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Abstract

The interparticle Coulombic decay process (ICD) in a Coulomb-coupled pair of

quantum dots (QDs) was predicted to feature electronic relaxation within one QD in

conjunction with ionization of the other. In this work the QD model is extended from

a pair to a triad of one excited and two ionizable QDs and in total three electrons.

Analytical Wigner-Weisskopf expressions for the decay rates are formulated and con-

firmed with numerical electron dynamics calculations, suggesting a rate enhancement

by a factor two that may be relevant for the competitiveness of ICD in QDs. Particu-

larly, we compare two energetic scenarios, one allowing only for single ionization of the

QD triad and one, not yet discussed in the community, potentially allowing for double

ionization.
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Introduction

Energy transfer possibly coupled to energy conversion is an emerging concept grace to its

manifold of occurrences ranging from a chain of Förster resonant energy transfer steps in

biological processes1 to solar energy devices.2 In recent years, the interparticle Coulombic

decay (ICD) process has gained much attention because it goes beyond resonance energy

transfer among bound-to-bound electronic transitions by including one bound-to-continuum

transition and being at the same time about three orders of magnitude faster, while exhibiting

otherwise the same characteristics of being mediated by long-range Coulomb interaction

alone. This was first demonstrated in clusters of HF and of H2O molecules, where the inner-

valence excitation of one monomer decays upon ionization of a neighbor.3 Over the years

ICD turned out to be a very general process, hence it appears in very different fields4 and

cutting edge examples are photo damage of biological tissue,5,6 relaxation of hollow atoms,7

vibrational energy transfer,8 and effectiveness in fullerenes.9,10

The concept of ICD of converting optical into electric energy together with its anticipated

relevance to nanomaterials makes it promising for optoelectronic devices. And indeed it has

been predicted for pairs of non-tunneling coupled semiconductor quantum films11 as well as

quantum dots.12,13 The only drawback is that, compared to clusters of atoms and molecules

of smaller spatial dimensions, ICD was found to be significantly slower happening on a

picoseconds rather than a femtosecond time scale. On such time scale phonon dissipation

might become competitive.14 Opposed to this there is evidence for an ICD rate enhancement

with the number of reaction channels, i.e. neighbors.7,15,16 Therefore we seek to speed ICD

along these lines and will offer for this the first predictions for ICD in a triad of QDs which

is at the same time the first electron dynamics calculation of ICD with three participating

electrons.

In extension to what is typically done in atomic and molecular clusters, we will probe

different energetic boundary conditions by examination of different QD geometries. This

aligns well with the fact that QDs are probably the quantum material with the largest
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wealth of electronic structures tuneable as desired by size, shape, and surface of the QD.17,18

We modify the electronic structure in this way to elaborate on the possibility of a double-

ionization ICD process. A first energetic argument for it was given for endohedral fullerens,9

however, without estimation on its rate. It was observed recently in Helium droplets with

neighboring alkali dimers,19 but there without detailed theoretical analysis.

To transport the two messages on rate enhancement and double-ionization ICD in this

article we will start from the known QD pair system, extend the expression for the ICD

rate from the case of one neighbor to the case for two neighbors, and confirm both of them

numerically with electron-dynamics calculations. This we do in comparison for two sets of

QD triads, one excluding and one allowing for double-ionization ICD.

Theory

Two-Electron Two-QD ICD

For the QD pair let’s assume first of all QDs well separated from each other, which means

they shall neither form delocalized orbitals nor allow for electron tunneling as would be the

case in a QD molecule.20 Further, the QDs shall be singly charged and display one and two

electronic levels below the single-electron ionization threshold energy ET = 0 meV that obey

the energy condition EM1 − EM0 ≤ ET − ER0 (cf. Fig. 1, middle and right QD, MQD and

