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Abstract 

Rechargeable Li-O2 batteries have been considered as the most promising 

chemical power owing to their ultrahigh specific energy density. But the sluggish 

oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) result in the 

high overpotential (~1.5V), the poor rate capability and even the short cycle life, 

which critically hinder their practical applications. Herein, we propose a synergistic 

strategy to boost the electrocatalytic activity of Co3O4 nanosheets for Li-O2 battery by 

tuning the inner oxygen vacancies and the exterior Co3+/Co2+ ratio which have been 

identified by Raman spectroscopy, X-ray photoelectron spectroscopy and X-ray 

Absorption Near Edge Structure spectroscopy. Operando X-ray diffraction and ex-situ 

Scanning Electron Microscope are used to probe the evolution of the discharge 

product. In comparison with bulk Co3O4, the cells catalyzed by Co3O4 nanosheets 

show a much higher initial capacity (~24051.2mAh g-1), better rate capability 

(8683.3mAh g-1@400mA g-1) and cycling stability (150 cycles@400mA g-1), and 

lower overpotential. The large enhancement of the electrochemical performances can 

be greatly attributed to the synergistic effect of the architectured 2D nanosheets, the 

oxygen vacancies and Co3+/Co2+ difference between the surface and the interior. 

Moreover, the addition of LiI in the electrolyte can further reduce the overpotential 

making the battery more practical. This study offers some insights into designing high 

performance electrocatalysts for Li-O2 batteries through the combination of the 2D 

nanosheets architecture, oxygen vacancy and surface electronic structure regulation.  
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Introduction 

In recent years, some new electrochemical power sources such as Li-S, Zn-air, 

Al-air and Li-air batteries have been intensively explored in order to alleviate the 

energy crisis and environmental issue resulting from the overuse of fossil fuels.1-5 In 

comparison with Li-S, Zn-air, Al-air or Li-ion batteries, Li-air battery shows a much 

higher specific energy (~3600Wh kg-1) and attracts great interest.5-7 However, the 

sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution 

reaction (OER) on the cathode, and the resultant large overpotential, low energy 

efficiency, the inferior rate performance and the poor cycle life have critically 

impeded their practical applications in electric vehicles (EVs).  

In order to overcome the above problems some strategies including the design of 

bifunctional cathode catalysts, the electrolyte mediation, and the regulation of the 

discharge product morphology or composition have been extensively explored.8-11 

Some previous studies have shown that the use of some suitable catalysts is one of the 

effective ways to reduce the overpotential of Li-air cells and extend the cycle life.12-13 

Noble metals (Au, Pt, Pd etc.) have shown excellent performance but the price is too 

high. Some carbon materials exhibit a high ORR activity but their OER performance 

is usually inferior, and they are also easy to be oxidized inducing some side reactions 

at a high voltage. On the contrary, transition metal oxides (MnO2, Co3O4, NiCo2O4, 

etc.) have attracted great interest due to their low cost and high efficiency.14-18 The 

OER activity of metal oxides is usually higher than that of carbon materials. It has 



 

 

been well accepted that the OER process is more important in improving the 

reversible capability and cycle life during the electrochemical process. As for the 

metal oxide catalysts, the surface atom arrangement or valance distribution plays a 

significant role on the elecrocatalytic activity and the electrochemical performances of 

Li-O2 battery, and some strategies (i.e. crystal plane, doping, vacancy engineering) 

have also been taken to tune the surface atom or electronic structure. 19-21 Our group 

and some other groups have reported the crystal plane dependence of the 

electrocatalytic activity of Co3O4 for Li-O2 battery.12-13, 22 Tuning the electronic 

structure to increase active sites through creating oxygen vacancies is another 

effective strategy to enhance the electrocatalytic activity of metal oxide catalysts for 

Li-O2 cells.23-25 Chen et al. improved the ORR activity of MnO2 through generation of 

oxygen vacancies.25 Recently, 2D nanosheets based on transition metal oxides have 

also attracted great attention as efficient electrocatalysts.26-29 In addition, another 

study also indicates that the surface atoms with lowered coordination number can act 

as active sites for adsorption of O2.29 However, the design and large-scale synthesis of 

noble metal free cathode catalysts with both high ORR and OER reactivity is still a 

big challenge for the development and application of lithium-air battery.  

