
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.41.61.111

This content was downloaded on 03/08/2016 at 18:56

Please note that terms and conditions apply.

X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devices

View the table of contents for this issue, or go to the journal homepage for more

2016 Nanotechnology 27 345705

(http://iopscience.iop.org/0957-4484/27/34/345705)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0957-4484/27/34
http://iopscience.iop.org/0957-4484
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


X-ray spectromicroscopy investigation of
soft and hard breakdown in RRAM devices

D Carta1, P Guttmann2, A Regoutz1, A Khiat1, A Serb1, I Gupta1,
A Mehonic3, M Buckwell3, S Hudziak3, A J Kenyon3 and T Prodromakis1

1Nano Group, Southampton Nanofabrication Centre, Department of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, UK
2Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Soft Matter and Functional Materials,
Albert Einstein-Str. 15, 12489 Berlin, Germany
3Department of Electronic & Electrical Engineering, UCL, Torrington Place, London WC1E 7JE, UK

E-mail: d.carta@soton.ac.uk

Received 14 April 2016, revised 8 June 2016
Accepted for publication 13 June 2016
Published 15 July 2016

Abstract
Resistive random access memory (RRAM) is considered an attractive candidate for next
generation memory devices due to its competitive scalability, low-power operation and high
switching speed. The technology however, still faces several challenges that overall prohibit its
industrial translation, such as low yields, large switching variability and ultimately hard
breakdown due to long-term operation or high-voltage biasing. The latter issue is of particular
interest, because it ultimately leads to device failure. In this work, we have investigated the
physicochemical changes that occur within RRAM devices as a consequence of soft and hard
breakdown by combining full-field transmission x-ray microscopy with soft x-ray spectroscopic
analysis performed on lamella samples. The high lateral resolution of this technique (down to
25 nm) allows the investigation of localized nanometric areas underneath permanent damage of
the metal top electrode. Results show that devices after hard breakdown present discontinuity in
the active layer, Pt inclusions and the formation of crystalline phases such as rutile, which
indicates that the temperature increased locally up to 1000 K.

S Online supplementary data available from stacks.iop.org/NANO/27/345705/mmedia
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1. Introduction

Resistive random access memory (RRAM) devices, also
known as memristors, are typically metal–insulator–metal
heterostructures, which are often based on transition-metal-
oxide thin films. RRAM is considered a prominent candidate
for next generation memory due to the device’s simple
structure, low power consumption, high-density integration
and high-speed operation (<10 ns) [1]. RRAM cells exhibit
resistive switching (RS), meaning that they can toggle

between high-resistive states (HRS or OFF) and low-resistive
states (LRS or ON) under appropriate biasing. Such ON/OFF
cycles can be repeated several times before the device’s
eventual failure [2, 3]. The dynamics of RRAM cells are still
not well understood despite the several mechanisms that have
been reported to date. One of the most popular is the filament-
type, which is based on the formation and migration of
defects (e.g. oxygen vacancies or titanium interstitials) along
the metal-oxide thin film that result in the formation of highly
conductive nanofilaments (CFs) of reduced oxide phases
perpendicular to the electrodes [4–6]. Yet, so far, very limited
direct experimental evidence of the nanoscale changes that
occur in the oxide film, as a consequence of switching, have
been reported [7–11]. In particular, there is a lack of
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knowledge of changes that occur in the oxide when the device
undergoes permanent failure.

It has been observed that RS in RRAM devices is often
associated with morphological changes of the metallic top
electrode (TE) [4, 12–17]. Early reports on such defects have
existed since the 1970s [18, 19], when the theory of mem-
ristors was first formalised by Chua [20, 21]. Minor defor-
mations typically denote a reversible soft-breakdown (SB)
mechanism [4]. However, after the application of high vol-
tages or a large number of switching cycles such protrusions
accumulate irreversibly until the device is damaged, i.e. it is
no longer possible to alter the device’s memory state, also
known as hard breakdown (HB) [22]. These dramatic events
that cause permanent failure of the devices are one of the
major issues that prevent RRAM scalability and commercia-
lization [23]. The causes of these morphological changes are
still controversial and have been ascribed to different
mechanisms such as solid electrolysis and electrode melting
[12]. As these indicate dramatic changes due to RS, it is
essential to perform an accurate analysis of the defect area, in
particular of the oxide structure underneath the TE defect that
can shine more light towards the underlying RS and failure
mechanism.