RQD). Excitation of the electron in the two-level MQD will create a localized two-electron

resonance state M1R0 (dashed-line density above QDs, however with zero density above the

displayed left QD (LQD)) that decays into the multitude of continuum states M0C. The

originally excited electron occupies again its ground state, whereas the RQD is ionized. In

electron dynamics calculations on GaAs QDs the rate Γ2e for this two-electron ICD process

was found earlier,13,21 and here again, to be among 4.13 · 10−3 - 2.85 · 10−9 meV (1.59 · 102 -

2.31 ·108 ps) and to sensitively depend on the distance R among the QDs, which was 87−867

nm.
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Figure 1: In the bottom (b) the model potential for the QD triad as function of one of the
z coordinates and the contained single-electron energy levels are displayed. On top (a) the
density of the wave packets of the resonance (dashed line) and ground state (solid line) are
shown. For the two-electron two-QD case the LQD with above density is omitted and the z
coordinate origin shifted to R/2.

Starting from the general golden rule of Fermi,

Γ2e ∝ |〈f |V 12
C |d〉|2, (1)

an explicit expression for the ICD rate in the above two-electron two-QD case,

Γ2e = |〈φM0
1 φC

2 |V
12
C |φM1

1 φR0
2 〉|2, (2)

was developed in a Wigner-Weisskopf framework.15,22 In Eq. (2), the Coulomb interaction

operator V C
12 = |~r1 − ~r2|

−1 couples the decaying state |d〉 =
∣

∣

∣φM1
1 φR0

2

〉

with the multitude

of final states |f〉 =
∣

∣

∣φM0
1 φC

2

〉

. Note that for all wave functions we assume separability into

a product of single-electron orbital functions. When we further do not take antisymmetry

into account, which is possible as exchange terms were found to become negligible for the

requested long distance among the adjacent QDs whose orbitals φn are not overlapping,13,15

then we may deliberately assign electron no. 1 to be located in the MQD occupying the
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M1 or M0 state and electron no. 2 being ionized from the initial R0 state of the RQD into

the continuum states (C). The process nails then down to the two Coulomb-coupled dipole

transitions of the same energy difference on the subsystems M and R. With replacing all

remaining direct Coulomb terms by dipole-dipole coupling terms one ends up with the known

and proven analytical and asymptotic equation22

Γ2e =
3c2h̄4

4π

σPI
R (Evph)Γ

rad
M

E4
vphR

6
(3)

which approximates the long-distance behavior of the ICD rate. Here, Evph stands for the

energy of the transferred so-called virtual photon, σPI
R (Evph) for the photoionization cross

section of the electron-emitting RQD as function of that energy,23 and Γrad
M for the radiative

decay rate of the photon-emitting MQD.

The described approach already dates back about half a century, when it was introduced

with a full derivation first for the Penning ionization24 and then for the Auger process.25

Later it was adapted to ICD and termed virtual photon approximation.15,22

In the context of atomic and molecular ICD, the rate ansatz of Eq. (2) as well as

the asymptotic equation of Eq. (3) have been generalized for cases in which the decaying

subsystem has N > 1 identical neighbors capable of electron emission.15 It predicts a rate

Γ(N+1)e = N · Γ2e (4)

for (N + 1) subsystems with (N + 1) electrons involved in ICD that linearly depends on the

number of neighbors N .15,22

A numerical proof of Eq. (4) using non-Hermitian electronic structure methods was

given in a system of a Ne atom in a neighborhood of N = 1 − 4 other Ne atoms at equal

distance, one of which can be ionized.15,16 However, for N = 4−12 the predicted linearity was

lifted for the sake of significantly higher rates, which the authors rationalized by increasingly

important neighbor-neighbor correlation effects. The effect of such an extraordinary rate
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increase was recently also seen in the deexcitation of hollow noble gas atoms in an ICD with

numerous adjacent carbon atoms of a nearby graphene surface.7

Three-Electron Three-QD ICD

Here, we assume three well-separated singly-charged QDs, a QD triad, in a nanowire struc-

ture with the photo-emitting dot in the central place (MQD in Fig. 1). The electronic

structure design in QDs allows it to realize two different energy regimes. One is allowing for

ionization of only one QD at a time (as in Ne) and the other for ionizing both simultaneously.

