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uptake/release is found. For an uptake of 0.8 mole Li per formula unit 

only minimal changes occur in the lattice parameters causing a total 

change in unit cell volume of less than 0.5 %. The spatial distribution 

of cations in the crystal structure as well as the linkage between their 

corresponding fluorine octahedra is responsible for this very small 

structural response. With its zero-strain behaviour this material is 
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May 30, 2017 

Dear Editor and Referees, 

I am enclosing herewith an article manuscript entitled “LiCaFeF₆: A zero-strain cathode 

material for use in Li-ion batteries” by L. de Biasi et al. for publication in Journal of Power 

Sources. 

One major drawback of current lithium-ion batteries is that most electrode materials 

experience mechanical stresses during electrochemical cycling due to strain associated with 

phase transitions and lattice parameter changes upon Li uptake and release. In order to 

minimize mechanical defects, so-called “zero-strain” materials are of interest due to their 

negligibly small changes in lattice parameters and, hence, smaller lattice strain during cycling, 

which is promising for a long cycle life. The most common zero-strain lithium insertion 

material is the spinel-type anode Li₄Ti₅O₁₂ (LTO). The volume change of this material is 

merely 0.2 %. To our knowledge, an employable positive electrode material for Li-ion 

batteries with zero-strain properties is not known yet. The volume changes observed for 

commercial cathode materials are, for example, ~ 6.5 % for LiMn₂O₄ and ~ 7.0 % for 

LiFePO₄.  

The material presented here belongs to a novel group of compounds, that are quaternary 

lithium transition metal fluorides, which could be possible future candidates for cathode 

applications in lithium-ion batteries (Lieser et al., 2014; de Biasi et al. 2015; Lieser et al. 

2015). In this study, we show that the colquiriite-type crystal structure of LiCaFeF₆ has a 

favorable cation arrangement and exhibits unprecedented low strains for a cathode material 

and a volume change of less than 0.5 % during cycling.  

We present an analysis of the chemical, structural and electrochemical properties of LiCaFeF₆ 

cathode material. Therefore, data from in situ and ex situ X-ray diffraction, X-ray absorption 

spectroscopy, Mössbauer, and NMR spectroscopy are used to elucidate the lithium insertion 

mechanism and the induced zero-strain behavior of this material. 

Up to now, no other commercially used cathode material for Li-ion batteries with comparable 

properties is known, which makes LiCaFeF₆ a promising candidate for future energy storage 

applications. 

We are sure that this subject is of strong interest and with the attention to detail in data 

evaluation and a high scientific integrity we believe that this work can meet the high level of 

Journal of Power Sources. We assure you that the work has not been submitted previously to 

your journal, that it has not been published previously, is not under consideration for 

publication elsewhere, and is approved by all authors and host authorities. 

I am looking forward to your feedback. 

 

Sincerely,  

Lea de Biasi 
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Graphical Abstract



 Li1+xCaFeF6 shows a unit cell volume change of < 0.5 % during Li insertion (x=0.8). 

 The zero-strain properties are unique among commercial LIB cathode materials. 

 Reversibility of structural changes and long-term stability were confirmed by XAS. 

 The electrochemically active redox couple is Fe
3+

/Fe
2+

. 

*Highlights (for review)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries 

 

Lea de Biasi
1,2,3

, Georg Lieser
1
, Christoph Dräger

1
, Sylvio Indris

1
, Jatinkumar Rana

4,5
, 

Gerhard Schumacher
4
, Reiner Mönig

1,2
, Helmut Ehrenberg

1,2
, Joachim R. Binder

1
, Holger 

Geßwein
1,2

 

 

1
Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-

Leopoldshafen, Germany; 
2
Helmholtz Institute Ulm (HIU), 89069 Ulm, Germany; 

3
Institute 

of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-

Leopoldshafen, Germany; 
4
Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-

Meitner-Platz 1, 14109 Berlin, Germany; 
5
Binghamton University, Department of Physics, 

Applied Physics and Astronomy, 4400 Vestal Parkway, Vestal, NY. 

 

Abstract 

A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of 

lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a 

conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge 

capacity of 112 mAh g
-1

 is achieved in the voltage range from 2.0 V to 4.5 V. The 

electrochemically active redox couple is Fe
3+

/Fe
2+

 as confirmed by Mössbauer spectroscopy 

and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal 

structure (space group      ). By means of in situ and ex situ XRD as well as X-ray 

absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For 

an uptake of 0.8 mole Li per formula unit only minimal changes occur in the lattice 

parameters causing a total change in unit cell volume of less than 0.5 %. The spatial 

distribution of cations in the crystal structure as well as the linkage between their 

*Manuscript text (with figures and captions embedded)
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corresponding fluorine octahedra is responsible for this very small structural response. With 

its zero-strain behaviour this material is expected to exhibit only negligible mechanical 

degradation. It may be used as a cathode material in future lithium-ion batteries with strongly 

improved safety and cycle life. 

Keywords: Lithium-ion battery; cathode material; zero-strain; lithium metal fluoride; Li 

insertion 

 

1. Introduction 

The constantly growing market of power-driven devices requires improved energy 

storage technologies. Lithium-ion batteries (LIB) have become the prevalent storage system 

in electronic devices and are of increasing importance in electric vehicles as well as in 

stationary energy storage systems. Although being widespread in the market, in many cases, 

the lifetime of LIB leaves to be desired. One major drawback is that most electrode materials 

experience mechanical stresses during electrochemical cycling due to strain associated with 

phase transitions and lattice parameter changes upon Li uptake and release. For example, the 

volume changes observed for commercial cathode materials are ~ 6.5 % [1,2] for LiMn2O4 

and ~ 7.0 % [3,4] for LiFePO4. During cycling, a mismatch in the lattice parameters at phase 

boundaries between domains of coexisting phases can lead to discontinuous lattice strain 

which leads to mechanical stresses that can lead to crack nucleation and growth. Such 

mechanical defects are barriers for electronic and ionic transport and have been associated 

with capacity fading [5–7]. In order to achieve batteries with high cycle life, rigid coatings 

have been applied to LiCoO2
 
electrode particles to minimized mechanical effects [8,9]. But it 

was shown that the crystal structure of coated LiCoO2
 
still expands and contracts exactly the 

same way as that of uncoated material [10].  

In order to minimize mechanical defects also new materials have been investigated. 

