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Abstract 
 
This paper examines three-dimensional metallic lattices with regular octet and rhom- 

bicuboctahedron units fabricated with geometric imperfections via Selective Laser Sinter- 

ing. We use X-ray computed tomography to capture morphology, location, and distribution 

of process-induced defects with the aim of studying their role in the elastic response, dam- 

age initiation, and failure evolution under quasi-static compression. Testing results from 

in-situ compression tomography show that each lattice exhibits a distinct failure mecha- 

nism that is governed not only by cell topology but also by geometric defects induced by 

additive manufacturing. Extracted from X-ray tomography images, the statistical distribu- 

tions of three sets of defects, namely strut waviness, strut thickness variation, and strut 

oversizing, are used to develop numerical models of statistically representative lattices 

with imperfect geometry. Elastic and failure responses are predicted within 10% agreement 

from the experimental data. In addition, a computational study is presented to shed light 

into the relationship between the amplitude of selected defects and the reduction of elas- 

tic properties compared to their nominal values. The evolution of failure mechanisms is 

also explained with respect to strut oversizing, a parameter that can critically cause failure 

mode transitions that are not visible in defect-free lattices. 

 
 

1. Introduction 
 

Metallic cellular materials can be designed to offer unique combinations 

of mechanical and physical properties, of- ten unachievable with fully 

dense metals (Wadley, 2006; Evans et al., 1998; Cabras and Brun, 2016). 

They are exploited in a wide range of multifunctional applications, such as 

energy absorbers (McKown et al., 2008; Tancogne-Dejean et al., 2016; 

Schaedler et al., 2011; Evans et al., 2010), vibration and sound control 

devices (Delpero et al., 2016; Wu et al., 2015; Nolde et al., 2011), low-

thermal-expansion structures (Steeves et al., 2007; Wei et al., 2016; Xu and 



 

Pasini, 2016), heat ex- changers (Maloney et al., 2012), lightweight 

structural panels (Queheillalt et al., 2008; Wang et al., 2003; Wallach and 

Gib- son, 2001), and several others (Arabnejad et al., 2016; Vigliotti and 

Pasini, 2015; Khanoki and Pasini, 2012; Hedayati et al., 2016; Lefebvre et 

al., 2008; Arabnejad Khanoki and Pasini, 2013). Standard fabrication 

processes exist to manufacture cellular metals (Banhart, 2001; Wadley, 

2002; Dong et al., 2015; Wadley et al., 2003). Whereas some retain 

inherent limitations in creating cells with complex topologies, others, 

especially those enabled by additive processes, e.g. Electron Beam Melting 

(EBM) and Selective Laser Melting (SLM), are capable of reproducing pore 

geometries with complex shapes and at multiple length scales (Chu et al., 

2008; Vayre et al., 2012). These processes, however, generally fabricate 

lattices with geometries that depart from their as-designed counterparts; as 

a result, their geometry is far from being defect-free (Vayre et al., 2012; 

Zaeh and Branner, 2009; Mercelis and Kruth, 2006; Bagheri et al., 2016). 

Rather than resembling ideal geometry, as-built lattices typically contain 

material and geometric imperfections that may strongly influence their 

elastic response and failure mechanism. 

Several experimental studies have been undertaken  to  investigate  elastic  

response  and  failure  mechanism  of  a  broad range of cellular metals 

fabricated additively (Tancogne-Dejean et al., 2016; Xiao et al.,  2015;  Cheng  

et  al.,  2012; Ushijima et al., 2010; Gümrük and Mines, 2013; Ahmadi et al., 

2014; Gümrük et al., 2013; Messner, 2016). Some focus on Ti-6Al-4 V lattices 

manufactured with EBM (Xiao et al., 2015; Cheng et al., 2012), whereas 

others on stainless steel lattices built with SLM (Ushijima et al., 2010; 

Gümrük and Mines, 2013; Gümrük et al., 2013). These works concur in 

emphasizing the  strict  relationship  existing  between  cell  topology  and  

mechanical  response  under  a  given  load.  Other  works  on the failure 

mechanisms  of  metallic  lattices  attribute  the  formation  of  certain  failure  

modes  to  a  series  of  factors  including the application of non-uniform load 

distribution, residual stresses, and the presence of manufacturing imperfections 

(Kadkhodapour et al., 2015; Santorinaios et al., 2006). Geometric defects and 

material heterogeneities inevitably form dur- ing material layer deposition, and 



 

they are especially sizable in cellular parts having features that are built close to 

the manufacturing limits (Yan et al., 2012). For example, struts horizontal  to  the  

building  plane,  which  suffer  from  poor  heat transfer during the additive 

manufacturing process, are prone to overmelting and display oversized 

thickness (Bagheri et al., 2016). Surface beads arising from partially melted 

metal particles are also an undesirable outcome (Santorinaios et al., 2006; 

Yan et al., 2012). Such imperfections can severely compromise not only the 

functional use of a porous material for a given application, but also its elastic 

and failure response (Arabnejad et al., 2016; Bagheri et al., 2016; Campoli et 

al., 2013), which can be also quite far from that of defect-free lattices. 

For cellular solids built with conventional and chemical-based processes, 

the relation between geometric imperfections and mechanical response has 

been extensively investigated (Onck et al., 2005; Symons and Fleck, 2008; 

Grenestedt, 1998, 2005). It has been shown that geometric mismatches 

between manufacturing and nominal values can be an important cause of 

disagreement with the predictions obtained from defect-free models 

(Grenestedt, 2005). For example, for 2D isotropic lattices, the imperfection 

sensitivity of triangular, Kagome, and hexagonal lattices, has been studied 

in the elastic regime through theory and simulations (Symons and Fleck, 

2008; Grenestedt, 1998). Imperfections in the form of missing bars, 

misplaced nodes, and bar waviness have been recognized as one of the 

main sources responsible for the degradation of mechanical properties to an 

extent that is strongly dependent on cell topology. The elastic properties of 

a triangulated lattice have been found to be less sensitive to imperfections 

than a Kagome lattice, whose elastic response deviates more severely from 

that of its as-designed geometry (Symons and Fleck, 2008). Another work 

has investigated the impact of truss waviness in 3D textile lattices, built by 

stacking woven textile meshes (Queheillalt et al., 2007). Closed-form 

expressions and finite element (FE) calculations have revealed that 

waviness brings about a 20% reduction in the stiffness and strength of their 

as-designed collinear lattices. Other studies on metallic foams have also 

focused on the relation between mechanical properties and defects, such 

as wall thickness variation, curved cell walls and cell shape irregularity 



 

(Fahlbusch et al., 2016; Simone and Gibson, 1998). Obtained through a 

homogenization scheme, the results also corroborate previous findings 

showing a significant knockdown in elastic properties (Fahlbusch et al., 

2016). 

While predictive models of defect-free lattices with nominal geometry can 

evaluate linear and non-linear responses un- der an applied stress (Vigliotti 

et al., 2014; Vigliotti and Pasini, 2012; Deshpande et al., 2001; Arabnejad 

and Pasini, 2013; Elsayed and Pasini, 2010a,b), they generally fall short in 

capturing experimental response of imperfect lattices. For additive 

processes, the relation between geometric imperfections and mechanical 

response has been scarcely investigated in the literature. The studies that 

do exist focus mainly on one type of defects only (Tancogne-Dejean et al., 

2016; Campoli et al., 2013). For example, one work on 3D metallic lattices 

built additively has focused exclusively on the sensitivity of strut cross-

section variation and has shown that deviations of strut radii strongly 

correlate with changes in elastic properties and yield strength (Campoli et 

al., 2013). However, the combined influence of other imperfections, such as 

strut waviness and strut oversizing, has not been systematically 

investigated, neither has their impact on the failure mechanisms of 3D 

printed metallic lattices. 