This aspect to ICD has not found much consideration yet, as it is typically not relevant in

molecular systems.

The Wigner-Weisskopf ansatz is independent of the regime. The Coulomb operator

VC = V 12
C + V 23

C + V 13
C sums over the three pairwise interaction terms. Under the same

assumptions of orbital product wave functions and a spin-free formulation for electrons on

distant QDs, the decaying state’s wave function is |d〉 = |φL0
1 φM1

2 φR0
3 〉 with assigning electron

numbers to QDs as 1 ⇔ LQD, 2 ⇔ MQD, and 3 ⇔ RQD. Electrons with indices 1 and 3

are equivalent throughout.

Only the final state wave function depends on the energetics of the system. If 2 · IP >

∆EM > 1 · IP , where IP signifies ionization potential, then either the left or the right QD

can be ionized and the final state is a superposition of electron 1 or 3 in the continuum, i.e.

|f〉 = 2−1/2
(∣

∣

∣φL0
1 φM0

2 φC
3

〉

+
∣

∣

∣φC
1 φ

M0
2 φR0

3

〉)

. Writing out the Wigner-Weisskopf ansatz for the

single-ionization (SI) case and separating the integrals gives

Γ3e
SI ∝ |2−1/2(〈φL0

1 φM0
2 |V 12

C |φL0
1 φM1

2 〉〈φC
3 |φ

R0
3 〉

+ 〈φM0
2 φC

3 |V
23
C |φM1

2 φR0
3 〉〈φL0

1 |φL0
1 〉

+ 〈φL0
1 φC

3 |V
13
C |φL0

1 φR0
3 〉〈φM0

2 |φM1
2 〉)

+ 2−1/2(〈φC
1 φ

M0
2 |V 12

C |φL0
1 φM1

2 〉〈φR0
3 |φR0

3 〉

+ 〈φM0
2 φR0

3 |V 23
C |φM1

2 φR0
3 〉〈φC

1 |φ
L0
1 〉
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+ 〈φC
1 φ

R0
3 |V 13

C |φL0
1 φR0

3 〉〈φM0
2 |φM1

2 〉)|2. (5)

We can rationalize that for orthonormal single-electron functions (that are identical for all

identical electrons) only the second and fourth row of Eq. (5) give a non-zero contribution.

Hence, Γ3e
SI = 2 · Γ2e in accordance with previous findings.15

By contrast, in the double-ionization (DI) ICD regime the virtual photon energy exceeds

twice the ionization potential, i.e. ∆EM > 2 · IP , so it allows for the final states |f〉 =
∣

∣

∣φC
1 φ

M0
2 φC

3

〉

. The respective equation for the ICD rate gives

Γ3e
DI ∝ |〈φC

1 φ
M0
2 |V 12

C |φL0
1 φM1

2 〉〈φC
3 |φ

R0
3 〉

+ 〈φM0
2 φC

3 |V
23
C |φM1

2 φR0
3 〉〈φC

1 |φ
L0
1 〉

+ 〈φC
1 φ

C
3 |V

13
C |φL0

1 φR0
3 〉〈φM0

2 |φM1
2 〉|2. (6)

All factorized integrals become zero due to the orthonormality of the single-particle functions

so that Γ3e
DI = 0. The result reveals that opening the DI channel does not mean ICD is

capable of ionizing two QDs simultaneously during energy transfer. This is logical, because

the Coulomb operator only couples two electrons and can mediate transfer of only one non-

separable virtual photon. Of course, the previously discussed SI-ICD pathway remains an

allowed pathway under higher-energy conditions with the rate of above, Γ3e
SI = 2 ·Γ2e, leading

eventually to the total three electron rate Γ3e = Γ3e
SI + Γ3e

DI = 2 · Γ2e. Conclusively, in both

energetic regimes, ICD shall be twice as fast!

