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Abstract—Identifying the loss mechanisms of niobium cavities
enables an accurate determination of applications for future
accelerator projects and points to research topics required to
mitigate current limitations. For several cavities an increasing
surface resistance above a threshold field, saturating at higher
field has been observed. Measurements on samples give evidence
that this effect is caused by the surface electric field. The
measured temperature and frequency dependence is consistent
with a model that accounts for these losses by interface tunnel
exchange between localized states in dielectric oxides and the
adjacent superconductor.
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measurements, Superconducting films, Superconducting cavity
resonators, Superconducting accelerator cavities, Niobium, Sur-
face impedance

I. I NTRODUCTION

Superconducting cavities made of niobium are nowadays
routinely reaching surface resistancesRS as low as a few
nΩ at surface magnetic fields above 100 mT corresponding
to peak electric fields of over 50 MV/m, some performing
close to the theoretical limit of the material [1]. Nevertheless
many open questions concerning the field dependence ofRS

exist. Especially in the medium field region between a few
and about 100 mT differently prepared cavities show different
field dependencies. Some cavities exhibit an increasing, some
a decreasing surface resistance. Especially cavities prepared by
coating a micrometer thick niobium film on a copper substrate
exhibit a strong increase ofRS with field. This paper focuses
on cavities which show an increasingRS with field.

II. ELECTRICAL LOSSES FROM INTERFACE TUNNEL

EXCHANGE

Several authors have pointed out that there are several loss
mechanisms involved which need to be addressed individually
to obtain a better understanding and possibly mitigate their
impact for specific cavities. Here we present a loss mecha-
nism of electrical origin, already observed, though not further
quantified, in prototypes of superconducting bulk niobium
cavities for the Large Electron Positron Collider at CERN
[2]. These losses yield anRS increasing above a threshold
field saturating at higher field [3] and can be explained by the
interface tunnel exchange model (ITE) [4]. ITE assumes that
electrons are exchanged between states in the superconducting
Nb and localized states in adjacent dielectric oxides (Nb2O5
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Fig. 1. Current flow (red arrows) and voltage gain (black arrows) for (a)
a localized state on top of the niobium-oxide layer and (b) close to the
niobium/niobium-oxide interface (x - distance from niobium/niobium-oxide
interface,∆ - energy gap of the sc niobium,EF - Fermi level, ,EV - Valence
band of the niobium oxide,EC - conduction band of niobium oxide, d -
thickness of niobium oxide layer). The RF field E lifts the occupied localized
states aboveEF+∆, from where they tunnel back into the sc niobium and
dissipate the energy gained.

and/or NbO2). This exchange is caused by the surface electric
field E penetrating only the oxide and not the superconductor,
allowing for an exchange of electrons with gained energy
(i.e. a current) by quantum mechanical tunneling between the
niobium and its oxide (Fig. 1). Here we follow Halbritter [4]
and take it as given that (i) the RF period is much shorter
compared to the relaxation time of the occupied states in the
oxide, (ii) the tunneling process is instantaneous, and (iii)
the oxide thickness is much shorter than the range of the
tunneling electrons. When the RF electric field is negative, the
empty localized states are filled with electrons by quantum
mechanical tunneling. The rising RF electric field lifts their
potential energy until it exceedsEF+∆ for a positive electric
surface field. This threshold energy is reached first for the
localized states far outside on top of the niobium-oxide, for
which the voltage gain is maximum. The corresponding sur-
face electric field is the threshold fieldE0. From that moment
on the electrons are tunneling back into the sc niobium, upon
which they dissipate the energy gained. As the electrons relax
and dissipate once per RF periodRE

S depends linearly on the
RF frequencyf . Within the superconducting energy gap 2∆
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Fig. 2. Surface resistance of an elliptical 1300 MHz bulk niobium cavity at
2 K. The lines show fits to the ITE model (Eq.4. Data taken by Romanenko
et al. [5]

there are no electronic states available for a current to flow.
Therefore there exists a threshold electric fieldE0, depending
on the thickness of the oxided and on∆, below which there
is no current and hence no RF loss. In a quantitative analysis,
Halbritter calculated the surface resistance for ITE losses as
[4]:

RE
S = RE

S,sat

[

e−b/E − e−b/E0
]