The so-called “zero-strain” materials [11] are of interest due to their negligibly small changes 
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in lattice parameters and, hence, smaller lattice strain at phase boundaries during cycling, 

which is promising for a long cycle life. The most common zero-strain lithium insertion 

material is the spinel-type anode Li4Ti5O12. Upon cycling 3 Li
+ 

ions can be transferred per 

formula unit. Although this process is accompanied by a two-phase transition, the volume 

change of this anode material is merely 0.2 % [12]. A comparable zero-strain effect was 

evidenced for the positive electrode material Li1+xRh2O4, which also has a spinel-type crystal 

structure [13,14]. Nevertheless, rhodium is an expensive element making this material rather 

unattractive for application. To our knowledge an employable positive electrode material for 

Li-ion batteries with zero-strain properties is not known yet. 

The material presented here belongs to a novel group of compounds, that are 

quaternary lithium transition metal fluorides with formula AM
II
M

III
F6 [15–18]. A close 

packed arrangement of fluorine anions forms the basis of their crystalline structure. According 

to the ratio of ionic radii of the different valent metal cations A, M
II
, and M

III
 various cationic 

arrangements in an octahedral coordination are possible resulting in the three structure types, 

the trirutile-type (       ), the Na2SiF6-type (    ), and the colquiriite type (     ) 

structure[19]. The electrochemical properties of trirutile-type (LiNiFeF6 [15,16,18,20], 

LiMgFeF6 [20,21], LiCoFeF6 [20]) and Na2SiF6-type compounds (LiMnFeF6 [17]) were 

studied recently. Furthermore, the lithium insertion mechanisms of the trirutile-type host 

structures of LiFe2F6 [15] and LiNiFeF6 [18] were investigated by in situ X-ray diffraction. 

Both, LiNiFeF6 and LiMnFeF6 show good electrochemical performance with a reversible 

specific capacity of 88 mAh g
-1

 and 95 mAh g
-1

. However, the volume expansion of the unit 

cells upon lithium insertion is 6 % for trirutile-type LiNiFeF6 [18] and 6.5 % for Na2SiF6-type 

LiMnFeF6 [17]. Moreover, for LiMnFeF6 material a cation site exchange and partial 

transformation into rutile-type arrangement was detected by ex situ XRD [17], which is 

accompanied by a massive volume expansion.  
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In this study, we show that the colquiriite-type crystal structure of LiCaFeF6 has a 

favourable cation arrangement and exhibits unprecedented low strains for a cathode. We 

present an analysis of the chemical, structural and electrochemical properties of LiCaFeF6 

cathode material. Therefore, data from in situ and ex situ X-ray diffraction, X-ray absorption 

spectroscopy, Mössbauer, and NMR spectroscopy are used to elucidate the lithium insertion 

mechanism and the induced zero-strain behaviour of this material. 

 

2. Experimental 

2.1. Synthesis and preparation of cathode films 

LiCaFeF6 was prepared by a solid-state reaction as described by Viebahn [19]. Prior to 

synthesis, FeF3 was pre-dried at 350 °C. Then, stoichiometric amounts of LiF, CaF2, and FeF3 

were thoroughly homogenized in a mortar under inert Ar atmosphere in a glovebox. The 

mixture was heated to 650 °C for 10 hours in an Ar-filled Cu ampoule at a heating rate of 5 

°C min
-1

 yielding to the formation of the LiCaFeF6 powder. In order to obtain a conductive 

composite with good electrochemical performance, 2.7 g of the as-prepared LiCaFeF6 was 

processed by mechanical milling with carbon (Super C65, Timcal) and PvdF binder (KYNAR 

Powerflex LBG-1, Arkema) at a ratio of 72 wt.-% / 25 wt.-% / 3 wt.-%. The milling was 

performed under dry conditions in air using a planetary ball mill (Pulverisette 5, Fritsch) with 

milling balls (100 g, 3 mm diameter) and an 80 mL milling chamber both made of yttria-

stabilized zirconia. To prepare cathode films, the LiCaFeF6 composite was dispersed in N-

methyl-2-pyrrolidone to form a homogeneous slurry. A thin film of the slurry was cast on 12 

mm diameter aluminium current collectors and dried in an oven at 80 °C for 24 hours.  

 

2.2. Chemical and structural characterisation  

The morphology and crystal structure of the as-synthesized sample as well as of the 

ball-milled composite were characterized by scanning electron microscopy and X-ray powder 
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diffraction. SEM images were recorded using a Zeiss Supra 55 microscope. XRD patterns 

were acquired with a Siemens D5000 diffractometer equipped with a copper tube (λ = 

1.54184 Å) and a detector using energy discrimination. Measurements were conducted in the 

10−120° 2θ angular range with increments of 0.04° in 2θ at a constant counting time of 12 s 

(divergence slit = 1°, anti-scatter slit = 1°). Analyses of the XRD data were performed by use 

of the Rietveld method with the software TOPAS version 5 (Bruker AXS). The instrumental 

profile shape was determined using the fundamental parameter approach [22]. Sample 

broadening effects of the synthesized materials, such as the apparent crystallite size and 

microstrain, were accounted for by convolution-based profile fitting as implemented in the 

TOPAS programme. This approach is equivalent to the Double-Voigt method described by 

Balzar [23,24] and is based on the integral breadths of the diffraction lines. The microstrain 

calculated with TOPAS corresponds to an apparent maximum upper-limit strain given by 

                      , where    is the distortion related integral breadth [24]. The 

background refinement was made using a 10-term Chebyshev polynomial background 

function. Graphical images of the structure were designed with the VESTA software package 

[25]. The specific surface area of the as-synthesized powder was determined by measuring 

nitrogen physical adsorption isotherms at 77 °C using a Gemini VII system (Micromeritics 

GmbH). Prior to the measurement, the sample was degassed at 120 °C for 12 hours. The 

specific surface area was determined according to BET theory [26].  

 

2.3. Electrochemical characterisation and structural characterisation during cycling 

For the electrochemical characterization LiCaFeF6 cathodes were cycled in two-

electrode Swagelok cell against lithium metal counter electrodes. The cells were assembled 

inside a glovebox under Ar atmosphere. Glass fiber separators (GF/C, Whatman) and a 

solution of LiPF6 (1 M) in ethylene carbonate (EC) and dimethyl carbonate (DMC) [1:1] as 

electrolyte (LP30, Merck) were used. In situ X-ray diffraction analysis was carried out using 
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of a dedicated laboratory diffraction setup equipped with a molybdenum micro focus rotating 

anode generator (λ = 0.71073 Å) and a Pilatus 300K-W area detector. Details of this setup can 

be found elsewhere [18]. A cathode containing 18.79 mg of LiCaFeF6 active material was 

cycled against the lithium metal anode at a current density of 6.095 mA g
-1

 corresponding to a 

C-rate of ~ C/20. Two-dimensional diffraction images were recorded in transmission 

geometry with an exposure time of 300 s. The intensities of two consecutive images were 

added and integrated to one-dimensional diffraction patterns for further evaluation, resulting 

in a time resolution of 10 min. For Rietveld refinement, the instrumental resolution function 

was determined with an annealed CeO2 sample and was described with a pseudo-Voigt profile 

function of Thompson, Cox and Hastings [27]. A zero-point correction defined by Norby [28] 

was used to correct for possible sample displacement errors of the active material and the Al 

current collector. The background refinement was made using a 15-term Chebyshev 

polynomial background function. The cycling was performed in optimized coin cell type 

batteries [18] at galvanostatic conditions.  

