupy 

the entire volume (x0). 

Figure 6 illustrates the deviation from linear Mott Schottky behaviour predicted for nanorods 

with different radii. Even for rather high doping levels (here 10
19

 cm
-3

), the effects are severe 

when the nanorod radius is below 50 nm, with the plot curving away from the tangent that 

corresponds to the Mott Schottky line for a planar electrode. 
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Figure 6. Mott Schottky plots of the space charge capacitance per unit area calculated as a function of the 

potential drop across the space charge region for nanorods of different radius. Values used in the calculation 

were R (nm) as shown,  = 33, Nd = 10
19

 cm
-3

.  For this doping density, the rod radius needs to be considerably 

greater than 50 nm for the Mott Schottky plots to approach the planar limit given by equation 6. 

The transition towards full depletion (x 0) is evident in these Mott Schottky plots as a steep 

upward curve as CSCR tends to zero approaching the limiting potential drop depl. Whether or 

not this transition to full depletion is seen in the experimental voltage window should depend 

on the doping density and rod radius. Figure 7 illustrates the dependence of depl on Nd for 

hematite nanorods with a radius of 25 nm. Given that inversion becomes possible in in Fe2O3 

when the band bending exceeds around 1 eV, we conclude that full depletion will not be 

observed experimentally for 25 nm radius nanorods if Nd exceeds around 10
19

 cm
-3

.  

 

Figure 7. Dependence of the voltage depl for full depletion on doping density calculated for hematite nanorods 

with radius 25 nm. Note that if depl is greater than around 1 V, the transition to full depletion will not occur.  

Instead inversion is expected, giving rise to high dark currents. 
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Figure 8 shows how depl increases with rod radius for a given doping density (10
19

 cm
-3

). 

Following the same argument relating to inversion, for this doping density, experimental 

observation of full depletion should be limited to rods with radii less than 25 nm. 

 

Figure 8. Dependence of depl on rod radius R calculated for hematite nanorods Nd = 10
19

 cm
-3

. Again, note 

that if depl is greater than around 1 V, the transition to full depletion will not occur.  Instead inversion is 

expected, giving rise to dark currents as holes react with the electrolyte. 

The high sensitivity of depl to changes in rod radius shown by Figure 7 means that when 

there is a finite distribution of rod radii (as is obviously the case for the nanorods illustrated 

in Figure 2), the upwards transition in the Mott Schottky plot will not be as steep as shown in 

Figure 6. Smaller nanorods will deplete earlier than larger nanorods, leading to a more 

gradual increase in slope of the Mott Schottky plot with potential. If the distribution of radii 

is known, the corresponding Mott Schottky plot can be calculated. 

We now turn to the overall potential distribution in the cylindrical system. As before, the total 

potential drop is divided between the potential difference across the SCR and across the 

Helmholtz layer (cf. equation 2). The potential drop across the Helmholtz layer is found by 

calculating the electric field at r=R and applying the principle of dielectric continuity. 

        
   

   
 
     

 
         (12) 

where CH is the capacitance of the Helmholtz double layer.  The total potential drop is the 

sum of the potential drops across the nanorod and across the Helmholtz layer. The derivation 

of equation 12 assumes that the permittivity (and hence the capacitance) of the Helmholtz 

region is independent of the electric field in the Helmholtz region. However, for high fields 

(> 410
6
 V cm

-1
[23]), dielectric saturation begins to reduce the dielectric constant of water. 

This effect is important for metal electrodes, where the field strengths exceed 10
7
 V cm

-1
, 

leading to Helmholtz capacitances below 20 F cm
-2

 in the limit of full saturation. If we 

consider hematite nanorods with a radius of 25 nm and a doping density of 10
20

 cm
-3

, the 

electric field strength at the boundary to the electrolyte (i.e. at rR) calculated from equation 

9 is of the order of 10
6
 V

 
cm

-1
, which is below the field at which saturation effects begin to 

lower the bulk dielectric constant of water (ca. 80 at 20
o
C). We therefore expect the 
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Helmholtz capacitance to be of the order of 200 F cm
-2

 (based on a notional double layer 

thickness of 0.35nm). This value has therefore been used in the calculations discussed here.  