, E ≥ E0. (1)

The parametersRE
S,sat, b andE0 are defined by

b =
2κ∆εr
β∗e

, RE
S,sat=

2πfµ0

(2κ)2y
/f [GHz], E0 =

∆εr
edβ∗

(2)

with

κ =
√

2m (Ec − EF)/h̄, y−1 =
〈xnT〉 e

2

ε0εr
. (3)

Here RE
S,sat is normalized to 1 GHz to facilitate comparison

of data sets obtained at different frequencies. The meaning
of the physical parameters is the following:Ec and EF are
the energies of the conduction band and the Fermi energy,
respectively;〈xnT〉 is the averaged product of the density of
trapped electron statesnT and the distance of the localized
states from the niobium/niobium-oxide interfacex, d is the
thickness of the oxide;εr is the relative dielectric constant;
β∗ is the geometric field enhancement factor of the metal
due to surface roughness;m, e, ε0, µ0 and h̄ are the usual
physical constants, such as the electron mass and electric
charge, vacuum permittivity, vacuum permeability and Planck
constant, in this order. The energy change in the oxideExβ0/εr

is in the order of a few meV enough to overcome the energy
barrier.

III. E XPERIMENTAL RESULTS

A. Tesla type bulk niobium cavity

Figure 2 showsRS as a function of the peak electric field
Epk at 2 K of a 1.3 GHz elliptical TESLA shaped [6] cavity.
It was manufactured of fine grain bulk niobium (grain size

of about 50µm). The first measurement was performed after
chemical polishing (BCP). Afterwords the cavity was in situ
baked at120 ◦C. Then several hydrofluoric (HF) rinsings were
done to remove about 10 nm of the outer surface layer [5]. The
dashed lines show fits to the ITE model with one additional
parameter, an additional resistanceR0 which is assumed to be
independent of field. This parameter accounts for losses from
thermally activated particles and residual losses from other not
further specified origin as well. For the analysis it is assumed
that the field dependence is mainly due to ITE and therefore
R0 is taken as constant. The totalRS is thus assumed to be

RS = RE
S(E) +R0. (4)

The phenomenological fit parameters (also found in
Tab. I) correspond to physical meaningful parameters
(compare with [7] and quotations therein and [8],
[9]) as β∗=1, εr=10, Ec − EF=0.05 eV, ∆=1.18 meV,
d=1.65 nm and〈xnT〉=6.7·1015 1/(eVm2), before andβ∗=1,
εr=10, Ec − EF=0.05 eV, ∆=1.33 meV, d=1.27 nm and
〈xnT〉=8.1·1015 1/(eVm2) after baking. The values ofEc−EF

are inconsistent with the band gap of Nb2O5 (3.4-5.3 eV
[10]) but fit neatly the value of NbO2 (0.1 eV [11]). Hence
the localized states participating in the exchange could
be found in the NbO2 for which the value ofεr=10 is
consistent with [12]. Recent results show that after mild
baking the total thickness of the oxide layer is reduced,
but the thickness of the NbO2 layer enhanced [8], which is
consistent with an enhancedRE

S,sat and corresponding〈xnT〉.
Another explanation for such a smallEc − EF is that the
localized states are found at crystallographic shear planes in
the Nb2O5. These are created by the NbO6 building blocks
sharing sides instead of indices [7]. After HF rinsing the
threshold seems to disappear. NbO2 is well-known for its
non-solubility in water and HF. This suggests that the states
are rather located in the crystallographic shear planes of
Nb2O5 and not in NbO2.

In summary the analysis of the TESLA shaped cavity shows
that there is a threshold effect as predicted by the ITE model
in the surface resistance. The contribution of ITE to the field
dependent surface resistance is enhanced by mild baking and
mitigated by HF rinsing. This can be correlated to the oxide
layer being altered by these processes. Inspecting Fig.2 one
might argue that the threshold field of the surface resistance
RS at 7-12 MV/m could be result of two opposing effects.
For the first oneRS may drop with the field, as observed by
[13] and for the second oneRS may increase with field. We
cannot refute this argument entirely. However, by virtue ofthe

TABLE I
PARAMETERS DERIVED FOR A LEAST SQUARES FIT TOEQ. 4 OF A BULK

NIOBIUM CAVITY (CF. FIG. 2).