Computational Details

For a numerical proof of these hypotheses we perform electron dynamics calculations in

one-dimensional QD model potentials with the shape of Gaussians (cf. Fig. 1)

V 1d(zi) =
∑

α

−Dα · e
−

4ln(2)

r2
α

(zi−zα)2

(7)
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where the electron index is i = 1, 2, (3) for the two- (three-) electron dynamics and the QD in-

dex α ∈ [(L),M,R]. Neighboring QDs are separated by distances R ∈ [151.69 nm; 866.80 nm]

for which it was shown that the asymptotic equation is strictly fulfilled.21 Further, QDs are

placed symmetrically on the z axis such that in the two-QD case zM = −R/2 and zR = R/2.

In the QD triad case −zL = zR = R and zM = 0 nm holds. Note that all variables are given

in international system units of GaAs, i.e. we properly account for the effective electron

mass approximation in the nanostructure (for details see13). The QD shape parameters are

leaned to former works for comparability13 and are DM = 10.30 meV, DL,R = 8.24 meV,

2rM = 36.08 nm, and 2rL,R = 18.04 nm for SI-ICD. In the DI case they were altered to

DM = 15.45 meV, DL,R = 6.18 meV, and 2rM = 25.51 nm, with only 2rL,R being retained.

We desist from accounting for further spatial coordinates, because for vertically-aligned QDs

in a wire, strong lateral confinement is assumed. We have shown elsewhere that this one-

dimensional approximation gives identical dynamics when we underlie an effective potential

approximation for the Coulomb operator as21,26

V i,j
C (zi, zj) =

√

π

2l2
eξ

2
(

1− erf(ξ)
)

. (8)

Parameters are ξ(|z1 − z2|) = (
√

1
2l2

|z1 − z2|) and l =
√

1/ω⊥ with a harmonic confinement

with frequency ω⊥ = 1.0 a.u. that maps to a lateral QD diameter of 2r⊥ = 28.84 nm. ω⊥

was chosen to be equal or larger than typical energy differences in ICD, i.e. Evph, as under

these conditions rates are not sensitive to ω⊥.27

We solve the time-dependent Schrödinger equation according to the MCTDH equations of

motion28,29 using the Heidelberg implementation.30,31 Antisymmetry is now taken into con-

sideration through imposing for all permutations Aja,jb,jc(t) = −Ajb,ja,jc(t) and Aja,ja,jc(t) = 0

onto the wave function

Ψ(z1, z2, z3, t) =
∑

j1

∑

j2

∑

j3

Aj1,j2,j3(t)
3
∏

κ=1

ϕ
(κ)
jκ (zκ, t), (9)
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which is thus reflecting a quartet state. This spin situation can unequivocally be prepared

in charging experiments.20 The wave function expands onto j1 = j2 = j3 = 8 single-particle

functions ϕ
(κ)
jκ (zκ, t).

To account for the final continuum state, a basis of 140 sine DVRs (discrete variable

representations) within the interval of [−524 nm; 524 nm] was used for the identical electrons.

An nth-order complex absorbing potential near the grids’ ends (±325 nm) removes the wave

packet of the scattered ICD electron from the system.13

Results

Single-Ionization Energy Regime

The SI-ICD system incorporates single-electron level energies EM0 = −7.15 meV and EM1 =

−2.01 meV for the photon-emitting QD and EL0 = ER0 = −3.61 meV for the electron-

emitting QDs. This gives rise to the energy condition known from former works, namely the

state ordering EM1 > EL0 = ER0 > EM0. The virtual photon energy Evph ≈ EM1 − EM0 =

5.14 meV exceeds once, but not twice the ionization potential IP = 3.61 meV of the electron-

emitting LQD and RQD.

0 1000 2000 3000 4000 5000 6000 7000
t [ps]

0.6

0.7

0.8

0.9

1.0

|a
(t

)|
²

Figure 2: (Color online) The absolute squared autocorrelation function |a(t)|2 as function
of time decays exponentially as shown here for R = 195.03 nm. For the n-electron n-QD
ICD with n = 2 an orange/gray line is used, for n = 3 a blue/black line.

