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Abstract 

 
Within the last few years 
topological insulators (TIs) have 
attracted a lot of interest due to 
their unique electronic structure 
with spin-polarized topological 
surface states (TSSs), which may 
pave the way for these materials 
to have a great potential in 
multiple applications. However, 
to enable consideration of TIs as 
building blocks for novel 
devices, stability of TSSs 
towards oxidation should be 
tested. Among the family of TIs 
with tetradymite structure, Sb2Te3 is of p-type and appears to be the least explored material since its TSS is 
unoccupied in the ground state, a property that allows the use of optical excitations to generate spin currents relevant 
for spintronics. Here, we report relatively fast surface oxidation of Sb2Te3 under ambient conditions. We show that 
the clean surface reacts rapidly with molecular oxygen and slowly with water, and that humidity plays an important 
role at the stage of the oxide-layer growth. In humid air, we show that Sb2Te3 oxidizes in a time scale of minutes to 
hours, and much faster than other tetradymite TIs. The high surface reactivity revealed by our experiments is of 
critical importance and must be taken into account for the production and exploitation of novel TI-based devices 
using Sb2Te3 as working material. Our results provide a fundamental and comprehensive understanding of the 
universal trend underlying the chemical reactivity of TIs. 
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Introduction 

Topological insulators (TIs) are a nontrivial class of matter that behaves as insulating in the bulk 

and conducting at the surface1. The surface conductivity arises from the fact that strong spin-

orbit coupling renders the inversion between the bulk conduction and valence bands, thereby 

giving rise to spin-polarized topological surface states (TSSs) possessing a unique linear 

dispersion characteristic of massless particles1-10. 

As opposed to the prototypical TIs Bi2Se3 and Bi2Te3, which are often referred to as the second 

generation TIs, Sb2Te3 is the only binary tetradymite compound that exhibits exclusively p-type 

doping regardless of the growth method and preparation conditions11 due to the fact that the 

equilibrium stability range is fully shifted to Sb side and does not include stoichiometric 

Sb2Te3
12, so that its TSS lies above the Fermi level13,14. For this reason, the TSS is always 

unoccupied in the ground state and can be revealed by ultrafast optical excitation, which in turn 

has been used to establish the TSS of Sb2Te3 as a unique channel for the generation and control 

of transient spin currents that are of importance for spintronics15. Moreover, due to its p-doping, 

interfacing or alloying Sb2Te3 with other prototypical TIs such as Bi2Te3 has been proposed as 

one of the promising routes to develop stable topological p-n junctions useful for device 

applications16. In fact, such p-n junctions might serve as the basis of future optoelectronics, as 

they are expected to host single gapless chiral edge states localized along the p-n interface that 

can be controlled by external gating or applied magnetic fields17.  

In contrast to both Shockley and Tamm surface states, TSSs are expected to be quite resistant to 

surface reactions as long as the bulk atomic structure remains intact. However, for surface device 

applications, detailed knowledge of the stability limits of the surface properties and the behavior 

of the TSS under ambient conditions are required, especially as preparation techniques of TIs are 

being extended towards ultrathin freestanding layers18, nanocrystals19, nanowires and 

nanotubes20, step edges21 or patterning by lithography22. In a context that is much closer to 

applications and despite of multiple attempts to estimate the reactivity of the prototypical TIs 23-

26, many open issues remain. While the time scale for Bi2Te3 oxidation in wet air is well 

characterized8, for Bi2Se3 and Bi2(Se,Te)3 the situation is much less clear. The available data 

scatter significantly from negligible reactivity to rapid oxidation23,24.  Although the naturally 

perfect crystal surface is basically robust towards oxidation, for low-dimensional structures of 

the same material the formation of an oxide layer is usually observed27. Certain contradiction 

exists in the explanation of such a difference. On the one hand, Thomas and co-workers found by 

means of photoelectron microscopy that step-edges oxidize first24, thus promoting further 
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proliferation of the oxide layer. The density of step-edges is particularly high for films grown by 

molecular beam epitaxy (MBE), which indeed oxidize even faster23. Moreover, nanoscale 

mapping under ambient conditions reveals a 10−100x current enhancement at step-edges as 

compared to that on terraces25. On the other hand, scanning probe microscopy data evidence very 

similar behavior in the absence of morphology features upon oxidation, resulting in the 

formation of a flat and uniform oxide layer23,26.  