BCP 120 ◦C baking HF rinsing
RE

S,sat in nΩ 18.4±0.8 22.3±0.9 14.0±1.4
E0 in MV/m 7.1±1.2 10.5±0.5 4±250 1

b in MV/m 26.9±1.2 30±3 44±4
R0 in nΩ 16.6±0.4 9.24±0.09 11.0±0.2
R2 for Eq. 4 0.9987 0.9988 0.9885
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excellent fits of the ITE model to the data at higher fields its
validity for the data before HF rinsing is suggested.

B. Niobium on Copper quarter wave cavity

The High Intensity and Energy On-Line Isotope Mass Sep-
arator (HIE-ISOLDE) is a facility currently under construction
at CERN. It comprises a superconducting linac of quarter wave
cavities produced by niobium on copper sputtering technology.
Relevant cavity parameters for the analysis presented hereare
the magnetic and the electric geometry factorG=30.34 nΩ
andGE=29.16 nΩ respectively, the ratio between peak electric
and magnetic fieldEpk/Bpk=0.56 MV/m and the resonance
frequency of 101.28 MHz. In an early stage of the project a
cavity has been produced which yielded a surface resistance
exceeding the design value by almost a factor of ten, see
Fig. 3. The surface resistance was measured at 3 and 4.5 K
to separate residual and BCS losses. Both curves show a
threshold effect suggesting the ITE model is applicable here.
The data for each temperate has been individually fitted to Eq.
4. Within the standard fit errors (95 % confidence bounds),
see TabII , R0 is equal for both temperatures showing that
the losses are dominated by the residual resistance. The other
phenomenological fit parametersRE

S,sat, b andE0 can be cor-
related to a set of physical parameters with meaningful values
as β∗=1, εr=10, Ec − EF=0.01 eV, ∆=1.04 meV, d=1.7 nm
and 〈xnT〉=3.6·1017 1/(eVm2). A critical assessment of these
numbers lies however beyond the scope of this paper. The
major difference compared to the TESLA type cavity is the
larger RE

S,sat which can be explained by a larger value of
trapped electron statesnT.

In summary the analysis of the HIE-Isolde cavity confirms
that there is a threshold effect as predicted by the ITE model
in the surface resistance. The threshold field is independent of
temperature as predicted by the model.

C. Quadrupole Resonator measurements

In order to test whether the losses accounted for by ITE
scale linearly with frequency as predicted by the model a
cavity test is not suitable. The Quadrupole Resonator [14] is a
unique device enabling to testRS of superconducting samples
over a wide parameter range. It features two excitable modesat
400 and 800 MHz with identical magnetic field configuration
on the sample surface. The ratio between electric and magnetic
field for these two modes is proportional tof . For example for
a peak magnetic fieldBp=10 mT, the peak electric fields are
Ep=0.52 and 1.04 MV/m for 400 and 800 MHz, respectively
[15]. This feature allows for a separation of magnetic and
electrical losses from measurement data by comparison with
theoretical models as will be explained and carried out in the

TABLE II
FIT PARAMETERS INTERFACE TUNNEL EXCHANGE MODEL TO

HIE-ISOLDE CAVITY DATA

T in K R0[nΩ] RE
S,sat[nΩ] E0[MV/m] b[MV/m] R2

3 193±3 6500±2200 5.4±0.2 3.5±1.6 0.9985
4.5 188±4 4100±200 5.0±0.4 9±3 0.9973

Fig. 3. Surface resistance of a HIE-Isolde quarter-wave cavity at 3 and 4.5 K.
The uncertainty is about 5 % for each data point. Measurement were performed
by M. Therasse and I. Mondino (CERN).

following. When analyzing surface resistance data obtained
with the Quadrupole Resonator several things have to be
taken into account to compare the results to cavity data.
One advantage is that the heat flow on the sample surface is
completely lateral and therefore there is no thermal feedback
effect [15]. The field configuration of accelerating cavities is
in general such that the magnetic and the electric geometry
factor are almost equal. For the sample surface area of the
Quadrupole Resonator this is not the case. By the calorimetric
(RF-DC compensation) technique explained in detail in [15]
one obtains the power dissipated under RFPRF directly. Using
the field distribution on the sample and in the entire resonator
volume one can derive the magnetic surface resistanceRS of
the sample using

RS =
2µ2

0PRF
∫

Sample

| ~B|2dS
. (5)

This formula assumes that all losses are caused by the
surface magnetic field. If however one would assume that all
losses are caused by the surface electric field,

RE
S =

2µ0PRF

ε0
∫

Sample

| ~E|2dS
. (6)

has to be used to calculate the electric surface resistanceRE
S.