57
Fe Mössbauer spectroscopic measurements were performed in transmission mode at 

room temperature using a constant acceleration spectrometer with a 
57

Co(Rh) source. Isomer 

shifts are given relative to that of -Fe at room temperature. 
7
Li magic-angle spinning (MAS) 

nuclear magnetic resonance (NMR) spectroscopy was performed using a Bruker Avance 200 

MHz spectrometer with 2.5 mm zirconia rotors. The magnetic field was B0 = 4.7 T 

corresponding to a Larmor frequency of L = 77.8 MHz. An aqueous 1 M LiCl solution was 

used as a reference for the chemical shift of 
7
Li (0 ppm). The values for the recycle delay and 

the /s pulse length were 1 s and 2.5 s, respectively. All NMR experiments were performed 

at room temperature (298 K), with a spinning speed of 30 kHz, and a rotor synchronized 

Hahn-echo sequence (/2–τ––τ–acquisition). XAS measurements were carried out at the 

KMC-2 beamline of the BESSY II synchrotron light source in Berlin, Germany. Samples, 

which were cycled to various states of charge, were mixed with graphite powder and pressed 
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into pellets. XAS spectra were recorded in the transmission mode at the Fe K-edge. Absolute 

energy calibration of the monochromator was implemented by simultaneously measuring a 

pure Fe reference foil. The intensities of the incident beam and the beams transmitted through 

the sample and reference foil were recorded by use of three gas-filled ionization chambers. In 

addition, the spectra of a FeF2 and a FeF3 reference were measured. The obtained data were 

aligned and normalized, and the background was subtracted as described elsewhere [29] using 

the ATHENA programme of the DEMETER software package[30].  

 

3. Results and Discussion 

3.1. Structural and morphological characterization 

Fig. 1a shows the X-ray powder diffraction patterns and Rietveld refinement results of 

LiCaFeF6 after synthesis and after ball-milling with carbon and binder. The sharp Bragg 

reflections of the as-synthesized material reveal good crystallinity, which is consistent with 

the results from scanning electron microscopy (SEM) indicating a remarkable grain growth, 

that yields particles with sizes of several micrometers (Fig. 1a, bottom). The crystal structure 

can be assigned to the trigonal space group symmetry       with Z = 2 (Fig. 1b). Rietveld 

refinement yields lattice parameters of a = 5.1298(1) Å and c = 9.7765 (2) Å (Table 1). The 

refined atomic positions (Table 2) are in good agreement with colquiriite-type LiCaAlF6 and 

other isotype quaternary lithium metal fluoride compounds [19,31]. All cations are present in 

a completely ordered arrangement. The refinement of the microstructure parameters yields an 

apparent crystallite size of 240(+/-10) nm, which is significantly smaller than the visual 

impression obtained from SEM images. This suggests that the particles in the micrographs 

most likely consist of polycrystalline domains. The specific surface area determined by BET 

amounts to ABET = 0.18 m
2
 g

-1
. According to the relation dBET = 6/(ρ ∙ ABET), with the 

theoretical density of LiCaFeF6 of ρ = 3.238 g cm
-3 

[19], an average spherical grain diameter 

of 10.3 µm can be estimated.  
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Fig. 1: a) Powder X-ray diffraction patterns and SEM micrographs of the as-synthesized 

LiCaFeF6 (bottom) and after ball-milling with carbon and PVDF binder (top). Green tics mark 

the positions of reflections of LiCaFeF6 and impurity phases Li3FeF6, CaF2, and LiF (from top 

to bottom). Asterisks mark CaF2 impurity reflections in the ball-milled composite. b) 

Colquiriite-type crystal structure of LiCaFeF6 with empty 2a site that is suggested for the 

insertion of additional lithium. c) The large ionic radius of initial Li
+
-ions, which are present 

in the pristine crystal structure, and the associated high [LiF6]-octahedral volume stabilize the 

interlayer distance between [CaF]-layers. 

 

This is significantly larger than the crystallite size obtained from XRD analysis and rather 

corresponds to the particles observed by SEM, indicating pronounced agglomeration and 

sintering of primary particles.The microstrain parameter determined by Rietveld analysis 

amounts to ε = 1.38(2) × 10
-4

. As minor impurity phases, small amounts of Li3FeF6 (~2.2 wt.-

%), CaF2 (~1.1 wt.-%) and LiF (< 1 wt.-%) were also detected. After applying ball-milling for 

24 hours a LiCaFeF6/C/binder nanocomposite was achieved and X-ray diffraction evidences 

that the colquiriite structure of LiCaFeF6 can be maintained (Fig. 1a, top). However, the 

diffraction pattern of the electrode composite shows significant broadening of Bragg 
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reflections. Rietveld refinement suggests that this is mainly due to a reduction in apparent 

crystallite size to approximately 26(4) nm. The crystallite size is in good accordance with the 

observations from SEM. Furthermore, an increase in microstrain to ε = 3.1(1) ×10
-3

 can be 

detected. The lattice constants of the ball-milled LiCaFeF6 are a = 5.1336(11) Å and c = 

9.7791(29) Å. The cationic ordering within the unit cell is not affected by the high-energy 

ball-milling. This is a noteworthy difference as compared to other quaternary lithium metal 

fluorides with trirutile- and Na2SiF6-type crystal structure, where ball-milling caused a 

significant decrease in the degree of cation order. An impact of ball-milling on fluorine 

atomic coordinates can be noticed by Rietveld refinement (Table 1) reflecting an increasing 

distortion of the hcp fluorine lattice. 

 

Table 1: Lattice parameters and unit cell volume of LiCaFeF6 directly after synthesis, after 

ball-milling and after cycling. Atomic coordinates from Rietveld refinement and isotropic 

thermal displacement parameters (Beq of Li is taken from literature [31]) of LiCaFeF6 after 

synthesis, after ball-milling and in the discharged state (Li1.79CaFeF6; determined by ex situ 

XRD).  