The goal of this work is to investigate the combined role of geometric 

defects induced by SLM in the elastic response, damage initiation, and 

failure evolution of 3D lattices with regular octet and rhombicuboctahedron 

cells under static compression. Our approach combines X-ray Computed 

Tomography (CT), in-situ mechanical testing, imperfect model generation of 

statistically distributed imperfections, and numerical assessment of their 

mechanical response up to failure. After the description of the lattice 

samples and their morphological characterization, Section 3.1 explains the 

process used to extract and statistically quantify three sets of geometric 

defects. Section 3.2 presents the experimental results from in-situ 

compression tomography. In Section 4.1, computational predictions of 

elastic properties obtained via homogenization are given for CT rebuilt unit 

cells, and Section 4.2 elucidates the outcome from non-linear FE analysis of 



 

fully-detailed imperfect models. In the final section, a parametric 

investigation on the mechanics of 3D metallic lattices built with SLM unveils 

their response sensitivity to changes in defect amplitude. 

 

 

 
 

Fig. 1. Ideal regular octet cell (A) and respective prismatic sample 

manufactured with SLM (B); ideal rhombicuboctahedron cell (C) and its 

relative SLM- manufactured sample (D). (For interpretation of the 

references to color in the text, the reader is referred to the web version 

of this article.) 

 

 

2. Manufacturing and microstructure 

 
Fig. 1 shows the unit cell topology and prismatic geometry (20 × 20 × 30 

mm3) of the 3D lattices under investigation. Both cell topologies (Fig. 1(A) 

and (C)) have cubic symmetry with cylindrical struts. The first is a regular 

octet cell consisting of a regular octahedron as its core surrounded by 

eight regular tetrahedra, one tetrahedron on each of its eight faces. The 

second is a rhombicuboctahedron, a classical Archimedean polyhedron, 

where the cross-section area of the shared struts (blue) are twice that of 

the unshared ones (red). Whereas the regular octet, a stretch-dominated 

cell, has been extensively studied in the literature (Xu and Pasini, 2016; 

Dong et al., 2015; Deshpande et al., 2001; Elsayed and Pasini, 2010b), 



 

the rhombicuboctahedron, a bend-dominated topology, has received far 

less attention (Hedayati et al., 2016). They are both selected here to offer 

a mean of comparison on the dissimilar deformation modes that each of 

them displays under quasi static compression. 

For each cell topology, five identical samples were manufactured from 

aluminium alloy powder (AlSi10Mg) via Selective Laser Melting (SLM) by 

Renishaw AM250 (Renishaw Limited, Mississauga, ON, Canada) with an input 

power of 200 W and energy density of 60 J/mm3. The building direction is 

shown in Fig. 1(B) and (D). The laser spot diameter was 70 μm and 

the powder layer was 25 μm thick. Stress relief was performed at 300°C ± 

10°C for 2hr, followed by part removal from the building  plate  through  

Electrical  Discharge  Machining  wire-cut.  Relative  density  (ρ̃ )  is  defined  as  

the  total  volume  of  the 

sample divided by the volume of the solid, i.e. the density of the lattice 

divided by the density of the constituent material. The apparent relative 

density of the fabricated samples was estimated from their mass and 

apparent volume with statistical values of 10.4% (±0.2%) for the regular 

octet lattice, and 14.7 % (±0.2%) for the rhombicuboctahedron lattice. 

 

3. Experimental investigation 

 
3.1. Defect morphology investigation 

 

3.1.1. Classification of geometric imperfections 

Scanning electron microscopy (Hitachi UHR Cold-Emission FE-SEM 

SU8000) was used to characterize morphology and microstructural features 

of each lattice sample. Fig. 2 illustrates pictures of selected elements 

pointing out a series of geometric imperfections, all generated during SLM. 

Geometric defects, such as parasitic mass at the joints, strut thickness 

heterogeneity, and overmelting of horizontal struts can be described as 

morphological mismatches between the as-designed (defect-free) and as-

manufactured (imperfect) samples. In this work, we focus on three types 

of geometric imperfections which are deemed to have a significant impact 



 

on the mechanical properties and failure mechanisms of fabricated lattices: 

(i) Strut waviness characterized by the center axis misalignment of an as-

built strut from that of the collinear as-designed strut. As shown in Fig. 

2(A) and (B), the center axes of the highlighted struts are wavy and have 

deviated from the axis of a collinear strut. 

(ii) Strut thickness variation described as cross-section irregularity from the 

nominal circular shape and evolving along the strut length. As shown in 

Fig. 2(A) and (B), the thicknesses of the two highlighted struts change 

along their respective axes. 

Strut oversizing or undersizing caused by dissimilar orientations of each 

lattice member with respect to the building orientation. This is emphasized 

by directly comparing strut orientations with building direction. SEM images 

in Fig. 2(C)–(E) qualitatively show that struts normal to the building 

direction are overmelted and thicker than their nominal value. For struts 

that are parallel to the building direction, on the other hand, strut 

thinning is observed when compared to nominal thickness values. For 

additive processes, such as SLM, the dependence of strut thickness on 

the building angle is a phenomenon well documented (Bagheri et al., 

2016). 



 

 

 
 

Fig. 2. SEM images of representative portions of 

rhombicuboctahedron (A) and regular octet (B) lattices with overlaid 

center axis on a representative strut. Magnified images for vertical 

(C), diagonal (D), and horizontal struts (E) showing strut center axis 

misalignment and strut thickness variation. 

 

 
 

Fig. 3. Schematic of the CT image extraction process highlighting for 

a single strut, the radius deviation (strut thickness deviation) and the 

center-axis offset (strut waviness) from their nominal (as-designed) 

values. (For interpretation of the references to color in the text, the 

reader is referred to the web version of this article.) 



 

 

In this work, we focus on the above defects and aim at studying the 

combined role they play in the failure mechanisms and elastic properties of 

regular octet and rhombicuboctahedron lattices. In the following section, we 

first use quantitative X-ray computed tomography (CT) on undeformed 

lattice samples to accurately capture structural morphology, and extract 

three sets of geometric imperfections. 

 

3.1.2. Extraction of geometric imperfections 

For a representative lattice sample, Fig. 3 illustrates a schematic of the 

process used to extract morphological defects. The undeformed geometry 

of an as-manufactured sample is first rebuilt from CT images by using ITK-

SNAP (Yushkevich et al., 2006); then the geometry of each strut (see a 

representative diagonal strut in Fig. 3) is extracted and discretized with a 

surface mesh. The assessment of geometric mismatches is obtained with 

the following procedure. A series of parallel planes are created to intersect 

each strut at equidistant points along each strut axis. On each plane, one 

of which is shown in blue in Fig. 3, the shape boundary of the cross-

section is fitted via the least squares method with a circle, which can be 

described by a center position and a radius. The difference between the 

radius of each fitted circle and the as-designed counterpart is determined 

and it assesses the radius deviation (Fig. 3) from that of the fitted circle. A 

spatial line passing 



 

 

 
 

Fig. 4a.  Probability distributions of SLM geometric imperfections for the 

regular octet lattice: (A) normalized deviation of strut radius for diagonal 

struts, 

(B) normalized deviation of strut radius for horizontal struts, (C) 

normalized strut center-axis offset for diagonal struts, and (D) 

normalized strut center-axis offset for horizontal struts. Normalized 

values are obtained from the as-designed radius of a given set of 

struts. 