Herein, we propose a synergistic strategy to enhance the electrocatalytic activity 

of Co3O4 nanosheets as cathode catalyst for Li-O2 battery by tuning the inner oxygen 

vacancy concentration and the exterior Co3+/Co2+ ratio.  Compared to bulk Co3O4, 

the cells catalyzed by the Co3O4 nanosheets show a much higher initial capacity, 

better rate capability and cycling stability, and lower overpotential, which can be 

greatly attributed to the synergistic effect of the architectured 2D nanosheets, the 



 

 

inner oxygen vacancies and the Co3+/Co2+ difference between the surface and 

theinterior. Moreover, the addition of LiI into the electrolyte can further reduce the 

overpotential and improve the electrochemical performances of Li-O2 batteries.30  

Experimental Methods 

Co3O4 ultrathin nanosheets were prepared by a two-step method which include the 

synthesis of precursor and sintering under O2:  

Hydrothermal synthesis of Co(CO3)0.5(OH)·0.11H2O precursor: We synthesized 

Co(CO3)0.5(OH)·0.11H2O precursor by hydrothermal method. In a typical process, 

300mg Co(acac)3(III) and 1.1g cetyltrimethyl ammonium bromide (CTAB) were first 

dissolved into the mixture of 5.5ml deionized water and 30 ml EG (Ethylene glycol) 

to form a homogeneous suspension by magnetic stirring and ultrasonic. Then, the 

suspension was transferred into 50 ml Teflon-lined autoclave and maintained at 180 

°C for 48 h. After cooling down to ambient temperature, the final product was 

collected by rapid vacuum filtration with washing by ethanol and water for many 

times. Then dried in vacuum overnight for further characterization. 

Sintering synthesis of nanosheets: The as-obtained Co(CO3)0.5(OH)·0.11H2O 

precursor was directly calcined at 320 °C for 5 minutes in pure O2 and then cooled 

down to room temperature. Finally, the obtained powders were collected for further 

characterization.  

Materials characterization 



 

 

All the samples were characterized by X-ray diffraction (XRD) in a RIGAKU 

SMARTLAB diffractometer with a Cu-K radiation source. Data were collected in 

the range of 10–80° at a scan rate of 10° min-1. Operando X-ray diffraction patterns 

were collected on Li−O2 battery on 4B9A Beamline of BSRF with Mythen 

Detector.31-32 The data was collected every 20 min when discharging at a current 

density of 200mA g-1. 33 

The morphological studies of the samples and the cathodes were performed on a 

HITACHI SU8010 scanning electron microscope (SEM) and a transmission electron 

microscope (TEM HITACHI HT7700 excellent).  

X-ray photoelectron spectroscopy (XPS) was measured on a Thermo escalab 250Xi 

with a monochromatic X-ray source (E (Al Kα) = 1486.6 eV). Each spectrum was 

normalized using the regain of C 1s (284.6 eV) as the line position of adventitious 

carbon.  

Soft XAS measurements were performed at Russian-German Beamline of the 

synchrotron Bessy II, Berlin, Germany. Data were obtained both in total electron 

yield (TEY) and fluorescence yield (TFY) modes at room temperature under ultrahigh 

vacuum (10-9 Torr). The emitted total number of electrons from the sample were 

counted in TEY mode and the energy dispersive Bruker XFlash® fluorescence 

detector was used in FY mode. 



 

 

   Raman spectra were obtained from the RENISHEW inVia confocal Raman 

microscope with an excitation wavelength of 532 nm ranging from 200cm-1 to 

1000cm-1. 

  Nitrogen sorption isotherms were measured at 77 K using a Micromeritics 

ASAP-2020 analyzer. Before measurements, the samples were degassed in a vacuum 

at 200 °C for 4 h. The surface area of the powder was calculated by the 

Brunauer–Emmett–Teller (BET) method.  