Sample a (Å) c (Å) Vol (Å
3
) 

As-synthesized 5.1299(1) 9.7765(2) 222.80(1) 

Ball-milled 5.1336(11) 9.7791(29) 223.2(2) 

1
st
 discharge (2.0 V) 5.1414(7) 9.80128(210) 224.4(1) 

1
st
 charge (4.5 V) 5.1366(7) 9.78576(214) 223.6(1) 

2
nd

 discharge (2.0 V) 5.1408(7) 9.8030(21) 224.3(1) 

Atom Wyckoff x y y occ Beq 

Ca 2b 0 0 0 1 0.72(9) 

Li 2c 1/3 2/3 1/4 1 1.00 

Fe 2d 2/3 1/3 ¼ 1 0.45(6) 

F (as-synthesized) 12i 0.3649(9) 0.0137(7) 0.1378(3) 1 1.34(9) 

F (ball-milled) 12i 0.3573(21) 0.0093(9) 0.1392(6) 1 1.34(9) 

F (discharged) 12i 0.3622(15) 0.0137(7) 0.1328(6) 1 1.34(9) 
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3.2. Electrochemical characterisation 

Electrochemical investigations were performed in a potential range from 2.0 to 4.5 V. 

Based on previous studies of lithium metal fluorides [15–18,21,32–35] it is assumed that the 

cations Ca
2+

 and Fe
3+

 are in the highest oxidation state within the applied operating voltage 

window. Lithium extraction from the host structure is therefore not expected. Hence cycling 

was started with discharging (insertion of Li
+
-ions) according to:  

                                   eq. 1 

assuming Fe
3+

/Fe
2+

 to be the electrochemically active redox couple. Galvanostatic cycling (I = 

21.5 µA ≙ C/20) and cyclic voltammetry (Fig. 2a,c) were performed with cathodes containing 

3.482 mg (3.079 mg cm
-2

) and 3.561 mg (3.149 mg cm
-2

) LiCaFeF6. The half-cells exhibit an 

open circuit voltage of 4.43 V vs. lithium. In the first cycle of the galvanostatic test, a 

discharge capacity of 112 mAh g
-1

 was achieved equivalent to ~0.91 Li per formula unit 

LiCaFeF6 (1 Li ≙ 123.59 mAh g
-1

).  

The discharge curve features a region with low slope corresponding to an increased capacity 

between 3.2 V and 2.6 V. Slow scan cyclic voltammetry reveals a maximum discharge current 

at 2.86 V, which is assigned to the reduction of Fe
3+

 to Fe
2+

. Upon charging, the 

corresponding oxidation peak can be observed at 3.162 V. Accordingly, the cell potential 

curve features a low slope region between 2.8 V and 3.6 V during galvanostatic charging. 

During the following cycles, a slight increase in the electrode polarisation can be seen, as 

indicated by a shift of oxidation/reduction peaks in the cyclic voltammetry data. The cathode 

material shows good cyclic stability over 20 cycles (Fig. 2b). In the 20
th

 cycle a discharge 

capacity of 94 mAh g
-1

 (0.76 eq. Li; 76 % of its theoretical capacity) can still be achieved. 
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Fig. 2: a) Discharge (blue) and charge (red) profiles at galvanostatic cycling of LiCaFeF6/C 

composite cathode at a rate of C/20. b) Discharge capacity of the LiCaFeF6/C composite 

cathode during galvanostatic cycling at a rate of C/20. c) Slow-scan cyclic voltammetry (20 

µV s
-1

)
 
of the LiCaFeF6/C composite cathode within the potential range from 2.0 to 4.5 V. 

 

3.3. 57
Fe Mössbauer spectroscopy 

The 
57

Fe Mössbauer spectra of LiCaFeF6 in the as-synthesized state and after 

discharging to 2.0 V are displayed in Fig. 3. The spectrum of the as-synthesized sample 

predominantly consists of a narrow doublet with an isomer shift of (0.44  0.01) mm s
-1

 and a 

quadrupole splitting of (0.55  0.25) mm s
-1

. These parameters are characteristic of Fe
3+

.  
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Fig. 3:  
57

Fe Mössbauer spectra of LiCaFeF6 in the as-prepared state and after discharging to 

2.0 V. The experimental data points are given as white circles and the fits are given as red 

lines. Fe
3+

 and Fe
2+

 subspectra are given as blue and red doublets, respectively. The inset 

shows the distribution of quadrupole splittings used to describe the Fe
2+

 doublet after 

discharging to 2.0 V. 

 

A second, much weaker doublet reveals an isomer shift of (1.27  0.02) mm s
-1

 and a 

quadrupole splitting of (2.42  0.03) mm s
-1

. Its area fraction amounts to 14.6 % and it has to 

be ascribed to the presence of a small amount of Fe
2+

. After discharging to 2.0 V the Fe
3+

 

contributions disappeared almost completely and the spectrum is dominated by a broad 

doublet consisting of two broad and highly asymmetric lines. The isomer shift of this doublet 

is (1.21  0.01) mm s
-1

 and it clearly shows that most of the Fe
3+

 has been converted to Fe
2+

. 

The broad asymmetric lines can be described in terms of a distribution of quadrupole 

splittings. This distribution is ranging from 1 to 3 mm s
-1

 and it is remarkably similar to those 

obtained for LiNiFeFe6 [16] and LiMgFeF6 [21] after lithium insertion. 
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3.4. 7
Li MAS NMR 

Fig. 4 shows the 
7
Li MAS NMR spectra of LiCaFeF6 directly after synthesis, after 

milling with PVdF and carbon, and after discharging in a battery cell against Li metal down to 

2.0 V. The spectrum of the sample obtained directly after synthesis shows two strong peaks at 

367 ppm and 150 ppm. Such large NMR shifts are characteristic of paramagnetic neighbours 

in the direct environment of Li [36] and thus of the presence of Li-F-Fe bonds. This is 

confirmed by the fact that these two peaks show very broad patterns of spinning sidebands 

covering a range of ±1500 ppm (not shown in the figure). Additionally, a small peak at 0 ppm 

is visible revealing the presence of Li in a diamagnetic environment, probably a small amount 

of LiF. After milling with carbon black and PVdF, the two peaks with the large shifts are still 

present but in a strongly broadened form. This hints at an increase of structural disorder 

induced by the milling and is consistent with similar observations on Li2NiF4 [34] and 

LiNiFeF6 [18]. Since an alteration of cationic order could be excluded by XRD analysis, the 

broadening is most likely caused by a distortion of the fluorine lattice leading to variations in 

bond lengths and angles. After discharging to 2.0 V, the peaks at 367 ppm and 150 ppm 

disappeared completely and a new broad peak appeared at about 50 ppm. This is caused by 

intercalation of Li into the crystal structure of LiCaFeF6, which is accompanied by reduction 

of Fe
3+

 to Fe
2+

 (as evidenced by Mössbauer spectroscopy and XAS spectroscopy as discussed 

below). This changes the environment around Li and thus the interactions mediated via the Li-

F-Fe bonds. The much smaller shifts caused by the presence of the Fe
2+

 neighbors in 

comparison to the Fe
3+

 environments is consistent with earlier experiments on Li2Fe1-

yMnySiO4 [37], LiMn0.6Fe0.4PO4 [38], and LiNiFeF6 [18]. The increased intensity of the peak 

at 0 ppm may be caused by residues of the Li salt from the electrolyte. 
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Fig. 4: 
7
Li MAS NMR spectra of LiCaFeF6 directly after synthesis, after milling with PVdF 

and carbon, and after discharging against Li metal down to 2.0 V. Spinning sidebands are 

marked with an asterisk. 