 

 

through the centers of all fitted circles is then generated and assumed to 

be the equivalent center axis of a reconstructed strut. The strut center-

axis offset, defined as the normal distance of each fitted center to the 

ideal center axis, is used to assess the misalignment of the reconstructed 

strut from the collinear axis of an as-designed strut, as demonstrated in Fig. 

3. An in-house procedure is developed to automatically extract and record 



 

all the deviations of the strut radius and the strut center-axis offset from 

each reconstructed strut of all the lattice samples. 

 

3.1.3. Statistical analysis of geometric imperfections 

Since the geometric imperfections here examined are strongly dependent 

on the building direction (Fig. 2) (Bagheri et al., 2016), we proceed by 

classifying the geometry  of  the  reconstructed  struts  with  respect  to  their  

orientation  to  the  building plane. The results are then categorized into 

specific sets of struts. For the regular octet lattice, we obtain two statistical 

sets: one (h) with struts horizontal to  the  building  plane,  and  another  (d)  

with  diagonally  oriented  struts  (about  45°  with  respect to the building 

plane). Similarly, for the rhombicuboctahedron lattices, the struts are classified 

into  three  groups:  d (diagonal), h (horizontal), and v (vertical). For a 

representative regular octet sample, the horizontal set contains 2736 struts, 

whereas the diagonal set has 5616 struts.  In  total,  at  least  150  struts  for  

each  set  (5%  horizontal  struts  and  3%  diagonal struts) are randomly 

selected and later  used  to  generate  probability  density  distributions  of  

geometric  defects.  A  convergence analysis is conducted to ensure that the 

selected sample size is appropriate and representative in capturing  defect 

distribution. 

Fig. 4a displays the probability distributions of the manufacturing defects 

normalized by the nominal values of the as- designed radius for the octet 

lattice samples. More specifically, Fig. 4a (A) and (B) show the deviation 

distributions of the strut radius of each set of struts, while Fig. 4a (C) and 

(D) show the distributions of the strut center-axis offset for the 

diagonal and horizontal sets, respectively. We observe that the probability 

distributions from the two statistical sets have similar shapes. To 

statistically quantify these distributions, we calculate the mean value μ 

and standard deviation σ as reported in each plot of Fig. 4a. We recall that 

the superscript represents a given set of struts (d for diagonal, h for 

horizontal, and v for vertical) and the subscript refers to the statistical 

measure (r for deviation of the strut radius and o for offset of the strut 

center-axis). 



 

The distribution parameters highlighted in Fig. 4 correspond to the 

imperfections designated in Section 3.1.1: (i) σ r is the standard deviation 

of the strut radius deviation and describes the severity of strut thickness 

variation (Fig. 3); (ii) μo, 
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Fig. 4b. Planar portions of an octet cell (as-designed and as-built) 

along with illustrative ranges of statistical parameters; imperfections 

are applied to diagonal struts only and sketches are qualitative. In the 

last three drawings, each set of statistical parameters is depicted 

separately to illustrate either strut undersizing, or strut thickness 

variation or strut waviness. 

 

 

 

the mean value of strut center-axis offset, indicates the severity of strut 

waviness (Fig. 3); (iii) μr, the mean value of strut radius deviation, specifies 

the oversizing (positive value) or undersizing (negative value) of a given set 

of struts. The values in Fig. 4a are all normalized with respect to the 

nominal radius of a given set of as-designed struts. To further clarify the 

physical meaning of these distribution parameters, one example  is  given  for  

the  horizontal  strut  set  of  the  regular  octet lattice. The positive μh in Fig. 

4a(B) illustrates that, on average, the horizontal struts are fabricated 24.5% 

thicker than the as-designed value. This  confirms  that  struts  built  

horizontally  overmelt  during  the  layer-by-layer  process.  The  outcome  of 

this analysis is consistent with the observations obtained from the SEM 

micrographs in Fig. 2. The standard deviation σ h in Fig. 4a(B) represents  

the  degree  of  thickness  variation  along  horizontal  struts.  Furthermore,  μh  

in  Fig.  4a(D)  indicates that for horizontal struts the average center axis 



 

o 

o 

misalignment  with  respect  to  their  ideal  axis  is  17.2%  of  their  nominal 

radius. For the diagonal strut set,  on  the  other  hand,  the  negative  μd  

reveals  that  the  diagonal  struts  are  undersized  as  a result of the 

manufacturing process. In addition, comparative analysis of σ d  and σ h  

indicates that the cross-section shape of 

r r 

diagonal struts is more uniform along the strut axis than that for horizontal 

struts. μh is 2.2 times higher than for diagonal 

struts (μd ), implying that the initial waviness of horizontal struts is larger 

than that of diagonal struts. We can conclude that for the manufacturing 

technology (SLM) and process parameters used in this work, horizontal 

struts in the regular octet feature more severe geometric imperfections 

than those appearing in diagonal struts. To visualize the meaning of the 

statistical defect parameters here examined, Fig. 4b provides qualitative 

schematics of a planar portion of an octet cell. Here the nominal and as-

built diagonal struts are visualized with the latter, decomposed in three 

sketches, each visualizing the individual role of one defect along with its 

own statistical parameter. 

For the rhombicuboctahedron lattice, similar observations can be drawn 

from the statistical results shown in Fig. 5, where, this time, strut 

orientations are categorized into three groups: vertical set with 1512 struts, 

diagonal set with 5184 struts, and horizontal set with 5544 struts. 

 

 

 

3.2. CT tomography under in-situ compression 

 

CT tomography was used to capture damage initiation and monitor failure 

evolution of 3D lattice samples tested in-situ under compression. A 

custom-made miniature loading stage was built to allow for in-situ testing 

within a CT tomography apparatus. Illustrated in Fig. 6, the system 

consisted of a microfocus X-ray sourced from Hamamatsu, Japan, equipped 



 

with a tungsten target and was operated at 100 kV and 100 μA. The 

samples were placed in the cone beam in an X-ray transparent miniature 

loading stage, where the load was manually applied with screws. A piezo-

electric load cell was positioned directly below the base of the test rig to 

measure the axial load during compression. The entire loading rig was 

mounted on a rotation stage from Huber, Germany. The transmitted image 

was recorded by a 2240 × 2368 pixel2  flat panel detector with a pixel size 

of 50 μm, also from Hamamatsu, Japan. The distances between the three 

components were set to achieve a threefold magnification. 

Correspondingly, the effective pixel size was reduced to 17 μm. Two sets 

of lattice samples were tested under compression that increased in steps. 

At each load step, a full tomographic image was acquired to capture the 

deformation of each sample at the prescribed load level. For each 

tomography, a set of 720 projection images were taken over a rotation 

angle range of 360°. An image acquisition time of 500 ms with 4 integrated 

images per projection was applied to obtain optimal contrast. Four samples 

in each set were tested under in-situ compression, and a complementary 

set of tests was conducted on the fifth sample of each set in a 50 kN MTS 

servo-electric testing machine so as to obtain fully continuous stress-strain 

curves. A constant nominal strain rate of 0.005 s−1 was applied during the 

latter tests to comply with the ISO 14242 standard, and the extensometer 

was mounted to the conical side of the crosshead for strain measurement. 