For most accelerating cavitiesRS ≈ RE
S holds. Note that this

does not mean that the losses from electric and magnetic origin
are equal, but that the magnetic and the electric geometry
factors are equal. For the Quadrupole Resonator with its
narrow gap structureRS ≈ RE

S does not hold. For example a
powerPRF dissipated on the sample at 400 MHz corresponding
to an RS of 1 nΩ corresponds to anRE

S of 53.5 nΩ. An
interesting feature of the Quadrupole Resonator is that theratio
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Fig. 4. Surface profile from the niobium film sample obtained from AFM.
The lateral resolution of the image is 4 nm.

between electric and magnetic field is frequency dependent
and scales like

∫

Sample

| ~E|2dS/

∫

Sample

| ~B|2dS ∝ f2. (7)

This means that a powerPRF dissipated at 800 MHz corre-
sponding to anRS of 1 nΩ corresponds to anRE

S of 13.4 nΩ.
For details see [3].

To test the properties of ITE a sample is required for which
these temperature independent losses remain dominant up to
relatively large temperatures. This condition was obtained
for a micrometer thin niobium film sample sputtered on a
copper substrate, which was kept under normal air for 10
years. Using XPS the thickness of its surface layer was found
be significantly larger as a reference bulk niobium sample
prepared by BCP [3]. The thin film has a grain size of a few
nm as measured by atomic force microscopy see Fig4. This is
several orders of magnitude smaller than typical values of fine
grain bulk niobium surfaces prepared for accelerating cavities.
Oxides formed between grain boundaries can significantly
increase the interface area through which the tunneling process
occurs.

Using the Quadrupole Resonator the sample was measured
at 400 and 800 MHz over a temperature range between 2
and 4.5 K. In general the Quadrupole Resonator enables also
measurements at 1200 MHz. However for the sample inves-
tigated here thermal runaway was observed for fields above
about 10 mT. That is why no data measured at 1200 MHz is
included in the analysis. The complete data set consists of
183 valuesRS(f, T,B,E). It has been collectively fitted to a
single set of parameters. In order to do this Eq.8 had to be
extended to account for the BCS losses for each temperature
and frequency. The total surface resistance is now considered
to be

RS = RE
S(E) +R0(f) +RBCS(f, T ). (8)

Unlike for the analysis above hereR0 only accounts for the
residual losses from sources other than ITE. BCS losses from
thermally activated particles are accounted for byRBCS(f, T ).
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Fig. 5. Surface resistanceRS of a niobium film sample tested with the
Quadrupole Resonator at 400 MHz (2.5 K (blue), 4 K (magenta)) and 800 MHz
(2.5 K (black), 4 K (red). Each data pointRS was obtained under the
assumption that all losses are solely caused by the surface magnetic field.
The lines show predictions from a collective least squares multiparameter fit
to Eq. 8. The total data set comprises 183 valuesRS(f, T,B,E).

The field dependence of both terms are considered small
compared to the ITE losses. For the BCS surface resistance

RBCS = µ2
0ω

2σ0RRR ·λ(T, l)3
∆

kBT
ln

(

∆

h̄ω

)

e−∆/kBT

T
(9)

is used, which is a good approximation in the dirty limit.
Low field surface resistance and penetration depth change
measurements have shown that this sample has a low RRR and
therefore the dirty limit approximation is reasonable [3]. No
parameter ofRBCS is varied to minimizeχ2. All are obtained
from different measurements. While RRR and∆ are taken
from low field surface resistance measurements,λ is taken
from penetration depth change measurements. For details refer
to [3].