Electrochemical measurements 

The electrochemical performance of the Li–O2 cell was analyzed using a 2025-type 

coin cell. The cathode and the cells were assembled as follows: 40 wt% Co3O4 

catalyst, 20 wt% polyvinylidene fluoride (PVDF) and 40 wt% super P carbon were 

mixed with N-methyl-2-pyrrolidone to prepare a catalyst slurry. The mixture was then 

dispersed on the carbon paper current collector to prepare the porous air electrode, 

which was then dried at 120 °C under vacuum for 12 h. The loading of the active 

materials (Co3O4 and super P) is about 1.33mg cm-2. All the specific capacity and 

discharge/charge current density were calculated based on the mass of Co3O4 and 

Super P. All the cells were assembled in a glovebox under an Ar atmosphere with 

oxygen and water contents less than 0.1 ppm, using a lithium metal foil anode, a glass 

fibre separator, an oxygen cathode and an electrolyte containing 1 M LiTFSI in 

TEGDME. The galvanostatic charge and discharge performance of the batteries was 

tested on a LAND CT2001A battery test system with the voltage between 2.0 and 4.5 



 

 

V at room temperature. The galvanostatic discharge/charge tests were performed in a 

specific capacity-controlled mode (500 mAh g-1) at a current density of 400 mA g-1. 

Various current densities (100, 200, 500) were tested to investigate the rate capability 

of the prepared samples. The electrochemical impedance spectra (EIS) and cyclic 

voltammetry (CV) measurements were performed on PRINCETON PMC-2000 

electrochemical workstation. All the electrochemical tests were performed at pure 

oxygen atmosphere. 

Results and discussion 

Co3O4 nanosheets (Co3O4-NS) were synthesized by sintering in an oxygen 

atmosphere. Figure 1a show the XRD patterns of Co3O4 nanosheets and commercial 

bulk Co3O4. All the diffraction peaks of the two samples can be well indexed to 

standard PDF card of a pure spinel Co3O4 phases (PDF No.43-1003). Compared with 

Co3O4 bulks, some characteristic peaks of the Co3O4 nanosheets become broaden and 

the peak of (111) is strengthened. The results demonstrate a preferential orientation of 

(111).21 Figure 1b shows the curves of Raman spectra of Co3O4 nanosheets and bulk 

Co3O4. Four characteristic peaks in the curve located at 471, 513, 608 and 677 cm-1 

can be indexed to Raman active modes of the crystal Co3O4 corresponding to Eg, F1
2g, 

F2
2g and A1g.34-35 The left shift and broadening of the peaks in Co3O4-NS indicate that 

the crystallization degree has become weakened and the surface electronic structure 

statement has changed after calcination in oxygen. 22 



 

 

 

Figure 1. (a, b) XRD patterns and Raman spectra of the Co3O4 nanosheet (NS) and 

Co3O4 bulk (Bulk); (c) XPS spectra of Co 2p for Co3O4 bulk; (d) XPS spectra of O 1s 

for Co3O4 bulk; (e) XPS spectra of Co 2p for Co3O4 nanosheet; (f) XPS spectra of O 

1s for Co3O4 nanosheet.  

 



 

 

X-ray photoelectron spectroscopy (XPS) have been used to analyze the 

electronic structure and surface oxidation states of Co3O4 nanosheets. In the core level 

spectra of Co 2p region, the two samples show two major peaks with binding energy 

of 779.5 eV and 794.7 eV as shown in Figure1c, e. The main peak can be fitted by 

two regions of Co3+ and Co2+.36-37 By comparing the ratio of Co3+/Co2+ of the two 

different Co3O4 samples, it can be concluded that the Co3+/Co2+ ratio (0.75) of 

NS-Co3O4 is higher than that of bulk Co3O4 (0.48), which means more Co3+ are 

exposed on the surface of Co3O4 nanosheets. In the O 1s core level spectra, we can 