 

 

 
 

Fig. 5.  Probability distribution of SLM geometric imperfections for 

rhombicuboctahedron lattice: (A) normalized deviation of strut radius for 

vertical struts, (B) normalized deviation of strut radius for diagonal 

struts, (C) normalized deviation of strut radius for horizontal struts, (D) 

normalized strut centeraxis offset for vertical struts, (E) normalized 

strut center-axis offset for diagonal struts, and (F) normalized strut 

center-axis offset for horizontal struts. Normalized values are obtained 

from the as-designed radius of a given set of struts. 

 

 
 

Fig. 6. Sketch of the in-situ compression tomography setup composed 

of a microfocus X-ray source (left), a miniature loading rig mounted on 

a rotation stage (middle) containing the lattice sample and a flat 



 

panel detector (right). 

 

 

3.2.1. Elastic and failure response tested under in-situ compression 

Figs. 7(A) and 8(A) show the engineering stress-strain curves for one 

octet and one rhombicuboctahedron lattice under compression. For each 

cell topology, four samples were tested under in-situ compression; given 

their failure modes and failure evolutions are comparable, we can 

reasonably assume that the failure response in Figs. 7(C) and 8(C) are 

representative of the behavior of all the lattices tested in this work. 

Selected CT images are shown at relevant points corresponding to a given 

strain rate. Both figures reveal the typical traits of the stress-strain curve 

for a cellular material: a region of elastic deformation followed by a 

plateau characterized by stress fluctuations. No densification appears on 

the curves because the tests are terminated within the plateau region. The 

Young’s modulus of the regular octet and rhombicuboctahedron samples 

are respectively 690 MPa and 1250 MPa. As per the ISO 14242 standard, 

the maximum compressive strength is determined from the first peak in 

the stress-strain curve. The maximum compressive strength of the regular 

octet sample is 4.7 MPa, while the strength of the rhombicuboctahedron 

sample reaches 9.1 MPa. As shown in the response curves of Figs. 7 and 

8, the rhombicuboctahedron lattice has a higher relative density (1.4:1) 

and has several struts aligned along the load direction, factors that 

explain the higher elastic modulus and maximum compressive strength 

(about 2:1) recorded during the experiments. 

In Figs. 7(A) and 8(A), labelled points correlate tomography images with 

given stages of deformation for the two sets of lattices. Samples within each 

set exhibit a consistent mechanism of failure, which  is  typically  distinct  to  cell  

topology. Damage evolution on slices is captured by CT tomography and 

displayed in Figs. 7(C) and 8(C). Slice locations are identified by planes in  



 

 

 

 

 
 

Fig. 7.  CT in-situ compression images for a representative regular 



 

octet sample: (A) Stress-strain curve with labelled points correlating 

with tomography images, (B) slice location, and (C) failure behavior at 

successive strain rates for each slice, each corresponding to the points 

on the stress-strain curve (A). 



 

 

 
 

Fig. 8. CT in-situ compression images for a representative 

rhombicuboctahedron sample: (A) Stress-strain curve with selected  

points  correlating  with tomography images, (B) slice location, and (C) 

failure behavior at successive strain rates for each slice, each 

corresponding to the points on the stress-strain curve (A). 

 

 

 

Figs. 7(B) and 8(B). For the regular octet lattice, localized instability initiates 

at the interior layers of the sample, thus generating an apparent inclined 

shear plane. As a result of load redistribution within neighboring layers, a 

second peak appears on the stress-strain curve. Next, layers that are 

close to the shear band start to fail sequentially, with subsequent drops in 



 

stress level. As observed in Fig. 7(C) at a later stage of deformation, 

failure evolves with the propagation of an inclined shear plane that 

generates a shear fracture. The sample then splits into three portions (Fig. 

9(A)), forming a 54.7° angle between the normal direction of the shear 

plane and the loading direction. 

For the rhombicuboctahedron lattice, on the other hand, we observe 

another failure mechanism. Plastic deformation, caused by diagonal strut 

bending, appears first at the top of the sample (Fig. 8(C) - b), a 

phenomenon that sets the start of the non-linear post elastic regime. 

Immediately after the first peak, the stress suddenly drops due to local 

instability occurring in the vertical struts of the cells close to the top plate 

(Fig. 8(C) - c). Subsequently, damage propagates into neighboring layers 

through local buckling of struts aligned with the load direction, thereby 

resulting in a layer-by-layer mechanism of crushing as shown in Fig. 8(C) - 

d, e, and f. This sequence of events visualized by subsequent peaks in the 

stress-strain curve repeats for each adjacent layer and continues until all 

layers have collapsed. 

 

4. Structural analysis of lattices via computational mechanics 

 
Closed-form expressions that can predict the mechanical properties of 

lattice materials are available  in  literature (Vigliotti et al., 2014; Vigliotti and 

Pasini, 2012; Deshpande et al., 2001; Hedayati et al., 2016). Truss theory 

or beam theory can be readily used to predict the mechanical properties 

of as-designed samples with uniform strut thickness. They fall short, 

however, once they are applied to as-manufactured samples deviating 

from their nominal geometry. Geometric imperfections have an impact not 



 

 

 
 

Fig. 9.  Failed samples: (A) regular octet, and (B) 

rhombicuboctahedron. 

 

 

 

captured by theoretical predictions of defect-free models, i.e. as-designed. 

In this section, we use both a homogenized scheme and statistics-based 

simulations of full-size 3D lattice samples to investigate the role that SLM-

induced defects play on their elastic and failure response. A 

homogenization scheme is applied to the as-reconstructed RVEs to predict 

the mechanical properties in the linear elastic regime; these RVEs are 

reconstructed from CT images and contains all the geometric defects of 

the samples. For the non-linear behavior, on the other hand, statistics-

based simulations of full-size lattices are presented to predict failure 

initiation and failure modes; these full-size lattices contain only the three 

sets of defects described in Section 3.1. 

 

4.1. Linear elasticity of as-designed and as-reconstructed lattices 

 

4.1.1. Unit cell approach via asymptotic homogenization 

We examine fabricated samples, and resort to asymptotic homogenization 

(AH), implemented through ABAQUS-Python scripts, to calculate their 

effective stiffness matrices. The mathematical theory of AH has been 



 

shown to provide in the elastic regime results that are consistent with 

those obtained from experiments (Hassani and Hinton, 1998; Hassani and 

Hinton, 1998). Furthermore, AH theory combined with numerical analysis, 

has been extensively used as an effective tool to calculate the elastic 

properties of cellular materials (Arabnejad Khanoki and Pasini, 2013; 

Arabnejad and Pasini, 2013; El Moumen et al., 2015; Cheng et al., 2013). 

Appendix A details AH theory and the computational scheme developed in 

this work. 

To study the degradation of mechanical properties in as-built lattices, two 

sets of representative volume elements (RVE) are developed. One set is 

the as-designed geometry (Fig. 10(A) and (B)) with relative density equal 

to its respective re- constructed counterpart. The other set (Fig. 10(C) and 

(D)) is generated from the reconstructed geometry, which includes 

fabrication imperfections and is obtained from the CT scans of the 

undeformed lattices through ITK-SNAP, from which the binary CT images 

are in turn segmented with triangular facet elements. The resulting 

triangular mesh models are volume meshed with tetrahedral elements. 

The RVEs are then utilized to extract the homogenized stiffness matrix in 

the coordinate system shown in Fig. 10. The Young’s modulus in any 

arbitrary directions can then be obtained by the rotation of the coordinate 

system, as described in Appendix B. 