The complete data set consisting of 183 valuesRS(f, T,E)
has been collectively fitted to Eq.8 with five fit pa-
rameters. A χ2=167.9 was obtained for the fit param-
eter values of RE

S,sat=17000±500 nΩ, b=1.06±0.10 MV/m
andE0=0.610±0.015 MV/m,R0=275±7 nΩ at 400 MHz and
R0=500±11 nΩ at 800 MHz. The value ofχ2 is slightly lower
than the number of data points indicating that the experimental
uncertainty was a bit overestimated.

For illustrationRS is plotted as a function ofB for the
temperatures of 2.5 and 4 K for both frequencies in Fig.5.
This corresponds to about one fifth of the complete data set.
Note that to calculateRS for each individual data point Eq.
5 has been used. To fit the complete data collectively to a
single set of parameters the frequency dependence7 has to be
taken into account. Subtracting the fitted values ofR0(f) and
the calculatedRBCS(f, T ) individually from each data point
RE

S(E) can be calculated from Eq.6. This data is plotted in
Fig. 6.

For this sampleRE
S,Sat is three orders of magnitude larger

than for the bulk niobium TESLA type cavity, corresponding
to a higher density of trapped states similar to what has been
found for the HIE-Isolde quarter wave cavity also produced
from sputtering niobium on a copper substrate. The onset
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Fig. 6. Electric surface resistance at 400 MHz (2.5 K (blue),4 K (magenta))
and 800 MHz (2.5 K (black), 4 K (red)) of a niobium film sample. The same
data is plotted as in Fig.5, here under the assumption that all field dependent
losses are caused by the surface electric field.RBCS and R0 have been
subtracted from each data point and the fit curves.

field E0 is one order of magnitude smaller for the sample,
which might be correlated to the roughness of the sample
in the nanometer scale, as measured by AFM, see Fig4.
For further surface analytic measurements on this sample in
comparison to bulk niobium surfaces refer to [3]. Also here,
the phenomenological fit parametersRE

S,sat, b andE0 can be
correlated to a set of physical parameters with meaningful
values asβ∗=12, εr=10, Ec − EF=0.01 eV, d=2.0 nm and
〈xnT〉=1.2·1018 1/(eVm2). A critical assessment of these num-
bers lies however beyond the scope of this paper.

In summary the analysis of the niobium on copper sam-
ple measured with the Quadrupole Resonator confirms the
threshold effect observed for the cavity data shown above.
It is also confirmed that this threshold does not depend on
temperature. The strong frequency dependence ofRS observed
can be explained by electrical losses taking into account the
Quadrupole Resonator’s frequency dependent ratio between
electric and surface magnetic fields. A collective fit to the
ITE model of a large data set comprising two frequencies and
several temperatures gives an excellent representation ofthe
data suggesting the ITE model is indeed applicable to this
data.

IV. D ISCUSSION

A variety of surface resistance data from different cav-
ities and samples have been fitted to the ITE model. The
Quadrupole Resonator measurements showed smaller thresh-
old fields E0 compared to the cavity data. This variation
can for the most part be attributed quite naturally to a
variation of the oxide thickness with the applied treatment. X-
ray photoelectron spectroscopy (XPS) measurements on this
sample have shown that the oxide layer of this sample is thick
compared to a bulk niobium sample for which no ITE losses
have been measured [3]. Also in [3] the data has been analyzed
with different theoretical models. The huge difference in the
field dependentRS for the different frequencies in combination
with the frequency dependent ratioBp/Ep strongly suggests
an electrical loss mechanism.

A. Comparison with the thermal contact resistance model

The thermal contact resistance model was recently proposed
to explain the field dependent losses in Nb/Cu cavities and
samples [16]. The basic idea of the model is that the super-
conducting film is not perfectly in contact with the copper
substrate but locally detached without peeling off. Under the
influence of the RF field, these microscopic spots heat up due
to the suppressed cooling until they go into a local thermal
runaway and are driven into the normal conducting state.
The stronger the RF field, the more micro-quenches occur
and contribute to the overall surface resistance with their
normal resistivity. Each overall performance curveRS can be
described by the local surface resistanceRS and a statistical
distribution function of contact resistancef(RB):

RS (T0, Bp) =

∫

∞

0

RS (T0, Bp, RB) f(RB)dRB. (10)

RS is derived from measurements via measuring the quality
factor Q for cavities (withRS = G/Q) or via a calorimetric
method for Quadrupole Resonator samples. A distribution
function can then be derived by inverting Eq.10.