In comparing the dynamics we first focus on the example of R = 195 nm for which
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the exponential decay of the squared autocorrelation function |a(t)|2 = |〈d|Ψ(t)〉|2 = e−Γt

confirms ICD not only for the QD pair case (orange/gray line in Fig. 2), but most importantly

for the tree-electron case (blue/black line). Further, the projections of the wave function onto

the single-electron state functions φn, which we do not show here, reveal that the electron in

the MQD relaxes on the same time scale. Further, one of the indistinguishable electrons in

the small QDs is excited into the electronic continuum, but in fact due to the superposition

of the two ionization channels L0 → C and R0 → C one cannot assign which electron this

is and one will observe ionization from both QDs to the same amount. The two-electron

two-QD rates obtained for R = 195 nm are Γ2e = 3.4 · 10−5 meV in agreement with findings

from former studies13 and Γ3e = 5.1 · 10−5 meV, which is indeed larger. However, the ratio

of rates Γ3e/Γ2e = 1.5 6= 2.0 cannot confirm the hypothesis (Eq. (5))!

200 400 600 800
R [nm]

0

1·10
9

2·10
9

3·10
9

4·10
9

5·10
9

Γ·
R

6  [m
eV

·n
m6 ]

Figure 3: (Color online) The ICD rates Γ multiplied with R6 for two (orange/gray) and
three electrons (blue/black) are displayed for 151.69 nm ≤ R ≤ 866.80 nm. The average
values Γ2eR6 and Γ3eR6 for each series of rates are inserted as dashed lines.

Widening our view onto former studies on quasi or truly one-dimensional paired QDs,

we are aware of oscillations of the rate Γ2e around R−6.13,32 They originate, at least to a

certain extend, from the Coulomb barrier which the ICD electron senses when nearing the

remaining electron in the MQD which it can either tunnel (enhanced Γ2e) or not (reduced

Γ2e). The same type of oscillations are found for Γ3e as function of R. With two neighboring

electrons the oscillations are, however, not synchronous with the ones in the two-electron

case which ultimately leads to ratios Γ3e/Γ2e(R) spanning over [0.1; 17.5] for all sampled R.
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Therefore, for a meaningful analysis of the asymptotic behavior we plot Γ · R6 in Fig. 3

with the color code of before. This quantity is constant besides the Coulomb barrier-induced

oscillations. Both averages Γ ·R6 are inserted as dashed lines. And indeed, here we obtain

Γ3eR6/Γ2eR6 = 2.07 with a standard deviation of 1.68, finally confirming Γ3e = 2 · Γ2e for

the SI-ICD process.

Double-Ionization Energy Regime

The very same analyses are performed for the DI case. The system has MQD energies

EM0 = −10.11 meV, EM1 = −1.89 meV, i.e. the virtual photon energy is higher with Evph ≈

EM1−EM0 = 8.22 meV. The energies of the adjacent QDs’ levels are EL0 = ER0 = −2.39 meV

so that twice the IP is lower than Evph and the DI channel is open. The calculations turned

out to be less stable than the previous ones, making it impossible to analyze particularly

Γ3e beyond R = 249.09 nm. But even in this smaller R interval the ratio of the averages

is obtained as Γ3eR6/Γ2eR6 = 1.88 with a standard deviation of 0.67. So also in this case

Γ3e = 2 · Γ2e is confirmed in accord with the rationalizations.

Let us mention at this place one other recent study considering DI-ICD.19 The targeted

system was an alkali dimer adjacent to a He droplet in which one excited He atom relaxes by

ionizing both alkali atoms. This was detected in coincidence measurements, where the triple

coincidence of one electron and both alkali cations gives a DI-ICD trace with lower kinetic

energies of the electron than the double coincidence of the electron and just one cation, map-

ping both DI-ICD and SI-ICD. This is contradictory to the suppression of DI-ICD that we

find here. Explanations may be that in the He droplet system the asymptotic equation (Eq.