 

3.5. XANES spectroscopy 

The normalised X-ray absorption near edge structure (XANES) spectra of LiCaFeF6 

measured at the Fe-K-edge of various samples cycled to different states of charge and 

discharge and of the reference materials are shown in Fig. 5. All spectra feature a pre-edge 

region which corresponds to the 1s → 3d electric-dipole-forbidden, but quadrupole-allowed 

transition [39]. Its presence gives hint on a distortion of [FeF6] octahedra.  
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Fig. 5:  Normalised X-ray absorption spectra (a) and Fourier transforms of the k
3
-weighted 

EXAFS signals X(k) (b) at the Fe K-edge of Li1+xCaFeF6 measured in the pristine state 

(Li1.00CaFeF6) and ex situ after cycling to various electrochemical states of discharge (2.8 V 

(Li1.42CaFeF6), 2.0 V (Li1.77CaFeF6)) and charge (3.3 V (Li1.42CaFeF6), 4.5 V (Li1.00CaFeF6)) 

Further spectra are measured in the charged state at 4.5 V after cycling over a period of 10, 

20, and 30 cycles (c). Labels of peaks in the Fourier transforms assign the coordination shell. 

The inset in (a) shows an expanded view of the pre-edge region.  
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The maximum of the vertically rising main edge can be assigned to the 1s → 4p 

transition [39]. In the pristine material the position of the 1s → 4p peak is very similar to that 

of the Fe
3+

-containing reference. Upon discharge a chemical shift of the main absorption edge 

to lower energies can be detected. After discharge to 2.8 V (x = 0.42 in Li1+xCaFeF6; the Li 

content was calculated based on the measured capacity) a minor shift has occurred, though the 

edge is still located in close proximity to the Fe
3+

 reference. The Fe K-edge of the sample 

discharged to 2.0 V (x = 0.77) is also located between the edges of the two reference spectra, 

however, it is now closer to the edge of the Fe
2+

-containing reference. With regard to the 

amount of inserted lithium of x = 0.77 a mismatch between the edge of the discharged sample 

and the edge of the Fe
2+

 reference is expected and serves as indication of a mixed-valent state 

of iron. As the material is charged to 3.3 V (x = 0.42) a reverse shift of the Fe K-edge to 

higher energies can be noticed. In the completely charged state at 4.5 V the original position 

of the Fe K-edge of the Fe
3+

 reference is achieved demonstrating the reversibility of the 

electrochemical reaction. These observations evidence the active Fe
3+

/Fe
2+

 redox couple and 

are in accordance with the results from Fe-Mössbauer spectroscopy. Moreover, the presence 

of the 1s→ 3d transition in the pre-edge region and its splitting into a doublet of the t2g and eg 

orbital hints on an asymmetric distortion of the Fe-F bonds [39–43]. 

 

3.6. Structural characterization upon cycling 

3.6.1. In situ X-ray diffraction 

Cycling of the LiCaFeF6/Li cell was performed between 2.0 V and 4.5 V under 

constant current conditions with a rate of C/20 over three half cycles. At the end of each 

discharge and charge cycle, the cell was held at the constant cut-off voltage for two hours to 

allow for the relaxation of kinetic effects and to obtain a defined state of charge.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

Fig. 6:  Evolution of in situ X-ray diffraction patterns of LiCaFeF6 during the first three half-

cycles. 

 

Fig. 6 shows a contour plot of the diffracted intensities during the in situ XRD 

experiment in the 2θ region between 7° and 32.5°, together with the electrochemical data and 

enlarged views of the diffraction patterns in selected 2θ regions. The recorded cell voltage 

shows regions with reduced slope, corresponding to regions of increased capacity (region I) 

and regions with higher slope (region II). Region I is found between 2.9 V and 2.6 V in 

discharge and between 3.3 V and 3.8 V during charge. In the first cycle a discharge capacity 

of 98.7 mAh g
-1

 was obtained, which corresponds to x = 0.80 Li per formula unit 

Li1+xCaFeF6. The charge capacity in the first cycle is 104.8 mAh g
-1

 and is thus higher than 

the discharge capacity, which suggests that all of the inserted lithium is completely extracted 

during charging. An extraction of further lithium from the host structure is unlikely and was 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

not observed by in situ XRD for the quaternary lithium metal fluoride LiNiFeF6 either. During 

the whole experiment, the positions as well as the intensities of Bragg reflections of LiCaFeF6 

stay nearly the same. This shows that the colquiriite structure is stable during lithiation and 

delithiation. It should be noted that the reflections do not show any significant line broadening 

and no additional reflections occur, which would indicate the formation of additional phases 

confirming that Li insertion/extraction occurs through solid solution. Only a careful 

examination reveals that the reflections slightly shift towards lower 2θ-angles during 

discharge and shift back to their initial positions during subsequent charge. The data of the 

second discharge cycle confirm the reversibility of these very weak structural changes.  

Fig. 7 shows the results of lattice parameters and strain parameters determined by the 

Rietveld refinement.  Selected diffraction patterns taken at different states of the reduction 

process upon first discharge, together with the calculated patterns are displayed in 

Supplementary Fig. S1. The refinement results confirm that in the whole concentration range 

of the experiment of up to a maximum of x = 0.8 Li, the compound Li1+xCaFeF6 exists as a 

single phase solid solution system. All diffraction patterns can be described by a single 

structural model based on the colquiriite structure (occupation of Wyckoff positions according 

to Tab. 2). The course of calculated lattice parameters (Fig. 7) exhibits only a minor variation 

of unit cell dimensions upon cycling. At the beginning the lattice parameters are a = 

5.1344(6) Å and c = 9.7892(20) Å. The initial unit cell volume hence amounts to V = 223.2(1) 

Å
3
. During discharge the cell potential rapidly flattens into the plateau-like region (region I). 