clearly identify three peaks. In detail, the peaks at 529.8 eV, 531 eV and 532.6 eV can 

be ascribed to metal-oxide, defect sites and hydroxyl species respectively.38-39 

Figure1d and f show the O2 peak, and the species is obviously strengthened in 

NS-Co3O4. This can be ascribed to a higher concentration of vacancies in the 

nanosheets compared with the bulk, which is in well agreement with the results shown 

in the Raman spectrum. Both of two measurements confirm that the surface atom state 

of Co3O4 nanosheets is different from that of bulk Co3O4. On the other hand, 

nanosheets have larger specific surface area (56 m2g-1) than bulk specimens (24 m2g-1) 

indicating that the nanosheets can supply more active sites. Figure S1 shows N2 

adsorption-desorption isotherms for Co3O4 nanosheet (NS) and Co3O4 bulk (Bulk). 



 

 

 

Figure 2. (a) Co L2,3-edge XANES spectra measured in TFY and TEY mode, and (b) 

The O K-edge XANES spectra; (c) XPS spectra of O1s for Co3O4 bulk specimens 

before and after etching; (d) XPS spectra of O 1s for Co3O4 nanosheets before and 

after etching. 

In order to find out more detailed information about the electronic structure of 

the nanosheets on the surface and in the bulk, the X-ray Absorption Near Edge 

Structure (XANES) spectroscopy was employed, since the XANES data can be 

recorded simultaneously in both total electron yield mode (TEY) and fluorescence 

yield mode (TFY) with different probing depth.40-41 Total electron yield mode probes 

the surface information with a depth ∼ 5nm, while the data collected in the 

fluorescence yield mode provides the information from the bulk with a probing depth 



 

 

of ∼ 50 nm. Normalized XANES at Co L-edge and O K-edge are shown in Figure 2a 

and 2b, respectively. As can be seen from Figure 2a, the peaks at about 780eV and 

795eV could be assigned to the L3-edge and L2-edge of Co3+ in a low spin state. 

While the peak of the Co3O4 nanosheets at 779 eV measured in TFY mode indicates 

the presence of Co2+ in bulk. This demonstrates that the Co ions of the nanosheets 

cannot be oxidized to Co3+ completely, but only part of Co2+ on the surface ions are 

oxidized. However, in the interior, Co2+ act as the dormitory role. As shown in Figure 

2b, the O K-edge XANES spectra of Co3O4 nanosheet and bulk specimens have a few 

distinct features in the range from 529 eV to 550 eV, at both TEY and TFY modes. 

The peak at 529.8 eV can be attributed to the bond of Co 3d/O2p.42-44 The difference 

in the degree of oxygen adsorption in the interior and at the surface of the NS causes 

some offset of the peak position at ∼ 542.5eV, which was finally confirmed by the 

XPS analysis of the samples with different etching time (Figure 2d). In Figure 2d, the 

bond energy and peak shape of O 1s has changed obviously, while all three peaks of 

O1s in Figure 2c are similar. After refreshing the surface by the etching for several 

seconds, the location of O1s bonding energy of Co3O4 nanosheets become quite 

different. The shift of the peak to lower energy as a function of etching time reflects 

the weakening of the Co-O bond. Thus, it is reasonable to conclude that a large 

number of oxygen vacancies exist in the interior and more Co3+ ions form on the outer 

surface of Co3O4 nanosheets. 



 

 

 

Figure 3. (a, b) SEM images of the nanosheets at different magnifications viewed 

from the top; (c) TEM image of a NS specimen viewed from the top; (d) 

High-resolution TEM micrograph of a Co3O4 NS specimen.  

The morphology can be observed by field-emission scanning electron 

microscope (FE-SEM) and transmission electron microscope (TEM) as shown in 

Figure 3. The Co3O4 nanosheets reveal a thickness of a few nanometers and a size of 

300-500 nm. Figure 3d shows a high-resolution transmission electron microscopy 

(HRTEM) micrograph of a Co3O4 nanosheet. The images collected at the edge of the 

Co3O4 nanosheets reveal lattice fringes of 0.467 nm and 0.286 nm, respectively, 

indicating the (111) and (220) planes. It can be observed that this Co3O4 nanosheet is 

not a complete structure, but contain a large number of pores with sizes ranging from 

2-4 nm, in Figure 3c. This will make the surface area increase largely. Hence, 



 

 

according to the 2D morphological structure, directional crystal growth and special 

surface state can improve the catalytic performance and the electrochemical properties 

of the Li-O2 battery. 