In the limit x0, Csc, rod 0, and the nanorod becomes completely depleted and the space 

charge capacitance becomes zero (in fact, this limit is not adequately described by the abrupt 

depletion approximation,[21] but this is unimportant for the development of the present 

discussion). Under full depletion conditions, photogenerated electron-hole pairs will still be 

separated in the space charge region, with holes moving towards the interface and electrons 

towards the centre of the rods.  The extraction of electrons at the base of the rod will then 

generate a gradient of electrochemical potential that controls the flow of electrons towards 

the substrate by drift/diffusion. This generation collection-problem is outside the scope of the 

present discussion, but if the radius of the nanorods is sufficiently small (tens of nm), we may 

expect effective shielding by the electrolyte, so that electron collection in the direction 

normal to the substrate will be driven predominantly by the concentration gradient of 

majority carriers (i.e. by the diffusion of electrons in the case of hematite nanorods). In situ 

characterization of the conductivity of the nanorods under these conditions will be difficult if 

not impossible. 

Quite apart from the fact that inversion may occur before complete depletion, the prediction 

that the capacitance tends to zero as WSCRR is physically implausible. There must always 

be a geometric capacitance to consider. It appears that the residual geometric capacitance in 

the full depletion limit has not been considered explicitly, but Bisquert et al.[24] have 

modelled the field distribution for a fully depleted cylindrical nanorod as part of a more 

general analysis of the electric potential distribution in nonporous semiconductor electrodes. 

These authors show that the electrical field originating in the substrate penetrates only a short 

distance of the order of R into the nanorod.  This means that under full depletion conditions, 

the counter charge in the electrolyte will be restricted to a narrow ‘collar’ at the nanorod base. 

We therefore expect that the limiting geometric capacitance will correspond to charging a 

surface area of the order of the basal area of the nanorod and a separation of the order of the 

rod radius as illustrated in Figure 9.  

 

Figure 9. Schematic representation of the capacitance distribution in a cylindrical nanorod immersed in an 

electrolyte.  The space charge capacitance CSCR is distributed along the cylinder and is connected between the 

central quasi neutral region and the electrolyte as shown.  In addition, there is a geometric capacitance Cbase 

between the substrate at the base of the cylinder on one side and the electrolyte on the other. This capacitance 

remains when the space charge capacitance becomes small as the rod approaches the full depletion limit. 

The geometric capacitance at the base of the nanorod will be of the order of  



12 
 

      
      

 
             (13) 

This geometric capacitance should place a lower limit of the capacitance reached in the limit 

that the space charge region expands to fill the entire nanorod (i.e. for xR), replacing the 

limit that xR, Csc,rod 0 implicit in equation 9. For a hematite nanorod array with a radius 

of 25 nm and a number density of 3.5  10
10

 cm
-2

, the total geometric capacitance of the rod 

bases will be of the order of 0.5 F cm
-2

. The corresponding Helmholtz capacitance of the 

‘collar’ regions will be of the order of  Nrod R
2
CH  140 F cm

-2
 (geometric) for CH = 200F 

cm
-2

. Therefore, under conditions of full depletion, we can neglect the potential drop in the 

Helmholtz layer at the base of the nanorods. 

For an array of identical nanorods of length L with a number density of Nrod cm
-2

, the ratio of 

total internal surface area to geometric surface area is 2NrodRL. It follows that the rod space 

charge, rod base and rod Helmholtz capacitances referred to the geometric electrode area are 

respectively 

               
   

        
       (14a) 

                       (14b) 

                        (14c) 

To model the transition from the situation where the width of the space charge region is 

smaller than the rod radius to the fully depleted situation semi-quantitatively, we place the 

geometric capacitance in parallel with the series combination of the nanorod space charge 

and Helmholtz capacitances. However, we also need to recognize that the exposed substrate 

will also affect the measured capacitance, and this is considered in the next section. 

2.3 The effect of the exposed substrate area  

So far, we have not considered the area of the substrate that is not covered by the nanorods. 