Our previous systematic photoemission studies of the prototypical TIs Bi2Se3 and Bi2Te3, as well 

as density-functional theory (DFT) calculations, revealed that both O2 and H2O adsorb 

molecularly23. In particular, only simultaneous adsorption of oxygen and water molecules was 

shown to give rise to a surface reaction in the case of Bi2Te3. This reaction included two crucial 

steps: (1) surface termination with hydroxyl groups attached to the Te atoms, and (2) formation 

of oxide species with oxygen bonded to both Bi and Te atoms. For Bi2Se3 crystals of equally 

high perfection, these processes were not detected after long exposures to air, so that high 

resistance against oxidation was observed instead. To completely understand the origin of the 

different oxidation behaviour, and whether there is a systematic trend underlying the chemical 

reactivity of TIs, it is absolutely necessary to obtain the corresponding information on the 

reactivity of Sb2Te3. A possible scenario, where step-edges or other imperfections of the crystal 

do not play a substantial role, is that the reactivity towards oxygen increases for lighter cations 

and heavier anions, so that substitution of Se by Te or Bi by Sb leads to a remarkable increase of 

the oxidation rate. However, up to now information concerning the surface reactivity of Sb2Te3 

that would shed light on this issue is missing. Taking into account the general trend observed for 

other chalcogenide compounds (IV-VI, II-VI)28, this raises questions regarding the surface 

stability of Sb2Te3 as compared to the one of Bi2Te3, and whether a similar trend not yet 

confirmed experimentally exists in the case of TIs.  

To resolve this issue, in the present work we investigate the reactivity of Sb2Te3 using 

photoelectron spectroscopy in a wide range of experimental conditions, including air humidity, 

and oxygen pressure (up to 20 mbar). Additionally, we provide a detailed understanding of the 

outcome of experiments under constant pressure of vapour and liquid water. Our results 

demonstrate a much faster oxidation of Sb2Te3 in ambient air as compared to any other 

prototypical TI, and supply a clear evidence of the underlying physical and chemical 

phenomenon yielding higher surface reactivity. The reaction mechanism is further revealed by 

combining the experimental data with the results of DFT calculations. Our work reveals a 

universal trend in the chemical reactivity of tetradymite TIs and serves as a benchmark for the 
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understanding of oxidation processes in more complex families of layered TIs, providing a 

criterion for optimizing and manufacturing stable TI-based nanodevices for future applications.   

Results and discussion 

Clean Sb2Te3 (111) surfaces were obtained by cleaving a single crystal (Figs. 1a-c) along the 

Van der Waals gap (Fig. 1d). The typical cleavage morphology includes low density of steps 

(few per micron) as revealed by atomic force microscopy (AFM) in Fig. 1e. Due to the strong p-

doping of the crystal, the TSS of Sb2Te3 is located above the Fermi level, thus it is not possible 

to observe it using conventional angle-resolved photoemission spectroscopy (ARPES). 

Therefore, we combined a pump-probe laser scheme with ARPES to excite electrons above the 

Fermi level using 1.5 eV photons and detect the excited electrons using 6 eV photons, allowing 

us to monitor the electronic band structure above the Fermi level. The obtained energy-

momentum dispersion of the TSS around the 𝛤� point of the surface Brillouin zone is depicted in 

Fig. 1f. 

 

Fig. 1. A photograph of the Sb2Te3 crystal (a), sample (b), and an illustration of surface preparation using scotch 

tape (c), d) crystal structure, e) an atomic force microscopy image revealing low density of step-edges, f) energy-

momentum dispersion of the TSS for Sb2Te3 above the Fermi level (EF) obtained around the 𝛤� point of the surface 

Brillouin zone using pump-probe ARPES. The linear dispersion of the Dirac cone is clearly resolved, with an 

additional intensity contribution from the bulk-conduction and valence bands at 0.3 eV and 0.05 eV, respectively.    