In the discharge interval up to an inserted amount of x = 0.55 Li, a volume increase of only 

approximately 0.2 % to V = 223.86(8) Å
3
 occurs. This expansion is attributed to the very 

small increase in both lattice parameters a and c. The a lattice parameter increases by 0.06 % 

to a = 5.1377(7) Å. The c lattice parameter increases by 0.04 % to c = 9.7926(23) Å. Further 

discharge leads to a steeper course of the cell potential (region II). An amount of x = 0.75 Li 

is transferred into the host structure until the cut-off voltage of 2.0 V is reached. 
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Fig. 7:  Rietveld refinement results of lattice metric and microstrain of LiCaFeF6 as a function 

of Li content electrochemical state. 

 

In this interval, both lattice parameters increase more rapidly but still to limited extend 

up to a = 5.1430(7) Å and c = 9.7930(23) Å. During the constant voltage step at 2.0 V the 

lattice constants level off at values of a = 5.1415(7) Å and c = 9.8013(22) Å. Compared to the 

uncycled state this corresponds to an increase by 0.14 % and 0.12 %. At the end of discharge 

(x = 0.8 Li) the volume is V = 224.38(8) Å
3
. Thus, the maximum volume expansion amounts 

to less than 0.5 % over the whole range of discharge. Despite this remarkably small expansion 

of the host structure of LiCaFeF6, the Li-insertion is accompanied by a slight increase in 

microstrain. The course of the refined strain parameter ε exhibits an increase from initially 

3.6(2) × 10
-3

 to 4.2(2) × 10
-3

. 
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The following charge cycle and the subsequent, second discharge cycle confirm the 

reversibility of the structural processes. Upon extraction of the previously inserted Li
+
-ions 

the lattice parameters decrease again in a symmetrical course and finally achieve a = 

5.1365(7) Å and c = 9.7857(22) Å at the end of charge, which almost coincides with the 

initial values. This corresponds to a volume expansion of only approximately 0.05 % as 

compared to the uncycled state. 

 

3.6.2. Ex situ X-ray diffraction 

In situ XRD has proven exceptionally high structural stability of LiCaFeF6 against Li-

insertion. For a more detailed investigation of even minimal changes an ex situ sample, that 

was cycled to the discharged state at 2.0 V (x = 0.79), was analysed by XRD and Rietveld 

refinement. A presentation of the measured diffraction data and the calculated pattern from 

Rietveld analysis is shown in Supplementary Fig. S1. The calculated lattice parameters of 

Li1.79CaFeF6 are a = 5.1498(5) Å and c = 9.8110(16) Å. The values are in good agreement 

with values obtained by in situ XRD. Besides the minor lattice parameter expansion, a slight 

deviation of F-anions from their original atomic positions can be detected indicating a slight 

distortion of the fluorine lattice (Table1). Presumably, such distortion is the consequence of 

incorporation of additional lithium into the crystal structure and, moreover, is caused by the 

partial reduction of Fe
3+

 to Fe
2+

. The atomic coordinates of the cations remain unchanged, 

since these occupy special sites in the colquiriite structure and do not have any positional 

degree of freedom.  

Due to the low X-ray scattering power of lithium it is hard to determine the precise 

distribution of inserted Li
+
-ions. Nevertheless, placing Li atoms onto different sites in the 

Rietveld refinement may help to infer the positions of Li in the crystal structure. 

Theoretically, the crystal structure of LiCaFeF6 offers three different octahedrally coordinated 

empty sites, namely the 2a, 4e and 6g site. A slight, gradual change in intensities of distinct 
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Bragg reflections (020 and 114 reflection) hints on a change in Li concentration (see 

Supplementary Fig. S2). When possible lithium occupation of the 4e or 6g site is taken into 

account, the refinement shows lower quality. However, if an occupation of the 2a site is 

assumed, a noticeable improvement of the Rwp value can be achieved (see Supplementary Fig. 

S3). A refinement of the site occupancy parameter yields occLi2 = 0.72(6), which is in 

satisfying accordance with the amount of inserted Li that was calculated by the charge 

transferred during the discharge (x = 0.79). A corresponding expansion of the surrounding 

fluorine octahedron from approximately 12.30 Å
3
 to 13.34 Å

3
 corroborates the assumption of 

Li insertion on the 2a site. 

 

3.6.3. EXAFS spectroscopy 

The Fourier transforms of the k
3
-weighted EXAFS signals Χ(k) at the Fe K-edge of the 

LiCaFeF6 cathode material in the pristine state as well as at differently charged and 

discharged states are depicted in Fig. 5b. In the Fourier transform the first peak is located at 

approximately 1.5 Å, which is assigned to the bond between iron and fluorine atoms in the 1
st
 

shell around Fe absorbers. The signal at approximately 3.3 Å in the Fourier transform can be 

assigned to the higher-order Fe-Ca distance. On the left side of this signal a further peak at 

approximately 2.9 Å is present corresponding to the higher order Fe-F distance. For the 

material that was discharged to 2.8 V and 2.0 V a progressive reduction in amplitude of the 

signals, in particular of the first Fe-F signal, can be observed. This is assigned to a change in 

the length of the first shell Fe-F bond and is in agreement with the results from XRD. It is 

assumed that these changes originate from the reduction of Fe
3+

 to Fe
2+

 upon discharge as it 

has been proven by XANES and Mössbauer spectroscopy. In addition, the signal exhibits 

broadening, which might be caused by local variations in bond lengths and possibly is 

affected by differences in Li concentration in the host structure. 
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After charging the material to 3.3 V an increase in the amplitude can be seen and in 

the fully charged state at 4.5 V the amplitude nearly achieves its initial level. The signals in 

the Fourier transform of the sample at 4.5 V are in good agreement with the signals of the 

uncycled sample, demonstrating the good reversibility of local structural changes. 

Further EXAFS spectra were recorded at the Fe K-edge of samples in the charged state 

at 4.5 V after cycling over a period of 10, 20, and 30 cycles (Fig. 5c). In comparison to the 

uncycled state a slight reduction in the amplitudes of the Fourier transforms can be observed 

at higher cycle numbers. Nevertheless, after cycling over a long period of 30 cycles the signal 

still remains quite stable and no significant aging phenomena, such as formation of a new 

phase or alteration in the local structure of the original material, are observed, indicating a 

considerable stability of the electrode host structure. 

  

4. The zero-strain lithium insertion mechanism 

The results from structural analysis consistently demonstrate that the colquiriite host 

structure of Li1+xCaFeF6 cathode material is retained at any state of charge in the voltage 

window between 2.0 and 4.5 V. The material can be cycled as a pure solid solution system in 

the lithium concentration range of 0 ≤ x ≤ 0.8. Tab. 3 summarizes the calculated lattice 

parameters, bond lengths and polyhedral volumes of the cathode material at the uncycled state 

and in the discharged state at 2.0 V. Based on the results from ex situ X-ray diffraction it is 

assumed that inserted Li
+
-ions occupy the previously empty crystallographic 2a site (Fig. 1b). 