Often this area will be covered by a thin precursor or seed layer of the nanorod material, but 

here we only deal with situation where the bare substrate is exposed. Let us assume that the 

nanorods are grown on a fluorine-doped tin oxide (FTO) layer on glass. For an array of 

identical nanorods with radius R and number density Nrod, the factional uncovered area is 

given by 

                     (15) 

For the hematite nanorod array discussed above, Nrod = 3.5 10
10

 cm
-3

 and R = 25 nm, giving 

 = 0.31, slightly higher than the value for square packing (0.22). The significant area of 

exposed FTO will clearly impact on the measured capacitance since we need to consider the 

parallel capacitance due to the FTO using equation 6. The equivalent circuit used to model 

the total capacitance is therefore as shown in Figure 10. The capacitance of the lower parallel 

‘arm’ of the circuit in Figure 10 can be calculated using equation 6 with appropriate input 

values of the doping density, flat band potential and Helmholtz capacitance for the FTO. We 

note in passing that for the values used in the present calculations for hematite, the effect of 

Cbase is quite small because the internal area of the nanorods is nearly two orders of 

magnitude higher than the exposed FTO area. 
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Figure 10. Dark equivalent circuit for a nanorod array on an FTO substrate. The circuit excludes resistive 

elements associated with charge transfer, i.e. it is assumed that the electrode potential range is restricted to 

values where no Faradaic reaction takes place (no inversion). In the case where a compact under-layer of the 

nanorod material is present (e.g. as a seed layer), an additional series capacitance is needed in the lowest arm of 

the circuit.  See Figure 11 for typical values of the different capacitances. 

Figure 11 illustrates typical magnitudes for the different capacitances in Figure 10. It is clear 

that the base capacitance and FTO capacitance are considerably smaller than the space charge 

capacitance until complete depletion occurs. At the same time, the Helmholtz capacitance is 

much larger than the space charge capacitance. This means that the measured capacitance 

should primarily reflect the space charge capacitance of the nanorod array. 

 

 

 

 

Figure 11. Voltage dependence of the different capacitances shown in Figure 10.  Nrod = 3.5 10
10

 cm
-3

 ( = 

0.313), Fe2O3 = 33, CH = 200 F cm
-2

, Nd (nanorods; cm
-3

) as shown, Nd(FTO) = 10
20

 cm
-3

, FTO =12, Efb(FTO) - 

Efb(Fe2O3) = -0.4 V. Capacitances expressed per unit of geometric electrode area.  

Figure 12 illustrates the effect of the parallel FTO capacitance on the total measured 

capacitance of the system. As the cylinders become fully depleted, we expect the Mott 

Schottky plot to show a sharp upward transition to the Mott Schottky plot corresponding to 

exposed FTO. However, observation of this transition will again be limited by the onset of 



14 
 

inversion as discussed above. In addition, such an abrupt transition requires that all the 

nanorods have the same radius. As pointed out above, a realistic distribution of rod radii will 

lead to significant broadening of the transition.  

 

Figure 12. Mott Schottky plots calculated for an array of 25 nm radius hematite nanorods with a length of 350 

nm illustrating the limit when the nanorods become fully depleted and the capacitance becomes determined 

mainly by the exposed FTO. Values as in Figure 11. Capacitances expressed per unit of geometric electrode 

area. 

In the literature, it is not uncommon to encounter estimates of the doping density of nanorods 

or other nanostructured electrodes based on linear fits of Mott Schottky plots of the kind 

shown in Figure 3. In some cases, the internal surface area rather than the geometric surface 

area is considered, but in many cases even this factor is ignored. The analysis given here 

demonstrates that values of doping density obtained in these unsatisfactory ways are likely to 

be erroneous. Indeed, the complexity of the total capacitance plots makes fitting impossible 

unless a priori assumptions are made, or additional information is available. One approach is 

to measure the capacitance of the substrate without the nanostructured overlayer. If 

necessary, the sub-layer could include a seed and/or blocking layer if these are present. The 

fractional coverage (1 - ) of the substrate by the nanostructure can be estimated from SEM 

images. This is simplest if the nanostructure consists of identical elements such as nanorods 

or nanotubes. More complex structures such as those with ‘cauliflower’ morphologies[25] 

will be impossible to characterize quantitatively by impedance measurements unless 3-D 

numerical models are developed. 