 

Figure 4. Specific capacity at 100, 200 and 400 mA g-1, respectively, for the bulk and 

nanosheet sample(a) bar graph; (b) Voltage versus specific capacity curve; (c) 

Comparison of the first limited discharge–charge curves for nanosheet and bulk 



 

 

specimens, measured at a current density of 400 mA g-1; (d, f) The discharge curves at 

different cycles of Co3O4 bulks and Co3O4 nanosheets; (e) The cycle performance and 

terminal voltage of two samples based cathodes when the capacity is limited to 500 

mAh g-1 at a current density of 400 mA g-1.  

As shown in Figure 4a and b, the electrochemical performances for Co3O4 bulk and 

nanosheets were tested at different current density of 100, 200 and 400 mA g-1. The 

initial discharge capacity of nanosheets is significantly higher than that of bulk 

specimens when assembled as Li-O2 coin cell. In terms of specific capacity, the 

discharge specific capacity of Co3O4 bulk is 3276.3mAh g-1, 2439.5mAh g-1 and 

1519.6mAh g-1, respectively. But the discharge specific capacity of nanosheets is 

largely increased to 24051.2mAh g-1, 12033.5mAh g-1 and 8683.3mAh g-1, 

respectively. With the increase in current density, the charge potential increases and 

the discharge potential reduces. In Figure 4d, f, as the number of the cycles increases, 

the overpotential of the two samples increases. However, the battery catalyzed by 

bulk Co3O4 cannot get a long-term cycle. After 60 cycles, the capacity cannot reach 

500mAh/g. Figure 4c shows the first discharge-charge curves of cathodes at 400 mA 

g-1 based on bulks and nanosheets. The terminal discharge voltage of Co3O4 bulk is 

about 2.6 V (vs Li+/Li) with a terminal charge voltage close to 4.24 V (vs Li+/Li). 

After several cycles, the cell catalyzed by bulks cannot be completely charged. 

However, the nanosheet based cathodes show a lower overpotential and better 

reversibility, which indicates nanosheets have a higher OER activity. In Figure 4e, 

with a capacity limitation of 500 mAh g-1 and current densities of 400 mA g-1, the 



 

 

Co3O4 bulk electrode can run 66 cycles, while the nanosheets can last 156 cycles. 

After 56 cycles, the discharge voltage of the bulk specimens is drastically reduced. In 

contrast, after 156 cycles, the discharge terminal voltage of the NS specimens remains 

at about 2.2V. The nanosheets demonstrate a largely enhanced cycling performance. 

The coulomb efficiency curves for Co3O4 nanosheet (NS) and Co3O4 bulk (Bulk) are 

shown in Figure S2, which can obviously explain the ORR and OER performance of 

these two materials. After 40 cycles, the coulombic efficiency of Co3O4 bulk based 

battery decreases, while the Co3O4 nanosheets based battery can be well maintained 

until 120 cycles. 

 

Figure 5. The electrochemical performances of Co3O4 nanosheets and Co3O4 bulks 

based Li-O2 battery with LiI additives in the electrolyte at a current density of 200 

mA g-1. (a) The discharge–charge curves at 1st and 30th of Co3O4 nanosheets and 

Co3O4 bulks. (b) The cycle performance of specimens with NS and bulk based 

cathodes with LiI in the electrolyte. 