Here, we clearly observe the TSS linear dispersion characteristic of Dirac fermions, with the 

Dirac node located at ~0.25 eV above the Fermi level. The sharp and intense features confirm the 
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high quality of the surface. Moreover, distinct contributions from the bulk-conduction band 

(BCB) and valence band states (BVB) are also observed. In these regions, it is seen how the TSS 

bands at opposite momenta merge with the bulk bands bridging the gap of the volume, one of the 

unique properties of TIs. Such prepared and characterized Sb2Te3 surfaces were probed by x-ray 

photoelectron spectroscopy (XPS) after well-defined exposures to air with different relative 

humidity (ex situ), oxygen (ex situ), water vapours (in situ), or gas-free liquid water (ex situ). To 

provide the ultimate surface sensitivity and spectral resolution, Sb 4d and Te 4d core-level 

spectra were recorded at the photoelectron kinetic energies of 50, 75 or 100 eV.  

First we discuss the results of the reactions occurring at the surface in atmospheric air. The 

spectra obtained for the clean surface upon cleavage in ultrahigh vacuum (UHV) and after 

different exposures to air are shown in Fig. 2a. For the clean surface, both Sb 4d and Te 4d are 

single-component doublets. After a certain air exposure (here being equal to 2 h) a relatively 

thick oxide layer forms, corresponding to an oxidized single quintuple layer (QL), which is 

confirmed by the typical multicomponent spectra. In the Te 5d spectrum, the Te IV component 

shifted by 3.80 eV from the initial Te I peak corresponds to the formal oxidation state +429. 

Other two components, Te II (shifted by 0.6 eV) and Te III (shifted by 1.2 eV), exhibit an 

intensity maximum at binding energies close to those of neutral Te. In the Sb 4d spectrum, the 

Sb II feature split by 1.38 eV from the initial peak corresponds to the formation of more ionic 

Sb-O bonds in the Sb-O-Te fragment with the same formal Sb oxidation state +3. We also 

measured O 1s photoemission spectra at high kinetic energies (see Supplemental information) in 

which we observe single component located at 530.6 eV that is related to the formation of oxide-

type bonds. This value quantitatively agrees with the O 1s binding energy corresponding to 

Sb2O3
30. 

It should be emphasized that, in the course of multiple experiments, due to the fast surface 

oxidation we have never observed any intermediate state between the clean and strongly 

oxidized one (see Fig.2a). Moreover, the exact time period corresponding to the appearance of 

the surface oxide layer cannot be determined unambiguously for all samples as it is subject to 

variations of statistical nature. We have taken special care to control the oxidation state of the 

sample by avoiding any possible influence of humidity and temperature variations, or any effect 

of storage under UHV conditions. However, these precautions did not allow us to completely 

suppress the scattering in the data, which nevertheless show a clear tendency as a function of 

oxidation time (see Figs. 2b and 2c). In addition, we observed that the oxidation occurs non-

uniformly over the surface in a length scale of several millimeters. This behavior raises the 

question of what is the mechanism underlying the fast surface oxidation observed in our 
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experiments, which we discuss below.  

Fig. 2. Air exposure of Sb2Te3 at 298±2 K: a) High resolution photoemission spectra for the Sb2Te3 (111) clean 

surface and surfaces exposed to humid (44%) air during 1 and 2 h, the photon energy is 125 eV; b) the oxidation 

kinetics for the Sb2Te3 (111) surface at 298 K: time dependence of the oxide layer thickness for oxidation in dry and 

wet air at humidity of 44%. The spectra were recorded using a monochromatic Al Kα source. Bi2Te3 data were added 

for comparison, c) time dependence of the oxide layer composition.  

The fast oxidation observed in the present work distinguishes Sb2Te3 from Bi2Te3, and Bi2Se3, 

which we studied earlier23. Generally, the oxidation proceeds in several steps, which are: 

(i) Molecular adsorption and induction period;  

(ii) Surface reaction and oxidation of the first layer;  

(iii) In-depth oxidation with long-term kinetics.  