After the insertion of additional lithium expansion of the a lattice parameter and the c lattice 

parameter by 0.14 % and 0.13 %, respectively, can be detected by in situ XRD. Hence, the 

overall volume expansion amounts to < 0.5 %, which is exceptionally low compared to the 

volume changes observed for other cathode materials. Also the c/a ratio only changes by 0.01 

% upon discharge. This small and approximately isotropic change in lattice parameters is 

reflected by a likewise small increase of the microstrain parameter ε (Fig. 7). In order to 
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obtain a better understanding of the exceptionally high stability of the host structure, the 

distribution of cations in the structure, as well as the linkage between their corresponding 

fluorine octahedra need to be considered in more detail. The structure consists of a packing of 

two types of alternating slabs, one made of [CaF6]-octahedra (Wyckoff position 2b) and the 

other made of [FeF6]- and [LiF6]-octahedra. Each [CaF6]-octahedron is connected via corners 

with three [FeF6]-octahedra (Wyckoff positions 2c) and three [LiF6]-octahedra (Wyckoff 

positions 2d) from layers below and above. Edge-sharing with these octahedra is rather 

unlikely due to the very large volume of [CaF6]-octahedra (15.46 Å
3
). However, [FeF6]- and 

[LiF6]-octahedra are edge-connected, though they also differ in volume. The volume of 

[LiF6]-octahedra amounts to 10.81 Å
3
, whereas [FeF6]-octahedra are noticeably smaller with a 

volume of 9.92 Å
3
. As a result, the larger [LiF6]-octahedron functions as a crucial spacer 

keeping the adjacent [CaF6]-slabs distant in c-direction. This can compensate volume changes 

caused by the increase of iron ionic radius when Fe
3+

 is reduced to Fe
2+

 upon Li insertion. As 

Rietveld analysis of the discharged sample shows, the octahedral volume of Fe-octahedra 

amounts to 10.29 Å
3
 after the insertion of 0.79 Li per Li1+xCaFeF6. Nevertheless, the [LiF6]-

octahedra still have a larger volume (11.69 Å
3
) and hence Fe-F bond lengths do not decisively 

influence the dimensions of the unit cell.  

In their extensive comparative study Pawlak et al. [46] systematically investigated the 

structural parameters of various LiMe
II
Me

III
F6 compounds with colquiriite-type crystal 

structure. It was shown that ion radii of the Me
II
- and the Me

III
-ion differently affect the lattice 

parameters. Substitution of the divalent Me
II
-cation on the 2b site, as for instance Ca

II
 by the 

larger Sr
II
, does strongly affect the c-lattice parameter while the trivalent Me

III
-ion on the 2c 

site does not have significant impact on the c-axis. Even though there is a correlation between 

the size of the Me
III

-ion and the a-lattice parameter, the effect is substantially smaller allowing 

the interatomic Me
III

-F distances to vary by up to 0.1 Å without influencing the a-axis.  
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Fig. 8: Comparison of the relative volume change of LiCaFeF6 cathode material with that of 

other quaternary LiMe
II
FeF6 compounds [17,18] as well as with that of commercially used 

electrode materials [1,4,11,44,45]. 

 

Hence, the octahedra that are coordinating the electrochemically active Fe
III

-ions are 

affecting the lattice parameters of LiCaFeF6 the least. According to Viebahn [19] the structure 

type of quaternary LiMe
II
Me

III
F6 compounds depends on the ratio of ionic radii             . 

Therefore, a possible transformation from the colquiriite structure into Na2SiF6-type structure 

upon the reduction of Fe
3+

 to Fe
2+

 should be taken into consideration. Galy and Andersson 

showed that such transformation is based on a simple geometric relation throughout which the 

hcp fluorine lattice is retained and only the way of octahedra linkage is changed [47]. Based 

on the example of the solid solution series LiCd1-xMnxCrF6, Viebahn [19] determined a 

critical limit of              = 1.48 below which the colquiriite structure is transformed into 

Na2SiF6-type structure. Assuming a maximum of inserted lithium of x = 1 in Li1+xCaFeF6 and 

a complete reduction of iron to Fe
2+

, the ratio of ionic radii should be approximately 1.47, and 

is thus slightly below the critical lower phase boundary of the colquiriite structure. However, 

Viebahn [19] also showed that the Na2SiF6 structure can only be formed if the ionic radii do 

not differ by more than 15 %. Due to the large size of Ca
2+

, this is not the case for LiCaFeF6 

[48]. Hence, the stability of the colquiriite host structure of LiCaFeF6 can be ensured at any 

valence state of Fe between 2+ and 3+. Regarding the electrochemical voltage profile, the 
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LiCaFeF6 cathode material shows very similar features to other quaternary lithium metal 

fluorides LiMe
II
FeF6 [16–18,20,21]. This is attributed to the typical shape of the charge and 

discharge profile of the electrochemically active Fe
3+

/Fe
2+

 redox couple that all compounds 

have in common as Mössbauer spectroscopy [16,17,21] and X-ray absorption spectroscopy 

[18] reveal. However, its highly stable colquiriite structure distinguishes LiCaFeF6 from other 

fluorides. The structural stability is reflected in a better cycling stability as compared to that 

of quaternary fluorides with trirutile [16,20,21] or Na2SiF6-type [17] structure demonstrating 

the clear benefits of the colquiriite structure. Fig. 8 shows a comparison of the relative volume 

change of LiCaFeF6 with volume changes taking place in other quaternary lithium metal 

fluorides and different commercial electrode materials. The illustration shows that 

comparably small volume change is only provided by the zero-strain anode material Li4Ti5O12 

(LTO) [11]. Fig. 8 also reflects the fact that there is no commercial cathode material with 

strains that are similar to those reported here. Another positive electrode material showing a 

similar zero-strain effect is Li1+xRh2O4 [13,14] which, however, it is not used in applications. 

In contrast to LiCaFeF6, both zero-strain materials Li4Ti5O12 and Li1+xRh2O4 exhibit a two-

phase transformation upon lithium insertion. Despite the minor lattice parameter changes, the 

formation of coherent phase boundaries taking place during a two-phase transformation may 

lead to very small lattice strain between crystal domains of different Li content. Such 

structural instabilities may still accumulate and lead to mechanical damage during cycling. 

This can be avoided by a pure solid-solution system like Li1+xCaFeF6. LiCaFeF6 is made from 

abundant elements and potentially is a cheap and reliable material and therefore very 

promising for future application in safe and reliable lithium ion batteries. 