 

4.1.2. Elastic moduli of as-designed and as-manufactured lattices 

Fig. 11 plots the homogenized Young’s modulus in polar coordinates 

and shows the elastic anisotropy of each set of metallic lattices for both 

as-designed and as-manufactured RVEs. The results are normalized with 

respect to the maximum as-designed values within the visualized plane. 

The Young’s modulus along the Z direction obtained from the compression 

test (Section 3.2.1), is also visualized in Fig. 11(B) and (D). The 

homogenized value obtained from the reconstructed RVE is in good 

agreement (5.8%) with its experimental counterpart, which in contrast is 

much lower (51.6%) than that given by the as-designed RVE. Fig. 15 

reports the absolute values predicted from the as-designed and as-



 

manufactured RVEs. 

As shown in Fig. 11(A) and (B), the regular octet is nearly-isotropic with 

maximum value of the Young’s modulus at 45° along the principal axes 

(Deshpande et al., 2001). The rhombicuboctahedron, on the other hand, is 

orthotropic (Fig. 11(C) and (D)) with higher values of the Young’s modulus 

along the three principal axes. Comparing the polar plots of the as- 

manufactured model and the as-designed model allows assessing the 

sensitivity of the Young’s modulus to geometric defects. Fig. 11(A) and (B) 

show an omnidirectional deterioration for the regular octet lattice, while for 

the rhombicuboctahedron the decrease is mainly along the principal 

directions (Fig. 11(C) and (D)). More importantly, for both cell topologies, 

the results along the polar directions show a non-uniform knockdown of 

mechanical properties. This is caused by the dependence of strut 

thickness on the angle a strut forms with the building plane, as shown in 

Fig. 2, where horizontal struts located within the building plane (XY) get 

overmelted. As a result, the Young’s modulus is most penalized along the 

z direction, which in turn leads to a more pronounced heterogeneity in the Z 

direction, as shown in Fig. 11(B) and (D). For the regular octet, the Young’s 

modulus for the as-manufactured RVE in the X and Y directions are 84% and 

87% of the nominal values, respectively, whereas in the Z direction  (building  

direction)  that  value  is  70%  of  the  nominal  value.  On  the  other hand, the 

Young’s modulus of the as-manufactured rhombicuboctahedron in the X and 

Y directions are 83% and 82% of the nominal values, respectively, whereas 

in the Z direction (building direction) that value is 71% of the nominal value. 

 





 
 

 
 

Fig. 10. Representative volume elements (RVE): (A) as-designed RVE 

for the regular octet; (B) as-designed RVE for the rhombicuboctahedron; 

(C) recon- structed RVE for the as-manufactured regular octet, and (D) 

reconstructed RVE for the as-manufactured rhombicuboctahedron. 

 

 

4.2. Failure response of lattice models with statistically distributed defects 

 

4.2.1. Description of Finite Element model and material properties 

Finite element (FE) models (ABAQUS) of two sets of lattices are created 

with as-designed geometry (Fig. 12(A) and (C)). Timoshenko beam 

elements are used to model the struts (B31 in ABAQUS). The slenderness 

ratio for the regular octet is approximately 15:1, and is roughly 8:1 for the 

diagonal struts of the rhombicuboctahedron, and 6:1 for its vertical and 

horizontal struts. The crosshead of the compression apparatus is 

simulated with a discrete rigid shell and discretized by rigid bilinear 

quadrilateral elements (R3D4 in ABAQUS). Rigid and frictionless properties 

are defined for the edge-to-surface contact between the lattice model and 



 
the crosshead as well as for the edge-to-edge contact between the struts 

themselves. A displacement load, defined by a smooth step amplitude, is 

applied to the reference point of the rigid crosshead. Rigid body 

movements are removed by constraining the symmetry axis on the top and 

bottom planes of the FE models. To track damage evolution in the post-

peak regime, an explicit solution strategy is adopted in the simulations. 

The simulations are performed on the Guillimin supercomputer owned by 

McGill University in partnership with Calcul Québec and Compute Canada. 

To attain the relevant material properties for the numerical models, we 

first conducted electron backscatter diffraction (EBSD) on a 50 × 50 μm 

area of selected lattice samples fabricated via SLM. EBSD results revealed 

that the grain size is at least one order of magnitude smaller than the 

diameter of one strut and no preferred crystallographic orientations are 

found. 

For this reason, material heterogeneity is not taken into account in the 

numerical analysis. In addition, a parametric study undertaken to identify 

the appropriate hardening law to adopt in the numerical models has 

shown that for the octet and rhombicuboctahedron lattices here examined 

the role of strain hardening on the shape of their stress-strain curve as 

well as on their failure mechanism is not significant. The main difference 

between a linear elastic perfectly-plastic model and one with moderate 

strain hardening is on the amplitude of the peak and plateau stresses; and 

this difference is below 10%. This result indicates that the failure 

mechanism and collapse pattern do not change for different strain 

hardening exponents. Hence in this work, to provide a consistent mean of 

comparison among all the numerical models, we assume AlSi10Mg to be 

linear elastic, perfectly-plastic with constitutive relationship described by 

(von Mises) J2 flow theory. The bulk properties of AlSi10Mg are then 

obtained from a set of tests of dog-bone samples fabricated with laser 

processing and heat treatment parameters identical to those used to build 



 
 

 
 

Fig. 11.  Polar plots illustrating the variation of the normalized Young’s 

modulus for the as-designed, and CT reconstructed representative 

volume elements: 

(A) XY plane of regular octet, (B) XZ plane of regular octet, (C) XY plane 

of rhombicuboctahedron, and (D) XZ plane of rhombicuboctahedron. 

Experimental measures visualized along the Z direction for regular 

octet and rhombicuboctahedron are respectively 51.6% and 42.0% 

lower than those predicted with their as-designed RVEs. If the as-built 

RVE is used, the predictions are respectively 5.1% and 5.8% higher than 

the experimental values. 

 

 

the lattices. Hence, the Hall-Petch strengthening that can result from fine 



 
scale sub grains visible from EBSD images are incorporated in the 

measured values of the mechanical properties, which are: Young’s 

modulus E = 67 GPa, Poisson’s ratio μ = 0.33, density ρ = 2680 Kg/m3, and 

yield strength σy = 230 MPa, which is approximately the average of the 

yield strength measured along the building direction (215 MPa) and that 

measured perpendicular to the build direction (236 MPa). 

 

4.2.2. Scheme for incorporating geometric imperfections into the computational models 

The distributions of geometric imperfections shown in Figs. 4 and 5 do 

not resemble the shape of a standard statistical distribution. For this 

reason, they are fitted into continuous probability density functions (PDF) 

by a Kernel density estimation, which is a generalized method that can 

estimate the probability density directly from the data without assuming a 

particular form for the underlying distribution. These probability 

distributions are used as input to build multiple geometric models, each 

with statistical values of defects sampled at random. A Python-ABAQUS 

script is used to introduce the distributed sets of geometric defects into the 

numerical models. Each strut is divided into four beam elements. The strut 

radius of each element is assigned individually at its respective position of 

the sample. The value of the strut radius is generated by the corresponding 

Kernel density function of the deviation for the strut radius. Nodes in each 

beam element are offset by vectors perpendicular to the longitudinal axis 

of the beam. The norm of each vector, which describes the amplitude of 

the center axis misalignment, is determined by the corresponding Kernel 

density function of the strut center-axis offset. Fig. 12(B) and (D) visualize 

the process for two cells of the FE models with distributed geometric 

imperfections. Non- uniform radius and strut center axis misalignment are 

visualized with beam elements of dissimilar color and orientation. For 

each topology, at least15 imperfect-geometry numerical models are 

generated with relative density identical to that of the tested samples and 

the resulting stress-strain curve of each iteration is recorded to obtain a 

probability distribution of possible responses. 