The statistical nature of the oxidation time observed in the case of Sb2Te3 can be explained by a 

combination of a relatively slow step (i), i.e. a long induction period, and a very fast step (ii). As 

the induction period is of statistical nature (from minutes to hours), and it is followed by fast 

oxidation of the first QL, their combination gives rise to additional scattering in the data related 

to the exposure time from 15 min to 14 h (for further details, please see Fig. S1 of the 

Supplementary Information). One can assume that surface defects like steps, might play a role to 

overcome the energy threshold for oxidation. Since the steps are of very low density at the 

surface, the oxidation threshold can be expected to be slightly sensitive to variations in the 
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number of steps. Although these variations might introduce some additional source of scattering 

in the data presented for different humidity values in Fig. 2b, the overall behavior of the data 

strongly indicates that water vapours do not play an essential role in steps (i) and (ii).  

In fact, the results presented in Fig. 2b allow us to visualize the complete oxidation kinetics. 

Here, the data for Sb2Te3 are presented with respect to the time-dependent variation of the oxide 

layer thickness and calculated from the Te 3d core level spectra using the Hill equation (for 

further details on the layer thickness please see Supplementary Information). For comparison, we 

also show the Bi2Te3 oxidation kinetics. Very clearly, for the Sb2Te3 (111) surface the oxide 

layer thickness increases linearly as a function of oxidation time, while no data points are 

available for an oxide layer thickness below 1 nm. At the same time, for the Bi2Te3 (111) surface 

the kinetics exhibits two distinct steps, which are associated to steps (ii) and (iii). Therefore, step 

(ii) is much faster for Sb2Te3 than that for Bi2Te3 and not resolvable experimentally. It should be 

also noted that the oxide layer appears to be enriched in antimony, so that the Sb to Te atomic 

ratio is about 1 to 1 and does not change upon further oxidation. The oxygen content constantly 

increases until the ultimate stoichiometry of the oxide layer Sb2Te2O7 is obtained, where 

tellurium is totally converted to Te4+. The oxide layer composition is given in Fig. 2c.  

The kinetics of the oxide layer growth for Sb2Te3 appears to be different for high and humid air. 

The oxidation rate in dry air is generally lower as compared to that obtained at a relatively low 

humidity of 44%. This fact pinpoints the active role of water vapour in the oxidation during step 

(iii). 

To gain further insight into this behavior we studied water adsorption on the Sb2Te3 (111) 

surface in situ using near-ambient pressure XPS (NAP XPS), which is established as a powerful 

tool to probe surface reactions that indeed can be rather different from those for surfaces in 

vacuum. For this reason, we performed an experiment at a partial water pressure of P(H2O) = 

0.10 mbar during a period of 10 h. The results are depicted in Fig. 3 and compared to results for 

Bi2Te3 obtained previously23. It should be emphasized that the Sb2Te3 (111) surface is well 

wettable with water; therefore, large-drop formation at the surface during in situ experiments is 

obviously excluded, meaning that we probe reliably the water-crystal interface. During the whole 

period of measurements the water layer thickness progressively increases at the surface up to 5 

nm, while no modification of the Sb 3d and Te 3d core level spectra is observed. This result 

evidences that the Sb2Te3 surface does not directly react with water under the given experimental 

conditions. The O 1s peak can be treated as a single broad component positioned at a binding 

energy slightly increasing with time from 532.8 eV to 533.2 eV, as measured relative to Sb 3d5/2, 
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which is assigned to physically adsorbed water. This tiny effect on the binding energy can be 

attributed to H-bond formation accompanying water condensation at the surface. Therefore, one 

can conclude that water does not react chemically with the surface at P(H2O) = 0.10 mbar at 

least during 10 h. The water adsorption is faster for Sb2Te3 than for Bi2Te3 thus indicating the 

stronger interaction between water and the former. 

 

Fig. 3. Molecular adsorption of water vapour at the Sb2Te3 (111) surface measured at 0.1 mbar and 298±2 K, 

excitation energy 200 eV: a) Te 3d, Sb 3d, and O 1s spectra. The inset shows the most beneficial structure modeling 

the molecular absorption of water. Yellow, violet, red and gray colors depict Te, Sb, O and H atoms, respectively. b) 

kinetics of the water layer growth estimated using the Hill equation.  