We process the data of the niobium film sample measured in
the Quadrupole Resonator in the context of this model: Based
on theRS(T ) measurements the temperature increase∆T for
a given contact resistance is calculated via

∆T = RB
1

2
RS

(

Bp

µ0

)2

(11)

and fed back intoRS(T ) → RS(T +∆T ) for each frequency
and bath temperatureT0 combination. As a result the thermal
runaway fieldBquench is derived as function of contact resis-
tance values which can then be used to translateRS (Bp, RB)
into RS (Bp, Bquench). We follow [16] where the integral in Eq.
10 is approximated by appropriate discretization procedures
and useRS (Bp, Bquench) to obtain a set of distribution function
points which can then be fitted with an anlaytic expression. We
process all available data sets, but discard sets with less than 6
points for the distribution function and sets where the standard
error of the fit is bigger than60%. The remaining data sets
along with their distribution function are shown in Fig.7. The
distribution functions of the800MHz data agree moderately
well with each other; however with large standard errors. We
calculate the weighted average of the distribution functions of
the 800MHz data across all temperatures and find that the
f (800MHz, 4.5K) even lies outside the weighted standard
deviationf .

The model also allows for an estimate of the corresponding
surface fraction of detached film from the substrate via

Adetached=

∫

∞

min(RB)

f (RB, Nb/Cu) dRB, Nb/Cu. (12)

For the800MHz data we find on average

A800,detached= (0.058± 0.008)% (13)

which is the typical order of magnitude [16].
From the400MHz data sets only the2.5K set remained.

The resulting distribution function is similar to the (800MHz,
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Fig. 7. Distribution functionf(RB, Nb/Cu) for the niobium film sample tested
with the Quadrupole Resonator. The corresponding surface resistance is shown
in Fig. 5.

4.5K) data but significantly different from all other data sets.
Also the detached surface area of0.0025% is not in agreement
with the 800MHz results.

It has to be noted that the thermal contact resistance
model is not a fit and a solution can be found for any data
set. Hence, to conclude that the thermal contact resistance
model is the dominant loss mechanism, the same distribution
function ought to be derived for different temperatures and/or
frequencies. This has been consistently shown with previous
analyses on standard performing HIE-ISOLDE cavity data at
different temperatures [17] and on another Quadrupole Res-
onator Nb/Cu sample at different frequencies and temperatures
[18]. Given the large errors and only moderate agreement of
the presented data, we consider the analysis not supporting
the thermal contact resistance model as the dominant loss
mechanism. Moreover, given the nature of the loss mechanism,
we would not expect a saturation but rather a stronger surface
resistance increase with higher RF fields as often observed
as an exponential increase ofRS with field in Nb/Cu cavities.
Overall, we conclude that the analysis of the data in the context
of the thermal contact resistance model neither contradicts
nor sufficiently competes with ITE being the dominant loss
mechanism.

V. CONCLUSION

In conclusion, the dependency of the surface resistance on
the applied field strength strongly depends on the surface
preparation. This indicates a variety of different dominant
field dependent loss mechanisms. Some cavities exhibit anRS

increasing above a threshold field saturating at higher field.
In this paper it has been shown that measurements on a bulk
niobium cavity, showing this behavior ofRS on the surface
electric field, can be well described by the ITE model. For a
niobium on copper quarter wave cavity these losses were found
to be stronger, which could be correlated to more trapped states
participating in the exchange. To further test the predictions
of the ITE model a niobium thin film sample was tested with
the Quadrupole Resonator. These measurements showed field
dependent losses independent on temperature, which scale
linearly with frequency, if one assumes that they are caused

by the surface electric field. These findings are consistent with
the predictions of the ITE model and in contradiction with the
thermal contact resistance model.

Our results allow to better understand the field dependent
surface resistance of superconducting niobium. This can be
used for the development of future accelerating cavities. In
particular a possible explanation for the larger field dependent
surface resistance found in some cavities produced of niobium
films on copper substrates, a technology widely used for cavity
operation at 4.2 K [19], is given by the ITE model.
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