 
 

 
 

Fig. 12. Finite element models: (A) and (C) numerical models with as-

designed geometry, (B) and (D) numerical models with distributed 

geometric imperfections, showing magnified radius variations for each 

strut, where horizontal struts appear thicker than vertical and diagonal 

struts, and center axis misalignment The imperfect models feature 

statistical parameters sampled from the input probability distributions 

of the built samples, hence their defect distributions are statistically 

similar. (For interpretation of the references to color in the text, the 

reader is referred to the web version of this article.) 

 

 

 

4.2.3. Comparison between predicted and experimentally obtained response 

Figs. 13(A) and 14(A) show a comparison between three stress-strain 

curves, for each of the lattices here studied. The first two curves represent 

responses from (i) predictions of as-designed models (dashed line – top), 

and (ii) measurements from experiments (black – bottom). Between them 



 
lies the red curve, which represents the response of one representative 

lattice model with imperfection distributions statistically similar to the built 

samples (Fig 12(B) and (D)). A shaded domain is also included within 

which fall the results of all 15 imperfect-geometry numerical analyses. This 

region describes the probability distribution of possible mechanical 

responses. All the curves of the envelope region overlap in the linear 

elastic zone, because their geometric imperfections have identical 

probability density distribution. In the plateau region, on the other hand, 

damage localizes at specific zones of the lattices; hence the onset of 

failure and its evolution become strongly dependent on the explicit set of 

imperfections that are introduced in each simulation. 

By comparing the characteristic stress-strain curve in red with the others, 

we generally observe a good agreement in both the elastic and plateau 

regime. There are differences to emphasize between the regular octet and 

the rhombicuboctahedron. For the regular octet, the curve of the as-

designed model follows a shear failure mechanism that is also observed 

experimentally; hence their general trends agree qualitatively. While there is 

good qualitative agreement between the as-designed and experimental 

curves, quantitatively there is a significant difference between stress 

values. This difference can be attributed to the magnitude and distribution 

of defects. For the rhombicuboctahedron lattice, on the other hand, the as-

designed model cannot precisely capture the failure mechanism observed 

in the experiments (Fig. 14(C)). As shown in Fig. 14(D), damage in the as-

designed lattice localizes in the diagonal struts of the square cupolae, i.e. 

the upper and lower part of each cell. The damage then evolves 

sequentially to the neighboring layers. Each peak in the stress-strain curve 

of an as-designed FE model represents the failure of the square cupolae 

containing diagonal struts in rhombicuboctahedron cells. At low levels of 

strain (lower than 16%), the vertical struts do not experience instability 

because they are free of imperfections. 

The failure modes from the simulations of imperfect-geometry models 

parallel those found through in-situ compression (Figs. 7 and 8). To 

compare the failure stages, the insets B and C in Figs. 13 and 14 are given 



 
to illustrate the overall lattice failure for one representative simulation (red 

curves in Fig. 13(A) and 14(A)) complemented with the damage evolution 

in the first slice of the FE model. For the regular octet, localized buckling 

of struts occurs near the peak load and leads to a shear fracture band. 

For the rhombicuboctahedron lattice, the sample fails with a layer-by-layer 

sequence, starting with the bending of diagonal struts and followed by 

local instability of imperfect vertical struts. Manufacturing imperfections in 

vertical struts trigger buckling, which in turn crushes the next layer. This 

mechanism is responsible for a stress drop in the stress-strain curve; it 

starts from layers close to the top and bottom plate, and sequentially 

permeates to all the others. 



 
 

 
 

Fig. 13. Numerical results for the regular octet lattice: (A) stress-strain 

curve from FE models compared to that obtained via experiments (black 

line), (B) Failure mode from FE model with distributed geometric 

imperfections, and (C) damage evolution at given strains observed in the 

first slice of the FE model shown in (B). 

 

 

 

 

To provide a quantitative assessment of the impact of manufacturing 

defects, Fig. 15 summarizes the values of the Young’s modulus and 

compressive strength predicted by the numerical models along with the 

relative errors normalized with respect to the experimental measures, here 



 
taken as baseline. As can be seen in Fig. 15, the average results predicted 

by the imperfect-geometry models are much closer to the experimental 

data than those obtained from defect-free models. The Young’s modulus 

and compressive strength predicted for the imperfect-geometry octet are 

4.0% and 12.7% higher than the experimental data. These values 

predicted by the as-designed models are 42.0% and 47.2% higher than the 

experimental data. For the rhombicuboctahedron lattice, the predicted 

errors are 8.3% and 5.5% for the imperfect-geometry model, and 23.6% 

and 19.8% for the as-designed model. Comparisons are also made 

between the predicted values obtained from asymptotic homogenization 

(elastic properties only) and those from full-size FE models. The Young’s 

modulus predicted by the imperfect models is close to that of the 

reconstructed RVE. This indicates that the geometric characteristics 

extracted from the CT reconstructed models are appropriately introduced 

into the numerical analysis. 

We emphasize that the focus of this work is on three main sources of 

defects only, although other geometric mismatches contribute to alter the 

mechanical response of fabricated lattices. This might explain why the 

results from our simulations are slightly higher than the experimental ones. 

SEM micrographs in Fig. 2 reveal the presence of numerous parasitic par- 

ticles bonded to most of the strut surfaces. Agglomeration of surface beads 

in SLM parts is often attributed to the balling phenomenon or partial 

melting of raw particles at the boundary of solid struts (Yan et al., 2012). 

Since surface beads do con- tribute to mass, but barely carry any load, the 

assessment of their influence on the mechanical properties is left to future 

work. In addition, parasitic masses at the joints also contribute to alter the 

mechanical behavior (Gümrük and Mines, 2013). In fact, parasitic mass is 

typically observed to agglomerate at the joints of metallic lattices during 

additive manufacturing (Bagheri et al., 2016), thereby leading to changes in 

strut geometry from an ideal cylinder to an hourglass shape. Deviations in 

joint morphology play a critical role in the initiation of local instability and 

thus require future investigation. 



 
 

 
 

Fig. 14. Numerical results for the rhombicuboctahedron lattice: (A) 

stress-strain curve from FE models compared to that obtained via 

experiments (black line); (B) failure mode from FE model with 

distributed geometric imperfections; (C) damage evolution observed in 

the first slice of the imperfect FE model shown in (B); and (D) damage 

evolution at given strains obtained from the first slice of the defect-free 



 
model. 

 

 

 

 

5. Parameter study about the role of imperfections on mechanical properties 
and failure mechanisms 

 

Section 4.2 has shown that full-size simulations with statistically 

distributed geometric imperfections can parallel the failure mechanisms 

observed during experiments with results within 10% accuracy. In this 

section, we investigate the sensitivity of mechanical properties (elastic 

stiffness and compressive strength) and failure mechanisms to the severity 

of the three defects examined in Section 3. We first recall the statistical 

distribution parameters for these three defects (Figs. 3 and 4B): (1) σ r, the 

standard deviation of the strut radius deviation, represents the severity of 

strut thickness variation; (2) μo, the mean value of the strut center-axis 

offset, refers to the degree of strut waviness; (3) μr, the mean value of the 

strut radius deviation, describes the overall strut oversizing or undersizing in 

a given set of struts. Their individual role is examined through two 

parametric studies, where the relative density is kept constant and equal to 

the values of the as-built lattices. In the first study (Section 5.1), μr is 

assumed equal to that of the as-built lattices, and the goal is to examine 

the impact of varying both σ r and μo. In the second one (Section 5.2), σ r 

and μo are prescribed identical to those of the as-built lattices, and we vary 

μr to investigate the effect of oversized and undersized struts. 