Our theoretical investigation of the water molecule adsorption reveals that the on-top position is 

more beneficial, by almost 2 eV, than the hollow one. The most stable structure is depicted in 

Fig. 3a as an inset. The on-top structures are characterized by negligible chemical shifts both for 

Sb 3d and Te 3d core levels. In all cases including hollow water molecule displacement new 

chemical bonds are not formed between Sb2Te3 and H2O. To understand this issue from the 

opposite side of the equilibrium state, we modeled dissociative adsorption structures with Sb-H 

and Te-OH bonds and, vice versa, with Sb-OH and Te-H bonds. However, all these structures 

were found to be less stable than those for molecular adsorption. Therefore, our experimental 

data and theoretical modeling evidence stability of the Sb2Te3 (111) surface towards hydrolysis.  

We further investigated the reaction with water in its liquid state to provide conditions beneficial 

for hydrolysis. Water was preliminary degased and maintained under completely air free 

conditions. After the surface treatment with liquid water, our high-resolution Te 4d spectra 

display a two-component structure with a new component slightly shifted by 0.72 eV eV towards 

higher binding energy, as it follows from Fig. 4a. Such binding energy corresponds to elemental 

tellurium. In addition, the surface becomes enriched in tellurium as we found from composition 
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quantification measurements. Our experiments with Sb2Te3 powders washed in degassed water 

with subsequent chemical analysis of the washwater by inductively coupled plasma - mass 

spectrometry (ICP-MS) reveal the presence of antimony in amounts proportional to the reaction 

time (see Fig. 4b). Therefore, we conclude that Sb is leached out from the surface. The time 

variation of the surface composition is illustrated in Fig. 4b. One can see that the time period of 

~10 h corresponds to leaching of the first Sb layer, which results in the structure Te-Te-Sb-Te 

instead of Te-Sb-Te-Sb-Te for the first QL. We modelled this situation using DFT and the 

calculated Te 4d chemical shift relative to the bulk (+0.45eV) is in reasonable agreement with 

the experimental one. It should be mentioned that if water is in contact with air the surface 

oxidation occurs already after 8 h with the corresponding Te+4 formation, with the reaction 

products being similar to those observed in humid air. This behavior is different from Bi2Te3, 

where we observed surface oxidation only after dissolution of some amount of air in degassed 

liquid water after 1 day of reaction23. Sb leaching observed in degassed water proves that Sb2Te3 

is reactive with water since the Sb-Te bonds break. According to our calculations the reaction 

with gaseous water is not energetically beneficial. One can suppose that the driving force of Sb 

leaching is the Sb3+ solvation energy. The solvation is hardly possible in a thin layer of water 

formed as a result of vapor adsorption.  

 

Fig. 4. Sb2Te3 hydrolysis: a) A typical high resolution photoemission spectrum for the Sb2Te3 (111) surface exposed 

to liquid water during 6.3 h at 298±2 K, the photon energy is 125 eV; b) Time dependence of the Sb2Te3 (111) 

surface composition (left scale) and Sb concentration in water (right scale). Inset: Modeled structure for a surface 

depleted in Sb. Yellow and violet colors depict Te and Sb atoms, respectively.   

The leaching is relatively slow, it occurs in a time scale of approximately 10 hours. Within the 

same time period the reaction in humid air gives rise to total modification of the first QL. For 

this reason the humidity is evidently not important during step (ii). Nevertheless, the Sb2Te3 

(111) surface manifests rather weak but detectable reactivity with water in its liquid state.  Now 
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we return to the question of possible reactions between Sb2Te3 and molecular oxygen. According 

to our DFT calculations adsorption of an O2 molecule can result into its dissociation. We have 

considered four different possible starting geometries. Two of them give rise to O2 dissociation 

and Sb-O-Te bond formation as presented in Fig. 5a (left structure). The corresponding 

formation energy is 3 eV, which is lower than for the structures modeling molecular adsorption. 

Based on optimized geometries the activation energy of oxygen dissociative adsorption is 

estimated to be 0.24 eV.  