We now examine whether it is possible to fit the experimental capacitance data for the 

hematite nanorod array to obtain a reasonable estimate of the doping density. The first 

problem we encounter is that we no longer expect to be able to estimate the flat band 

potential reliably from the Mott Schottky plot. The previous discussion indicates that we do 

not obtain Efb from the linear fit shown in Figure 3. We could try taking a tangent to the 

curved initial part of the plot, but this will not give a reliable value either.  Reported values of 

the flat band potential of hematite electrodes used for water splitting vary considerably - see, 

for example, the recent review by Hankin et al..[26] Given the problems of obtaining reliable 

Mott Schottky plots for with polycrystalline and nanostructured electrodes, we have turned to 
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the work of  Horowitz,[27] who carried out a very detailed impedance analysis of hematite 

crystals, paying particular attention to corrections needed to account for the potential drop in 

the Helmholtz layer in the case of highly doped electrodes. For 1 M NaOH, Horowitz gives a 

flat band potential that corresponds to 0.124 V vs. RHE, and we have used this value in the 

fitting our experimental data for the hematite nanorod array. 

Figure 13 illustrates how sensitive the fitting is to variation in the doping density. We have 

chosen to display the fit on a capacitance voltage plot rather than a Mott Schottky plot to 

avoid visual data compression and to aid comparison with Figure 1. The best fit is obtained 

for a doping density of 7.5  10
18

 cm
-3

.  The flat band potential value given by Horowitz was 

used in the calculation. The fit shown is insensitive to the capacitance of the FTO since the 

high internal surface area of the nanorods and the fact that inversion occurs before complete 

depletion ensure that the capacitance of the hematite is always much larger than that of the 

exposed FTO. However, the value of Nd obtained should be treated with some caution since 

we have assumed, for example, that the internal surface area is equal to 2NrodRL, whereas 

some partial blocking of the gaps between the rods may occur. Uncertainties over the correct 

value of the relative permittivity of hematite will also affect the fitting, as will Fermi level 

pinning due to surface states.  

 

Figure 13. Comparison of experimentally measured capacitance of the hematite nanorod array (Figure 2) with 

calculations for three different values of Nd as shown. Other values as in Figure 11. 

The preceding analysis illustrates some of the difficulties inherent in attempts to derive 

reliable values of doping density and flat band potential from capacitance measurements on 

nanostructured electrodes. This is not to say that the measurement of capacitance has no 

value.  Provided that we are dealing with a regular array rather than a random nanostructure 

and have sufficient additional information about dimensions and coverage, consideration of 

the appropriate space charge geometry can help us to obtain realistic values of Nd and Efb. 

3. How can nanostructuring enhance external photocurrent quantum efficiency? 

The external quantum efficiency (EQE) – also known as the IPCE (incident photon to current 

efficiency) – is a key measure of the performance of a photoelectrode. In the case of planar 
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electrodes, the dependence of the EQE on incident photon energy and applied voltage is 

usually discussed in terms of the Gärtner equation.[13] 

      
               

       
       (16) 

Here (h) is the absorption coefficient. The derivation of this equation assumes that all 

minority carriers arriving at the interface are transferred (i.e. take part in an electrochemical 

reaction in our case). Recombination in the SCR as well as at the surface is ignored. The 

contribution to the EQE made by minority carriers generated outside the SCR is reflected in 

the 1 + Lmin term in equation 16. In the case of hematite, the term approaches 1 since the 

product Lmin is much less than unity over the entire spectral range over which measurements 

are usually made (typically, 300 – 700 nm). The problem we face when applying equation 16 

to light-driven water splitting is that the rates of minority carrier reaction are slow since steps 

with high activation energies are involved in the multi-electron transfer processes leading to 

oxygen or hydrogen generation. Consequently, minority carriers accumulate in the space 

charge region and at the surface, where they can recombine with majority carriers. Electron-

hole recombination at the surface and in the space charge region therefore compete with 

charge transfer to the electrolyte, reducing the EQE. In order to apply equation 16 to the 

characterization of planar electrodes, it is necessary to use electron donor or acceptor species 

that react very quickly with minority carriers. In the case of n-type materials, SO3
2-

 ions or 

H2O2 can be used to scavenge holes sufficiently rapidly that no surface recombination occurs. 

Even if a scavenger is used, recombination in the SCR may still occur if minority carrier 

transport is slow due to low carrier mobility[28]. An alternative approach is to measure 

photocurrents using chopped or intensity-modulated light. If the frequency is high enough, 

recombination processes can be effectively ‘frozen out’. The latter approach is the basis for 

intensity-modulated photocurrent spectroscopy (IMPS)[29, 30], which can be used to 

measure the rates of minority carrier reactions including charge transfer and recombination.  