 

5. Conclusion 

The quaternary lithium fluoride LiCaFeF6 with colquiriite crystal structure was 

synthesized by a solid-state reaction and processed to a conductive electrode composite via 
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high-energy ball-milling. The as-synthesized LiCaFeF6 as well as the ball-milled 

LiCaFeF6/C/binder composite were characterised structurally and morphologically showing 

that the colquiriite structure is preserved upon milling. Electrochemical cycling was 

performed against a lithium anode in the potential range from 2.0 V to 4.5 V. In the first cycle 

of the galvanostatic test, a discharge capacity of 112 mAh g
-1

 can be achieved. Slow scan 

cyclic voltammetry reveals a maximum discharge current at 2.86 V, which is assigned to the 

reduction of Fe
3+

 to Fe
2+

. The electrochemically active redox couple Fe
3+

/Fe
2+

 was confirmed 

by Mössbauer spectroscopy and X-ray absorption spectroscopy.  

In comparison to other quaternary lithium metal fluorides the compound LiCaFeF6 

with colquiriite-type crystal structure shows by far the most promising results regarding its 

properties as cathode material for use in lithium ion batteries. The structural properties of 

LiCaFeF6 upon cycling in a lithium-ion battery were analysed by means of in situ and ex situ 

XRD as well as X-ray absorption spectroscopy (EXAFS). The results show that due to an 

appropriate arrangement of polyhedra and interatomic distances, a very flexible and reversible 

response to Li uptake is guaranteed yielding minimum changes in lattice parameters and a 

total change in unit cell volume of < 0.5 % for an uptake of 0.8 mole Li per formula unit. The 

reversibility and long-term stability was furthermore confirmed. In Lithium-ion batteries such 

“zero-strain“ behaviour is only observed for the Li4Ti5O12 (LTO) anode material and up to 

now no other commercially used cathode material for Li-ion batteries with comparable 

properties is known, which makes LiCaFeF6 a promising candidate for future energy storage 

applications. 
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Table 1 

Sample a (Å) c (Å) Vol (Å
3
) 

As-synthesized 5.1299(1) 9.7765(2) 222.80(1) 

Ball-milled 5.1336(11) 9.7791(29) 223.2(2) 

1
st
 discharge (2.0 V) 5.1414(7) 9.80128(210) 224.4(1) 

1
st
 charge (4.5 V) 5.1366(7) 9.78576(214) 223.6(1) 

2
nd

 discharge (2.0 V) 5.1408(7) 9.8030(21) 224.3(1) 

Atom Wyckoff x y y occ Beq 

Ca 2b 0 0 0 1 0.72(9) 

Li 2c 1/3 2/3 1/4 1 1.00 

Fe 2d 2/3 1/3 ¼ 1 0.45(6) 

F (as-synthesized) 12i 0.3649(9) 0.0137(7) 0.1378(3) 1 1.34(9) 

F (ball-milled) 12i 0.3573(21) 0.0093(9) 0.1392(6) 1 1.34(9) 

F (discharged) 12i 0.3622(15) 0.0137(7) 0.1328(6) 1 1.34(9) 

 

Table(s)
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Figure captions 

Fig. 1: a) Powder X-ray diffraction patterns and SEM micrographs of the as-synthesized 

LiCaFeF6 (bottom) and after ball-milling with carbon and PVDF binder (top). Green tics mark 

the positions of reflections of LiCaFeF6 and impurity phases Li3FeF6, CaF2, and LiF (from top 

to bottom). Asterisks mark CaF2 impurity reflections in the ball-milled composite. b) 

Colquiriite-type crystal structure of LiCaFeF6 with empty 2a site that is suggested for the 

insertion of additional lithium. c) The large ionic radius of initial Li
+
-ions, which are present 

in the pristine crystal structure, and the associated high [LiF6]-octahedral volume stabilize the 

interlayer distance between [CaF]-layers. 

 

Fig. 2: a) Discharge (blue) and charge (red) profiles at galvanostatic cycling of LiCaFeF6/C 

composite cathode at a rate of C/20. b) Discharge capacity of the LiCaFeF6/C composite 

cathode during galvanostatic cycling at a rate of C/20. c) Slow-scan cyclic voltammetry (20 

µV s
-1

)
 
of the LiCaFeF6/C composite cathode within the potential range from 2.0 to 4.5 V. 

 

Fig. 3:  
57

Fe Mössbauer spectra of LiCaFeF6 in the as-prepared state and after discharging to 

2.0 V. The experimental data points are given as white circles and the fits are given as red 

lines. Fe
3+

 and Fe
2+

 subspectra are given as blue and red doublets, respectively. The inset 

shows the distribution of quadrupole splittings used to describe the Fe
2+

 doublet after 

discharging to 2.0 V. 

 

Fig. 4: 
7
Li MAS NMR spectra of LiCaFeF6 directly after synthesis, after milling with PVdF 

and carbon, and after discharging against Li metal down to 2.0 V. Spinning sidebands are 

marked with an asterisk. 
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Fig. 5:  Normalised X-ray absorption spectra (a) and Fourier transforms of the k
3
-weighted 

EXAFS signals X(k) (b) at the Fe K-edge of Li1+xCaFeF6 measured in the pristine state 

(Li1.00CaFeF6) and ex situ after cycling to various electrochemical states of discharge (2.8 V 

(Li1.42CaFeF6), 2.0 V (Li1.77CaFeF6)) and charge (3.3 V (Li1.42CaFeF6), 4.5 V (Li1.00CaFeF6)) 

Further spectra are measured in the charged state at 4.5 V after cycling over a period of 10, 

20, and 30 cycles (c). Labels of peaks in the Fourier transforms assign the coordination shell. 

The inset in (a) shows an expanded view of the pre-edge region.  

 

Fig. 6:  Evolution of in situ X-ray diffraction patterns of LiCaFeF6 during the first three half-

cycles. 

 

Fig. 7:  Rietveld refinement results of lattice metric and microstrain of LiCaFeF6 as a function 

of Li content electrochemical state. 

 

Fig. 8: Comparison of the relative volume change of LiCaFeF6 cathode material with that of 

other quaternary LiMe
II
FeF6 compounds [17,18] as well as with that of commercially used 

electrode materials [1,4,11,44,45]. 

 

 

  



Table captions 

Table 1: Lattice parameters and unit cell volume of LiCaFeF6 directly after synthesis, after 

ball-milling and after cycling. Atomic coordinates from Rietveld refinement and isotropic 

thermal displacement parameters (Beq of Li is taken from literature [31]) of LiCaFeF6 after 

synthesis, after ball-milling and in the discharged state (Li1.79CaFeF6; determined by ex situ 

XRD).  
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