(6)) is not valid. Possible reasons could be the large number of non-participating electrons

that nonetheless correlate to the active ones or the differing geometry with angles less than

180° among neighbors and distance small enough to not forbid electron transfer. Future

investigations on the differences of both systems are necessary to clarify this discrepancy.
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Discussion

With having established here three-electron dynamics MCTDH calculations in QDs, the

wealth of other three- and more-electron processes in assemblies of QDs is within reach and

will allow for further predictions, e.g. of superexchange ICD33,34 or the inverse process to

this one here,35–37 for all relevant energetic cases. One other systematic improvement of

the methodology has been recently achieved, which is the description of a two-dimensional

continuum in the electron dynamics32 reflecting thus self-assembled38,39 and lithographic

QD.40 Such extended continuum winds down the oscillatory behavior of continuum electrons

with distance,32 which will allow for a clearer analysis of three-electron three-QD ICD. In

such systems electron dynamics investigations can enhance significantly the insight into the

dependence of ICD on the relative positions of QDs.

For an experimental proof of ICD in the above described model system one needs to

grow a quantum wire in which the three QDs are either of a lower band-gap material than

the wire material20,41 or, preferably, realized through placing electrostatic gates for electron

confinement along the wire.40 For different QD distances, different wires are to be grown

or different gates to be placed. Further, the setup requires a gate circuit along the wire

for singly-charging each QD with same-spin electrons.20,41,42 To induce ICD an infrared

source is needed that is focused through a shadowmask43 in order to selectively excite the

MQD. For optimal performance we suggest it to have the energy of the virtual photon, an

intensity of 1.37 kWcm−2 and a pulse duration of 14.1 ps.44 For analysis there are as well

several options. Either one detects the current induced by the ICD electrons through the

wire,20,40 which reflects the absorbance of an electron by a complex absorbing potential in

the calculation and could allow for a comparison of electron spectra.13,45 Otherwise pump-

probe46 or photocurrent techniques47 as well as electrodes as charge sensors20,40 at each QD

can be used to determine the electron occupation numbers in the QDs which correspond to

the calculated projections.

Regarding the QD placement in the wire we strongly recommend to stick to the shortest
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of the investigated distances, i.e. 150 - 200 nm, where rates are in the order of about 10−5

meV (104 ps), because here ICD may dominate phonon-mediated decay and emission14 or

radiative decay13 happening both on a nanosecond time scale. Even lower distances (80

nm) not investigated here are recommendable, where ICD is as fast as 150 ps,13 with the

drawback that the asymptotic equation does not strictly apply. At even shorter distances

that allow for electron transfer among the QDs, ICD may not be exclusive but overlaid by the

electron-transfer mediated decay process48 leading to the same final state. Circumventing

these drawback of GaAs QDs, rate enhancement by three-electron ICD can as an alternative

be proven in QDs of other materials, e.g. AlN,13 in triads of overall smaller measures,13 as

well as in atomic or molecular trimers in which ICD is in general orders of magnitude faster

and less likely subject to competing decay processes. As our model and results are universal

to various electron binding systems, such consideration is well allowed.

Conclusions

The overall conclusion of this study is that when a QD pair capable of ICD is extended into a

triad by another electron-emitting QD in the row next to the excited one, then the ICD rate

doubles. We come to this conclusion by a detailed rationalization of the energetics based on

the Wigner-Weisskopf rate and confirm it by numerical electron dynamics calculations that

go beyond previous non-Hermitian electronic structure calculations for the example of neon

clusters because they allow for time-resolution and tailor-made energy conditions. Absolute

rates are obtained for GaAs QDs of a certain geometry, but due to the generality of the

approach the result on rate doubling is universal for other QD materials or geometries as

well as atoms and molecules that are capable of ICD under fulfillment of the energy and

distance conditions which allow a virtual-photon description.
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