It is reported that the additive LiI can significantly reduce the overpotential.45-47 

Therefore, LiI was applied to further enhance the performance of the whole cell. As 



 

 

shown in Figure 5a, the initial charging potential of Co3O4 nanosheets and Co3O4 

bulks based Li-O2 battery with LiI additives has been lowered to about 3.5V. After 30 

cycles, the charge potential of bulk Co3O4 based battery increases considerably and 

the discharge platform is reduced due to the insufficient catalytic activity, which 

results in a larger overpotential. In contrary, the charge and discharge platform of the 

nanosheets-catalyzed Li-O2 cell remains very stable after 30 cycles indicating the 

Co3O4 nanosheets have a much higher catalytic activity. In addition, in the electrolyte 

containing LiI additive, the cycle performance of the battery using the nanosheets is 

still much better than that of bulks, which means the addition of LiI additive and the 

use of the nanosheets catalyst can cooperatively reduce the overpotential and enhance 

the electrochemical performance of Li-O2 battery. 

 

Figure 6. (a) Three dimensional discharge plots of the XRD patterns in the 2θ region 

of 30−50°, with a constant current of 200 mA g-1, (b) 2D image of the in-situ XRD.  

 In order to explain the products and the corresponding potential in the process of 

discharging, operando XRD of the electrode was obtained with different time, as 



 

 

shown in Figure 6. In the discharge process, the peak of catalyst Co3O4 is obviously 

located at 2θ = 31.3°, 36.9° and 44.9°, and the peaks at 32.6° and 34.8° can be 

indexed as the lattice planes of (200) and (201), respectively, of Li2O2. As the 

discharge goes on, the peaks became obvious, which indicates the formation of 

discharge product Li2O2. In Figure 6, the peaks at 32.6° and 34.8° appeared 

simultaneously, which may display that the growth of Li2O2 is not directional. After 2 

hours, the obvious peak can be detected on the pattern. In order to further explain the 

discharge mechanism and the distribution of the product, the morphology of the 

electrodes (Co3O4 bulk and nanosheets) at different discharge state (0, 500, 1000mAh 

g-1) are investigated as shown in Figure 7. Before discharge, the Co3O4 bulk and 

nanosheet mixed with Super P can be clearly observed on the pristine cathodes in 

Figure 7a and c, respectively. Accumulation of catalyst can be seen in local area. 

After a small discharge of 500mAh g-1, lamellar Li2O2 has formed and Co3O4 bulk 

structure became blurry. In contrast, the thickness of Li2O2 is smaller in nanosheet 

based electrode. Finally, after discharge of 1000 mAh g-1, the products of the 

crystalline platelet-shape Li2O2 were full of vision. The result well agreed with the 

XRD patterns: Li2O2 first formed as an amorphous film and then grew into nanosheets 

resulting in broadened diffraction peaks; as the discharge continues, the discharge 

products crystallized into platelet shape with an obvious diffraction peak. We used 

XRD and SEM to characterize the decomposition of the discharge product Li2O2 on 

the Co3O4 nanosheets based electrode after recharging to 1000 mAh g-1 as shown in 

Figure S3 and S4. Figure S3 shows the XRD pattern of the Co3O4 nanosheets based 



 

 

electrode after recharge to 1000 mAh g-1. As shown in Figure S3, no detectable 

diffraction peaks of Li2O2 were found in the pattern, which means the Li2O2 

decomposes completely after recharging. Figure S4 shows the SEM image of the 

Co3O4 nanosheets based electrode after recharge to 1000 mAh g-1. As shown in Figure 

S4, the platelet-shape Li2O2 disappears after recharge which further indicates that 

Li2O2 decomposes completely after recharge to 1000 mAh g-1.   

 

Figure 7. SEM images of Co3O4 bulks and Co3O4 nanosheets electrodes after 

discharge to (a, d) 0 mAh g-1; (b, e) 500 mAh g-1; (c, f) 1000mAh g-1, respectively.  

Figure 8. (a) CV curves in the LiTFSI/TEGDME electrolyte at a scan rate of 0.1 mV 



 

 

s-1; (b) Electrochemical impedance spectra (EIS) of nanosheets and bulks of 

discharged/recharged cathodes.  