 



 
 

 
 

Fig. 15. Comparison of Young’s modulus (A) and compressive strength 

(B) obtained via experiments and computations. % errors are given with 

respect to the baseline experimental data (grey). 

 

 

 

5.1. Cross-section variation and strut waviness 

 

Figs. 16 and 17 show the sensitivity of Young’s modulus and compressive 

strength to both σ r, strut thickness variation, and μo, strut waviness. On the 

axes are the properties of the octet and rhombicuboctahedron lattice 

normalized with respect to the values, Ez0 and σz0 , of the defect-free 

models. The relative density of all numerical models is identical to that of their 

as-built samples, namely 10.6% for the octet and 14.9% for the 

rhombicuboctahedron. The values σ r and μo are normalized with respect to 

those that correspond to the real imperfections of the fabricated  samples,  

which  are  μoR  and  σrR ,  and visualized as the coordinates of point R. 

Values of σ r and μo lower (or higher) than 100% would infer a better (or 

worse) manufacturing  accuracy  offered  by  another  set  of  manufacturing  

parameters  and/or  another  additive  process. 

At relevant points in Figs. 16 and 17, four imperfect units (a to d) are 

shown. (a) represents the nominal unit cell (as-designed) with no thickness 

variation and no strut waviness; (b) visualizes the effect of amplified 



 
thickness variation only, and (c) that of strut waviness exclusively; (d) shows 

both amplified  imperfections.  The  color  legend  reveals  the  relation 

between the  knockdown  factor  in  mechanical  properties  from  the  nominal  

values  of  the  defect-free  models,  Ez0  and  σz0 , and the amplitude of the 

imperfections in a lattice. For the octet lattice, if both imperfections are over-

amplified by 250%, the Young’s modulus is predicted to drop to 50% of the 

nominal value, and the predicted compressive strength to 40% of the 

nominal value. In addition for the elastic modulus, the contours show that 

strut waviness has a larger impact than strut thickness variation, and the 

opposite holds for compressive strength. For the rhombicuboctahedron 

lattice, on the other hand, Fig. 17(A) and (B) show similar knockdown 

trends with amplitudes smaller than those observed for the octet. This can 

be attributed to two factors. First, in the octet, the magnitude of 

imperfections in the fabricated samples (see statistical data in Fig. 4) is 

larger than that of the fabricated rhombicuboctahedron samples (Fig. 5). 

Second, in the rhombicuboctahedron lattice, the slenderness ratio (about 

6:1) of vertical struts provides better buckling resistance compared to the 

octet sample, whose struts are more slender (15:1). For the elastic modulus 

of the sample geometries here examined, we can infer that the 

rhombicuboctahedron is not as sensitive to defects as the octet. For 

compressive strength, strut thickness variation occurring in both cell 

topologies has a larger impact than waviness. 

 

5.2. Strut oversizing and undersizing 

 

It is well recognized that building direction affects strut thickness. While 

struts in the building plane are generally over- sized as opposed to those 

oriented in other directions, design strategies that can compensate for 

this phenomenon have been proposed (Bagheri et al., 2016). However, the 

sensitivity of failure mechanisms and mechanical properties to oversized 

and undersized struts has not been elucidated yet. Here we examine the 

specific role of μr (mean value of strut radius deviation) with the goal of 



 
assessing strut oversizing or undersizing between different sets of struts in 

a lattice (Fig. 4B). The process to create the numerical models ensures 

that strut oversizing compensates strut undersizing and no change in 

relative density between models is imposed. For example in an octet, an 

increase of the average radius of the horizontal struts is compensated by 

a reduction of the average radius of the diagonal struts. In addition 

besides relative density, also strut waviness and thickness variation are 

kept constant and equal to those of the as-built lattices. These 

assumptions allow this section to focus on strut oversizing or undersizing 

only. 

 



 
 

 

 

 

 
 

Fig. 16. Contour plots for normalized Young’s modulus (A) and 

normalized compressive strength (B) for the regular octet lattice at 

relative density of 10.6%, which is that of a representative as-built 



 
sample. The x-axis and y-axis represent the severity of strut waviness 

and the severity of strut thickness variation. Point a is the nominal 

(defect-free) model with properties Ez0 and σz0 used to determine the 

knockdown contours of the legend. Point R represents the as-built 

sample with its defect parameters, μoR  and σrR , used as baseline for 

the normalization of the defect parameters. Note that the values of μoR  

and σrR , are specific to each set of built struts (Fig. 4A); for the 

diagonal set, μoR and σrR , are respectively 7.5% and 7.6%, and for the 

horizontal set, they are 17.2% and 15.8%. 



 
 

 

 

 
 

Fig.  17.   Contour plots for normalized Young’s modulus (A) and 

normalized compressive strength (B) for the rhombicuboctahedron lattice 

at relative density of 14.9%, which is that of a representative as-built 

sample. The x-axis and y-axis represent the severity of strut waviness and 



 
the severity of strut thickness variation. Point a is the  nominal (defect-

free) model with properties Ez0  and σz0   used to determine the 

knockdown contours of the  legend. Point R represents the as-built sample 

with its defect parameters, μoR   and σrR , used as baseline for the 

normalization of the defect parameters. Note that the values of μoR   and 

σrR   are specific to each set of built struts (Fig. 5); for the vertical set, μoR   

and σrR , are respectively 1.8% and 2.8%, and for the horizontal set, μoR 

and σrR , are 4.8% and 6.2%, and for the diagonal set, they are 2.1 % and 

3.9%. 

 

 
 

Fig. 18.  Normalized Young’s modulus and compressive strength versus 



 
the ratio between the average radius of horizontal struts and the average 

radius of diagonal struts in the regular octet lattice (r̃ h /r̃ d ). Ez and σz0 are 

the nominal values predicted by the model with as-designed ratio r̃ h 

/r̃ d = 1 and strut waviness and thickness variation equal to those of 

the as-built lattices. Sketches of failure surfaces included at the top of 

the figure are derived from detailed computations of full-size lattices. 

 

 

Fig. 18 shows the normalized Young’s modulus and compressive strength 

for the regular octet lattice plotted against r̃ h/r̃ d , the ratio of the average 

radius of the horizontal struts to the average radius of the diagonal struts. 

We recall that in an ideal lattice, r̃ h/r̃ d = 1 because all struts have equal 

thickness. In built samples, however, the material deposition is 

heterogeneously distributed with thicker struts appearing in the building 

plane, and thinner struts appearing parallel to the building direction. Fig. 18 

shows that if r̃ h/r̃ d is larger than 1, the horizontal struts in the model are on 

average overmelted and thicker than the as-designed struts, while the 

diagonal struts are undersized. r̃ h/r̃ d below 1, on the other hand, means 

oversized diagonals struts and undersized horizontal struts in the model. 