IMPS has been used successfully to determine minority carrier lengths in III-V 

semiconductors using a simple analysis based on the Gärtner equation.[31]  

This leads to the question whether we can apply the Gärtner approach to the case of 

nanostructured electrodes. We consider specifically the case of a nanorod array. Again, if the 

diffusion length of minority carriers is very small, then the EQE is simply determined by with 

the fraction of photons that are absorbed in the space charge region. It should be noted that 

this assumption requires that carriers are not lost by recombination in the SCR (see below). 

For a semi-infinite planar electrode with illumination from the electrolyte side the photon 

flux absorbed in the space charge region is simply the difference between the incident photon 

flux (corrected for reflection losses) and the flux of photons that exits the space charge region 

at x = WSCR so that              .  For a nanorod array the situation is different since 

the space charge region extends in a radial direction throughout the cylinders, i.e. in a 

direction that is normal to the incident radiation. To obtain an idea of how the potential 

dependence of EQE will depend on the applied potential, we assume that the fraction of the 

incident light that is absorbed in the nanorod layer is given by       ,where L is the length 

of the nanorods. Light absorption may in fact be aided by multiple reflections, but we do not 

consider optical effects here. Furthermore, we make the same assumption as above, i.e. that 

the photocurrent is determined only by the fraction of the absorbed light incident light that is 

absorbed in the space charge region.  For simplicity, we ignore the fraction of surface not 
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covered by nanorods. The fraction of the total nanorod volume that is occupied by space 

charge is simply 1 – (x
2
/R

2
), and hence the EQE is given by the product (cf. Figure 2) 

               
  

  
         (16) 

where the dependence of x/R on the potential drop in the space charge region is expressed by 

equation 10. Figure 14 contrasts the potential dependence of the EQE based on this simplified 

model with the behaviour predicted by the Gärtner equation for a planar electrode with the 

same doping density. The model predicts a large enhancement in all cases.  Unfortunately, 

the steady state photocurrent voltage response of hematite electrodes under water splitting 

conditions is highly non-ideal as a consequence of surface recombination, so that a 

comparison of the predictions of the model with experiment will require the use of a suitable 

fast hole scavenger in order to bypass surface recombination.  

 

Figure 14. Comparison of the potential dependence of the EQE calculated for a nanorod array (R = 25 nm, L = 

350 nm,  = 510
4
 cm

-1
) using equation 17 with different values of Nd : 1) 510

18
 cm

-3
, (2) 10

19
 cm

-3
, 3) 510

19
 

cm
-3

. The corresponding plots for planar electrodes calculated from the Gärtner equation (with Lmin = 0) for the 

same doping densities are labelled 1’, 2’ and 3’ respectively (broken lines).  Note the substantial photocurrent 

enhancement brought about by changing the electrode geometry from planar to a nanorod array. 

The enhancement brought about by nanostructuring should also be evident in EQE spectra. 

Figure 15 contrasts the predicted spectral responses of planar and nanorod electrodes. The 

spectra for the planar electrodes were calculated using the Gärtner equation taking into 

account the finite thickness of the layer (assumed to be the same as that of the nanorod array, 

i.e. 350 nm). The calculation is based on the structured absorption coefficient spectrum 

reported by Marusak et al.[32] for highly oriented (110) hematite films. 
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Figure 15. EQE spectra calculated for nanorod (full lines) and planar (broken lines) hematite electrodes of the 

same thickness (350 nm). R = 25 nm. Doping densities: 1) 510
18

 cm
-3

, 2) 510
19

 cm
-3

. Electrode potential 1.23 

V vs. RHE. Efb(hematite) = 0.4 V vs. RHE.  Note the strong EQE enhancement predicted in the case of the 

nanorod array. Absorption coefficient data taken from Marusak et al..[32] Note that it is assumed that all holes 

generated in the SCR are collected, even under full depletion conditions. 