Indeed, being exposed to oxygen, Sb2Te3 is oxidized at the partial pressure of 200 mbar already 

after 30 min, i.e., the behavior is similar to the one in ambient atmosphere. Moreover, the 

oxidation reaction occurs even at much lower pressures starting from 0.01 mbar, while we did 

not observe any reaction at P(O2) = 8 10-5 mbar. The experimental data on the Sb2Te3 oxidation 

with molecular oxygen are shown in Fig.5b, where the oxide layer thickness is represented as a 

function of oxygen exposure. Interestingly, the oxidation rate in pure oxygen is statistically even 

higher than the reaction rate in humid air. The most probable reason is that the adsorption sites 

are occupied by inert molecules especially adventitious carbon, which is always present at the 

surface exposed to air.  

Both Sb 4d and Te 4d spectral features appearing upon oxidation in oxygen are of the same 

nature as ones observed after oxidation in humid air. One can conclude that the reaction products 

are the same for pure oxygen and humid air therefore water vapours indeed play a minor role 

during the first stage of oxidation. The modeled structures pinpoint possible mechanisms of 

oxidation with H2O participating via hydroxyl groups attached to the surface tellurium atoms 

(see Supplementary Information for more details). Note that the hydroxyl groups are not present 

during the oxidation of the Bi2Te3 surface, while for Sb2Te3 follow the reaction:  

Sb2Te3+3/2O2+3H2O=Sb2(Te-2OH)3. 

The chemical shifts in the Sb 4d and Te 4d spectra for the species occurring at the surface are 

generally in a good agreement with calculated ones if final state effects are properly taken into 

account. We therefore correct the observed chemical shifts by the difference in relaxation energy 

estimated experimentally using the Auger parameter concept31. After this correction, we 

compared the resulting experimental initial state chemical shifts to the calculated ones. For Sb 

cation atoms, the final state effect in Sb 4d spectra is rather large and estimated to be about 1 eV, 

therefore, the experimentally observed chemical shift is mostly due to a final state effect. For the 

Te anion atoms, the final state effect is negligible. Te 4d chemical shift depends strongly on the 

number of O atoms attached to the given Te atom. The structures corresponding to the spectral 
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features are highlighted in Fig. 5c. In addition, the angular dependence of the ratio from different 

spectral components (see Supplementary Information) reveals that the Te III component 

corresponds to the state at the very surface revealing its intermediate nature. The Te II feature is  

 

Fig. 5. O2 pathway at the Sb2Te3 (111) surface. (a) Activation barrier for dissociative adsorption with corresponding 

structures, where zero distance means the Te atoms surface plane. (b) Oxide layer thickness obtained at different 

exposures. (c) Typical Te 4d spectrum with spectral component assignment to the specific geometries. In all 

modeled structures yellow, violet and red colors depict Te, Sb and O atoms, respectively. 

most probably present at the interface oxide layer and crystal bulk. AFM measurements indicate 

that the surface morphology is preserved after air exposure therefore the oxide is formed as a 

layer uniform in thickness. It should be also noted that we would expect one more air 
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constituent, CO2, to play an essential role in the surface degradation. However, we have never 

observed carbonate-related species on the air- exposed surfaces in our experiments. Therefore, 

we may conclude that CO2 plays no role in the surface degradation.  

Our results for Sb2Te3 demonstrate much faster chemical degradation in atmospheric air than 

Bi2Te3 and especially Bi2Se3, with the atomic mechanism being different. Sb2Te3 reacts with 

oxygen and water separately. Air oxidation includes the reaction with molecular oxygen; water 

plays negligible role at the beginning of the process and makes notable contribution in oxide 

layer growth kinetics. The higher reactivity of Sb2Te3 is in line with the trends for binary 

semiconductors such as IV-VI compounds28, where it increases for heavier anions and lighter 

cations as we found experimentally and theoretically in the present work. The main reason for 

rapid oxidation of Sb2Te3 is chemical and higher energy benefit for the formation of Sb-O-Te 

bonds than Bi-O-Te bonds.  

Our mechanistic studies on the Sb2Te3 oxidation behavior sheds light on the problem of 

reactivity of Bi2Se3 for which completely different results have been reported23-27. By analogy 

with Sb2Te3 the scattering and differences between the published experimental data can be 

attributed to the fact that the induction period is huge due to the low probability of the 

elementary chemical reaction event, which occurs on a time scale comparable with or faster than 

the time scale of experimental exposures. Under these circumstances, surface defects might play 

a role even if the density of defects is low. As a result, the oxidation time scale cannot be 

determined unambiguously, as from sample to sample, it is of statistical nature.  