ORR and OER performance of nanosheets and bulk were also examined in 

2025-type Li-O2 coin cell in pure O2 environment. As the shown in Figure 8a, 

nanosheets and bulk shows the same ORR activity between 3.0V to 2.5V. However, 

during the OER process at above 4.0V, the CV curve of the battery catalyzed by 

Co3O4 NS shows classical redox behavior,48 with two oxidation peaks at 4.0~4.25 and 

4.25~4.5V. It means Co3O4-NS can obviously enhance the OER process for the Li-O2 

battery. We further verified the superior electrochemical performances of nanosheets 

by electrochemical impedance spectroscopy (EIS). We measured the EIS of the two 

samples. Before the recharging, the charge transfer resistance (Rct) of the nanosheets 

and bulks is very close (~100Ω) as shown in Figure 8b. After several cycles, the Rct of 

bulk specimen based Li-O2 battery becomes extremely large. The main reason is that 

more discharge product accumulates on the cathode of Co3O4 bulk due to the weak 

OER performance, which may affect the conductivity of the cell and increase Rct. 

The nanosheets have better cycle performance, in terms of impedance recovery, and 

the nanosheets are an effective catalyst for reversible electrochemical processes. All 

these results illustrate that Co3O4 nanosheets exhibit the better electrochemical 

performance which is not only because of large surface area, but, more importantly, 

result from the difference of the surface state of Co atom within the NS and outside 

the NS. In this material, Co3+ on the surface are the main active sites for ORR and 

OER. While more Co2+ within the material can also coordinate to enhance the 



 

 

performance of the nanosheets. On the other hand, the oxygen vacancies in the 

interior of Co3O4 nanosheets accelerate the electron and Li+ conductivity as well as 

accelerate OER process.49 

The large enhancement of the electrochemical performances can be greatly 

attributed to the synergistic effect of the architectured 2D nanosheets, the rich oxygen 

vacancies in the inner and the Co3+/Co2+ difference between the surface and the 

interior as shown in Figure 9. Figure 9 presents a schematic illustration of the 

synergetic effect of the architectured 2D nanosheets, the inner rich oxygen vacancies 

and the rich Co3+ on the surface. The large specific surface area of 2D materials is 

favorable to be full contact and infiltration with the electrolyte and oxygen.50 The 

oxygen vacancies in the interior facilitate the electron and Li+ conductivity as well as 

accelerate OER process as active sites binding to O2 and Li2O2.51 The nanosheets have 

more Co3+ on the surface and more Co2+ in the inner. Similar to spinel λ-MnO2, the 

Co2+/Co3+ redox reaction can react with superoxide and Li2O2 to promote the ORR 

and OER reaction during the cycles. The Co3+ on the surface catalyzes both OER and 

ORR reactions, and the discharge product Li2O2 forms and decomposes on the 

surface. The difference of Co3+/Co2+ ratio between the surface and the interior will 

further enhance the conductivity and the electrocatalytic activity of Co3O4. 



 

 

 

Figure 9. Schematic illustration of the synergetic effect of the architectured 2D 

nanosheets, with high concentration of oxygen vacancies in the interior and high Co3+ 

concentration on the surface. 

Conclusion 

The high electrocatalytic activity of Co3O4 nanosheets for Li-O2 battery has been 

achieved by tuning the concentration of inner oxygen vacancies and the Co3+/Co2+ 

ratio at the surface. In comparison to bulk Co3O4, the cells catalyzed by Co3O4 

nanosheets show a much higher initial capacity, better rate capability and cycling 

stability, and lower overpotential, which can be greatly attributed to the synergistic 

effect of the architectured 2D nanosheets, the oxygen vacancies and Co3+/Co2+ 

difference between the surface and the interior. In addition, the overpotential can be 

further reduced and the electrochemical performances of Li-O2 batteries can be 

further improved by adding LiI in the electrolyte which makes Li-O2 battery more 

practical. This study offers some new insights into designing high performance 



 

 

electrocatalysts for Li-O2 batteries through tuning 2D nanosheets architecture, oxygen 

vacancy and surface electronic structure. 
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