4. Comparison of the EQE model with experiment in the case of hematite 

So how closely do experimental EQE spectra for nanostructured hematite electrodes resemble 

the calculated spectra in Figure 12?  The answer is disappointing. Figure 16 shows that even 

the benchmark performance for nanostructured hematite electrodes reported by Kay al.[25] 

corresponds to an EQE spectrum that falls well below the ideal values. In the case of the three 

types of hematite nanorod electrodes studied by the present authors (undoped, Mn-doped and 

core-shell), the EQE response over most of the spectrum is also lower than predicted in the 

absence of surface and space charge recombination losses.  

 

Figure 16. Comparison of experimental EQE spectra for different hematite films with the spectra calculated for 

350 nm thick nanorod arrays with different doping densities (as shown cm
-3

). Circles: Kay et al.[25] 
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‘cauliflower’ nanostructured hematite made by aerosol-assisted CVD; diamonds: Mn-doped hematite 

nanorods[33]; squares: core-shell hematite nanorods[16]; triangles: undoped hematite nanorods (this work). 

This poor EQE response is reflected in the low short circuit current densities, jsc, at 1.23 V Vs 

RHE predicted by convoluting the EQE spectra with the AM1.5 G spectral photon flux 

distribution, As Table 1 shows, even the benchmark hematite electrode gives a jsc that is only 

around 25% of the value predicted for a hematite nanorod array Nd = 510
18

 cm
-3

.  

Table 1. Comparison of calculated and experimental values of short circuit current density at 1.23 V vs. RHE.  

The calculated jsc values were obtained by convoluting the EQE spectra for cylindrical geometry (obtained using 

the Gärtner approximation with Lmin = 0) with the AM1.5G photon flux distribution.   

Electrode AM1.5 jsc / mA cm
-2

 

calculated, nanorods Nd 510
18

 cm
-3

 12.2 

calculated, nanorods Nd 510
19

 cm
-3

 7.27 

calculated, nanorods Nd 110
20

 cm
-3

 5.28 

experimental, undoped hematite nanorods 0.50 

experimental, Mn-doped hematite nanorods 1.56 

experimental, core-shell hematite nanorods 1.17 

experimental, Kay et al.[25] nanostructured hematite 2.78 

Since the experimental EQE spectra for the nanostructured hematite electrodes differ so 

substantially from those predicted using the simple model in which the active volume for 

charge separation is defined in terms of cylindrical geometry, we need to examine possible 

causes.  Clearly a significant fraction of the holes photogenerated in the SCR is being lost by 

recombination, either at the surface or in the SCR itself. The competition between surface 

recombination and interfacial hole transfer at compact hematite electrodes interface has been 

studied by intensity-modulated photocurrent spectroscopy (IMPS)[34] and by 

photoelectrochemical impedance spectroscopy (PEIS).
15

 More recently, we have used IMPS 

to investigate three different types of hematite nanorods:[17] undoped, manganese-doped[16] 

and core-shell[33] hematite nanorods with a FeOOH coating The hole transfer efficiency 

trans, which represents the fraction of holes arriving at the surface that are successfully 

transferred, can be defined in terms of first order rate constants for charge transfer (ktrans) and 

surface recombination (krec) as  

       
      

           
        (17) 

Out study reveals that for all three types of nanorod electrode, trans exceeds 95% at 1.23 V vs 

RHE. This is consistent with the observations that current voltage plots for hematite 

measured in water and the presence of hydrogen peroxide converge around this potential[35] 

since hydrogen peroxide is a fast hole scavenger (i.e. large ktrans). We can therefore exclude 

surface recombination as the explanation of the large difference between the calculated and 

experimental spectra.   

A second possible explanation could be that surface states at the hematite/electrolyte interface 

lead to Fermi level pinning. These states can either be due to defects and impurities, or they 

could be intermediates or ‘surface-trapped holes’ generated by illumination.  However, since 

the EQE is similar when a fast hole scavenger is used, the latter case seems unlikely to 

explain the losses. While partial Fermi level pinning certainly does occur at hematite 

electrodes, inspection of the calculated current voltage plots in Figure 14 suggests that high 
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EQE values should be obtained for nanorod electrodes even if the band bending is much 

lower than expected from the measured flat band potential. 