Likewise for the rhombicuboctahedron lattice, Fig. 19 shows the 

normalized Young’s modulus and compressive strength, where this time 

the ratio is between the mean radius of the vertical and diagonal struts. For 

the rhombicuboctahedron the as-designed r̃ V/r̃ d is 1.4. The value is greater 

than that of the octet because the vertical struts in the 

rhombicuboctahedron here studied are shared between two cells (Fig. 1c) 

and have twice the cross-section area of the diagonal struts. We 

emphasize that in both Figs. 18 and 19, the properties are normalized 

with respect to the values predicted by the as-designed models which 

have r̃ h/r̃ d = 1 for the octet and r̃ V/r̃ d = 1.4 for the rhombicuboctahedron, 

and strut waviness and thickness variation are identical to those of the as-

built lattices. 
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Fig.  19.  Normalized Young’s modulus and compressive strength versus 

the ratio between the average radius of vertical struts and the average 

radius of diagonal struts in the rhombicuboctahedron lattice (r̃ v /r̃ d ). Ez0 

and σz0 are the nominal values predicted by the model with as-

designed ratio r̃ v /r̃ d = 1.4  and strut waviness and thickness variation equal 

to those of the as-built lattices r̃ v /r̃ d = 1.4 for the rhombicuboctahedron, and 

strut waviness and thickness variation are identical to those of the as-built 

lattices. Sketches of failure surfaces included at the top of the figure are 

derived from detailed computations of full-size lattices. Red failure surfaces 
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represent failure mode initiated in buckled vertical struts, while blue failure 

planes indicate failure mode triggered by diagonal struts in the distal parts of 

the rhombicuboctahedron. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 



 
 

 

Fig. 18 shows that for the octet lattice under uniaxial compression the 

normalized Young’s modulus and compressive strength increase to reach 

a maximum before declining. As shown by the six sketches with failure 

surfaces, the failure mode for the regular octet evolves with r̃ h/r̃ d . When 

the ratio is lower than about 1.4, failure starts to gradually appear as a 

diagonal shear band. As r̃ h/r̃ d increases, the failure mode gradually evolves 

from a diagonal shear to horizontal crushing, which occurs in the layers 

normal to the applied compression. These observations parallel the 

experimental results, where the fabricated regular octet sample with r̃ h/r̃ d = 

1.38 fails by shear. On the other hand, when r̃ h/r̃ d is above 1.8, horizontal 

collapse increasingly dominates until the ratio reaches 2.5, at which the 

lattice fails by pure crushing. 

A similar plot is shown in Fig. 19 for the rhombicuboctahedron lattice. 

Here the normalized Young’s modulus and compressive strength first 

increase and then decrease with respect to r̃ v /r̃ d. A transition in failure 

mode is observed also in this case. For r̃ v /r̃ d below 1.2, failure is mainly 

controlled by localized buckling of vertical struts. As r̃ v /r̃ d increases, vertical 

struts thicken (as shown in the sketches below the x-axis), thereby leading 

the square cupolae, i.e. the distal polyhedra of the cells, to collapse first. 

This phenomenon is triggered by the failure of the diagonal struts in the 

distal parts of the cells, a behavior consistent with that observed in the 

experiments and simulations described in Section 4.2. The fabricated rhom- 

bicuboctahedron sample with r̃ v /r̃ d = 1.1 crushes layer-by-layer due to 

localized buckling of vertical struts, whereas for the as-designed 

rhombicuboctahedron with r̃ v /r̃ d = 1.4, collapse starts first at the square 

cupolae containing diagonal struts. 

The results presented in this section emphasize the individual role of 

overall strut oversizing and undersizing on the fail- ure mechanism of 

metallic lattices built additively. Further work is required to study the 



 

combined effect of simultaneously changing all the three parameters here 

examined. One relevant observation gathered from the study of this section 

pertains to the transition mode that certain values of strut thickness 

variation can trigger. Whereas for as-designed lattices, the failure 

mechanisms are well-documented, namely diagonal shear failure for the 

regular octet lattice and horizontal collapse for the rhombicuboctahedron, 

the results of this section indicate that other failure modes are possible, 

and the magnitude and distribution of defects are the controlling factors. 

For the regular octet, for example, values of r̃ h/r̃ d above 1.8, which 

indicates horizontal struts on average 1.8 times thicker than diagonal 

ones, can represent manufacturing conditions that lead to exclusive 

crushing or a hybrid failure mode combining shear and crushing. For the 

rhombicuboctahedron, on the other hand, for values of r̃ v /r̃ d above 1.2 

describing vertical struts 1.2 times thicker than diagonal ones, the failure 

mechanism evolves from local buckling of vertical struts to crushing of distal 

polyhedra. 

While this investigation has focused on the role of three types of 

defects for given relative density, further work is required to evaluate how 

sensitive is the stress strain curve to variations in relative density and to 

other sources of defects, such as the appearance of parasitic masses at 

the joints. 

 

 

 

6. Conclusions 

 
Geometric defects of metallic lattices fabricated with additive processes 

might have a significant impact on their mechanical properties, damage 

initiation, and failure mechanisms. Through a combined approach of 

experiments and numerical simulations, we have examined the 

compression response of two sets of SLM metallic lattices, the regular octet 

and the rhombicuboctahedron. CT tomography under in-situ compression 

has been first used to extract and statistically quantify the location, 



 
morphology and distribution of three types of defects (strut thickness 

variation, strut waviness, and strut oversizing/undersizing). Statistical data 

are then used in numerical models to elucidate the lattice sensitivity of 

elastic and failure response to defect amplitudes. The insights gained from 

the imperfect lattice models here developed can be summarized as 

follows. 

 

(1) In the linear elastic regime, the homogenized elastic properties of the as-

manufactured lattices show a visible deterioration which is spatially 

uneven. The Young’s modulus is typically most penalized along the 

building direction due to the overmelting of the horizontal struts. In 

particular, for the regular octet, the Young’s modulus for the reconstructed 

RVE in the X and Y direction is respectively 84% and 87% of the nominal 

values, whereas in the Z direction that value is 70%. For the 

rhombicuboctahedron, the Young’s modulus for the reconstructed RVE in 

the X and Y direction is respectively 83% and 82% of the nominal values, 

whereas in the Z direction that value is 71%. 

(2) In the non-linear regime, full-size numerical models with imperfect 

geometry accounting for distributed imperfections can render 

experimentally obtained stress-strain responses within about 10% 

accuracy, as opposed to models with as-designed geometry. The 

predicted Young’s modulus and compressive strength for the imperfect 

regular octet lattice are 4.0% and 12.7% higher than their respective 

experimental values, while 8.3% and 5.5% for the imperfect 

rhombicuboctahedron lattice. 

(3) The parametric study on the sensitivity of imperfect 3D lattice models to 

geometric defects has shown that strut waviness and strut thickness 

variation can largely deteriorate the elastic modulus and compressive 

strength of the regular octet lattice. For example, when both 

imperfections are over-amplified by 250%, the Young’s modulus is 

predicted to drop to 50% of the nominal value, and the predicted 

compressive strength to 40% of the nominal value. Furthermore, the 

magnitude of strut oversizing/undersizing in 3D lattices can control the 



 

type of failure mechanism and the gradual transition from one mode to 

another. In particular for the regular octet, a diagonal shear plane of 

failure evolves into horizontal crushing when horizontal struts are 1.8 

times thicker than diagonal struts. On the other hand for the rhom- 

bicuboctahedron, for values of r̃ v/r̃ d lower than 1.2, the failure mechanism 

is controlled by local buckling of the vertical struts and, for higher values, 

by crushing of the distal polyhedra of the cells. 
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