The reactivity of Sb2Te3 is still much lower than the one of many compound semiconductors and 

topological crystalline insulators, like Sn-Te, Pb-Sn-Te or Pb-Sn-Se due to the layered structure 

and the absence of dangling bonds at the surface. Moreover, the formation of an oxide layer 

itself does not destroy the TSS, which is still present at the buried oxide-TI interface, even if 

oxide layer thickness is large. Control of the oxidation process is rather critical either for low 

dimensional structures where the band structure strongly depends on the number of QLs, or for 

the case when surface rather than interface properties are used or investigated.  

Conclusions 

To summarize, we have shown that the prototypical topological insulator Sb2Te3 degrades much 

faster than Bi2Te3 and especially than Bi2Se3 under ambient conditions. For Bi2Te3, the oxidation 

kinetics has two distinct steps, with the first step corresponding to a total conversion of the first 

quintuple layer in oxide. In contrast, the first oxidation step in Sb2Te3 is found to be remarkably 
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fast. The oxidation is even faster in the presence of water vapours, although there is no reaction 

with gaseous water itself at pressures around 0.1 mBar, as it follows from in situ studies by NAP 

XPS. We have demonstrated that Sb2Te3 shows notable reactivity towards liquid water 

producing Te-enriched surface due to Sb leaching.  The relatively high-surface reactivity 

observed in the present work evidences a universal trend in the chemical reactivity of tetradymite 

TIs, which increases for heavier anions and lighter cations. Our work serves as a benchmark for 

the understanding of oxidation processes in more complex families of layered TIs, providing a 

criterion for optimizing the stability of future TI-based nanodevices under ambient conditions.  

Methods  

Sb2Te3 single crystals were grown by the Bridgman method. Bulk single crystals were cleaved in 

situ for ARPES and near ambient pressure (NAP) XPS experiments or ex situ for the 

photoemission studies of oxidation at high exposures. The high quality of the achieved (111) 

surfaces was verified by low-energy electron diffraction (LEED), the presence of sharp features 

from the topological surface states and the valence band in the ARPES dispersions.  Pump-probe 

ARPES experiments were performed at room temperature using the first (1.5 eV) and fourth (6 

eV) harmonics of a homemade fs-laser system coupled to an ultrafast amplifier operating at 100 

kHz repetition rate. Photoelectrons were detected with a Scienta R4000 hemispherical analyzer, 

and the angular and energy resolutions were 0.3° and 30 meV, respectively. 

Core-level photoemission studies were carried out using several facilities of Helmholtz-Zentrum 

Berlin, Germany. The NAP XPS data were obtained at the ISISS beamline equipped with a 

SPECS Phoibos 150 analyzer under water pressures of ∼0.1 mbar. The Sb 3d, Te 3d and O 1s 

spectra were recorded at different kinetic energies between 200 and 800 eV to provide variable 

surface sensitivity.  

For ex situ experiments, freshly cleaved surfaces were exposed for defined periods of time to 

dried or humid air or washed in water at 1 bar and 2098 K. The Sb 4d, Te 4d and O 1s spectra 

were recorded with high surface sensitivity (at the same electron kinetic energy 50, 75 or 100 

eV) at the Russian German beamline. The XPS spectra acquisition was performed using a 

SPECS Phoibos 150 electron energy analyzer at variable detection angles.  

The long-term oxidation kinetics was studied using an Axis Ultra DLD (Kratos) and a K-alpha 

(Thermo Fisher Scientific) spectrometer, both equipped with monochromatic Al Kα sources. All 

XPS spectra were fitted by Gaussian/Lorentzian convolution functions with simultaneous 

optimization of the background parameters. The background was modelled using a combination 
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of a Shirley and a Tougaard background.  

Theoretical modelling of the surface reactions was performed within the DFT approach using the 

PW-GGA method (VASP code)32-34.
 
Lattice constants were fixed, while positions of all atoms 

were varied. Core-level shifts were calculated in the initial-state approximation as the variation 

of electrostatic potentials at the atomic centers after adsorption. 
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