Whatever process is responsible for the loss of holes, it evidently involves a much shorter 

time scale than the range probed by IMPS (typically 10
-6

- 100s).  Since the modelling already 

assumes that no holes are captured outside the SCR, we conclude that electron-hole 

recombination is likely to be occurring inside the SCR, even under conditions where holes 

are consumed rapidly by a hole scavenger like H2O2 when they arrive at the interface. The 

theory of IMPS for recombination in the SCR has been discussed by Vanmaekelbergh and 

deWit[36], but since it appears that surface recombination is normally dominant in 

semiconductor electrodes, the theory appears never to have been used to interpret IMPS data. 

These authors performed numerical calculations for a typical parameter values and found that 

the relaxation time constant was around 50 microseconds. Since this is shorter than the cell 

RC time constant[29], SCR recombination response will be submerged in the RC attenuation 

response and will therefore be difficult to identify. Recombination in the SCR has been 

discussed by Reichman[37] and by El Guibaly et al.[38] within the framework of the classical 

theory Sah, Noyce, and Shockley,[39] but a full discussion lies outside the scope of the 

present paper. In a recent comprehensive review of the status of water splitting at hematite 

electrodes, Zandi and Hamann[3] suggested that the transit time of holes through the SCR 

plays a key role in the performance of hematite photoanodes. These authors drew attention to 

neglected early work by Jarrett,[28] who showed that the Gärtner assumption that all minority 

carriers generated in the SCR reach the interface is no longer valid for semiconductors with 

low carrier mobility or very fast recombination. In the abrupt depletion approximation, the 

time taken for a minority carrier to move from the edge of the SCR to the surface is given 

by[28] 

         
   

    
        (18) 

Jarrett makes the simplifying assumption that recombination throughout the SCR is first order 

so that it can be defined by a constant lifetime recombination. If transit is less than recombination, the 

collection depth for holes will be less than the width of the space charge region. Very few 

experimental values of the hole mobility in hematite are available since it is difficult to dope 

it to become p-type. Hole transport in hematite by small polaron hopping has been modelled 

theoretically using Marcus theory to derive activation energies,[40] and the results suggest 

that hole mobilities are below 10
-2

 cm
2
 V

-1
 s

-1
. The corresponding transit times calculated 

from equation 18 for the undoped
[17]

 (Nd =  510
18

 cm
-3

) and Mn-doped
[17]

 (Nd = 110
20

 cm
-3

) 

hematite nanorods are therefore greater than 370 ps and 19 ps respectively. The reduction in 

transit time by a factor of 20 suggests that Mn-doping should lead to lower losses by 

recombination in the SCR  (we find Nd = 10
20

 cm
-3

 for Mn-doped hematite). In the planar 

case, this beneficial effect will be partially offset by the fact that Mn doping reduces the 

width of the SCR by a factor of 4.5 (cf. equation 1), so that the enhancement achieved by 

nanostructuring becomes even more important. In fact, the EQE of the Mn-doped hematite 

nanorods is the highest of all three nanorod electrodes that we studied, which is consistent 

with this analysis. 

A key parameter in the Jarret analysis is the hole collection depth, Lcoll, which is determined 

by the relative values of recombination and transit. If Lcoll < WSC, the EQE will be lower than the 

value predicted by the limiting form of the Gärtner equation (i.e. when Lmin0). As Figure 15 



21 
 

shows, the effect on the calculated EQE spectrum for the nanorods is simply to rescale them 

to lower values as Lcoll is reduced. A similar rescaling to lower values will also apply to the 

EQE spectra for planar electrodes (cf. Figure 12), i.e. the shape of the plots will be 

unaffected. 

 

Figure 17. EQE spectra for 350 nm thick array of hematite nanorods (R = 25nm) calculated for different values 

of the hole collection depth showing the rescaling as Lcoll decreases. 

The rescaling of EQE shown in Figure 15 does not provide an adequate explanation of why 

the shapes of the experimental EQE plots differ so much form those calculated for the 

cylinder model. The deviation could be due to the simplifying assumption that multiple 

internal reflections between the nanorods are ignored, but since the cauliflower structure of 

Kay et al.[25] has a similar shape, it seems more likely that another explanation is required. 

One intriguing possibility is that light absorption leads to a bound electron-hole pair and that 

the quantum efficiency for free carrier generation increases with the excess photon energy h 

- Eg.[41, 42] This would mean that the internal quantum efficiency depends on excess photon 

energy. To examine this hypothesis, in Figure 16 we have plotted the ratio of the 

experimental and predicted EQE values for the Mn-doped nanorod electrode as a function of 

photon energy. The analysis is necessarily approximate, since no account has been taken of 

reflection losses or of multiple internal reflections. Nevertheless, the plot suffices to show 

that the IQE increases linearly with photon energy between 2.5 eV and 3.3 eV, before tending 

towards unity at higher photon energies. This behaviour is consistent with the suggestion that 

the creation of free electron hole pairs depends on the excess energy. 
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Figure 18. Dependence of the internal quantum efficiency (IQE) as a function of photon energy for Mn-doped 

nanorods. The IQE was calculated taking the ratio of the measured EQE to the EQE calculated using the simple 

model for cylindrical geometry (cf. equation 16). 

To conclude this discussion, we note that oxide photoanodes with very short hole lifetimes 

and low hole mobilities are unlikely to achieve performances that are useful for light-driven 

water splitting. As we have shown elsewhere,[1] claims of ‘high-efficiency’ for 

nanostructured hematite electrodes frequently fail to stand up to close inspection. On a more 

positive note, a remarkable EQE of 90% with a square spectral response similar to the 

calculated plots for hematite shown in Figure 13 has been reported for 2.6 micron thick WO3 

nanorod arrays (R ca. 140 nm) coated with a 25 nm layer of BiVO4 and a cobalt catalyst.[43] 

The observed AM 1.5 photocurrent of 6.72 mA cm
−2

  at 1.23 V vs. RHE for this core-shell 

structure compares very favourably with the maximum expected for the wider bandgap 

BiVO4 (2.4 eV as opposed to  2.1 eV for hematite). This core-shell configuration, which 

corresponds to the extremely thin absorber (ETA) layer used in some types of solar cells, 

appears to offer a way of significantly enhancing the efficiency of hole collection in BiVO4, 

which also appears to suffer from slow hole transport.  

Finally, we mention in passing the case of low-doped mesostructured n-type photoelectrodes 

where the feature size is so small (typically tens of nm) that electron collection at the 

substrate becomes essentially diffusion-controlled because the electric field is small. The 

classical example is the mesoporous anatase electrode used in the dye-sensitized solar cell 

(DSC). When these electrodes are used for water splitting, there is evidence that electrons can 

be lost in transit to the substrate,[44] so that higher currents are obtained for substrate side 

illumination.  The mechanism of ‘recombination’ in this case is not understood.  It could 

involve, for example, surface-trapped holes or intermediates in the oxygen evolution reaction 

or electrons could be donated to dissolved oxygen.[45] Leng et al.[46] have treated this 

behaviour in terms of the electron diffusion length model developed for DSC,[47] where the 

electron acceptor is the tri-iodide ion, present in large excess in the electrolyte.  However, it 

is unclear why the loss of electrons in a photoanode that is oxidizing water should follows the 

same pseudo-first order back reaction kinetics as in the DSC. So far, our attempts to model 

the loss of electrons in terms of electron-hole recombination considering the slow 
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consumption of holes in the water splitting reaction have not been able to reproduce the 

observed first order behaviour. 

5. Conclusions 

This exploration of the properties of nanostructured electrodes illustrates the importance of 

critical examination of existing models and assumptions. Unfortunately, many papers dealing 

with nanostructured photoelectrodes focus on improved performance without asking 

questions about the mechanism of enhancement. The term’ highly efficient’ is often misused, 

and explanations of the enhancement mechanism are restricted to repetition of statements in 

the literature regarding matching feature size to the hole diffusion length. A simple analysis 

shows that simple geometric considerations alone predict EQE enhancement. However, in the 

case of hematite electrodes at least, the assumptions in the Gärtner model evidently do not 

apply. This may be because holes are lost by recombination during transit through the SCR to 

the interface. Alternatively, the internal quantum efficiency could be energy dependent as 

suggested above. Either way, the substantial enhancements expected for nanostructured 

electrodes are not fully realized. It is therefore difficult to escape the conclusion that unless 

new strategies to address these issues are developed, high efficiencies for water splitting will 

only be achieved with materials that have higher minority carrier mobilities and longer 

minority carrier lifetimes than oxides like hematite. It would therefore be interesting to test 

the relatively simple analytical model models developed here using well-defined silicon 

nanorods, for example.[48]. 
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