Recently, Lee et al [24] have investigated the physical
mechanisms that cause fatal damage to nanometric thick top
electrodes in RRAM devices. By employing a computer
simulation based on a percolation model, they ascribed the
fatal electrical breakdown to the large voltage stress and
current flow caused by the formation of many CFs. However,
atomic-scale studies of chemical changes occurring in the
active layer and at the interfaces during SB and HB are still
limited. In particular, there is lack of information on the
specific oxide phases that form underneath the TE
damage [25, 26].

In this work, we present an atomic-scale chemical
investigation of changes that occur along a cross-section of a
Pt/TiOx/Pt/Cr/Si/SiO2-based device after SB and HB
switching underneath a TE defect using soft x-ray spectro-
microscopy, a synchrotron-based technique that measures
near-edge x-ray absorption fine structure (NEXAFS) spectra
at high spatial resolution in a full-field transmission x-ray
microscopy (TXM). Recently, we have presented the results
obtained using this technique applied to a functioning Pt/
TiOx/Pt pre-switched device in LRS. The device was swit-
ched by applying a relative low voltage in the range ±1.5 V.
Spatial resolution and chemical characterization of distinct
TiOx phases along the cross-section were performed [27]. In
this case, only a very small defect of the TE was observed.
Results showed the formation of voids underneath this defect,
with localized reduction of the pristine TiOx phase and
crystallization to anatase and rutile in regions adjacent to the
voids. In this manuscript, we have used the same exper-
imental technique to investigate the cross-section of devices
after SB and HB, switched using higher voltages compared to
the functioning LRS device, where much more extensive
damage of the TE was observed, with the final aim to study
the failure mechanism of RRAM devices. Different from our
previous work, several Pt inclusions were observed into the

active oxide underneath the extended defect of the devices
after both SB and HB, which could be responsible for the
failure mechanism that eventually occurs in these devices.

2. Experimental section

2.1. Device preparation

The Pt/TiOx/Pt/Cr-based devices were fabricated on an
oxidized (200 nm SiO2) 6 inches Si wafer. A bottom electrode
(BE) and TE were fabricated using conventional optical
lithography, and electron-beam evaporation followed by a
lift-off process, with the BE and TE composed of Cr/Pt
(3 nm /30 nm) and Pt (30 nm), respectively. The Cr film
served as the adhesive layer for the Pt BE. A 50 nm TiOx

layer was then deposited using reactive sputtering from a Ti
metal target with the following settings: 8 sccm O2, 35 sccm
Ar, 2 kW at the cathode, and 15 sccm O2 and 2 kW at the
additional plasma source. The active layer area was patterned
using optical lithography and the lift-off process.

2.2. Electrical characterization of devices

Electrical biasing of the devices has been carried out through
voltage sweeping both for assessing and modifying their
resistive states. Passive resistive state assessment of the
device under test was carried out via low voltage (within
+/−2 V), non-invasive voltage sweeps, whilst RS was
induced through the application of more aggressive, high-
voltage sweeps. All voltage biasing was carried out under
current compliance protection. The compliance current levels
were determined on an ad hoc basis. All sweeping was per-
formed using a Keithley 4200 electrical characterization
instrument.

2.3. Atomic force microscopy (AFM)

AFM maps were acquired with a MultiMode Nanoscope V
AFM (Veeco Metrology Group) in contact mode using Pt/Ir
coated Si tips with a cantilever spring constant of 0.2 Nm−1

and a nominal radius of 12 nm (Bruker, SCM-PIC).

2.4. Focused ion-beam scanning electron microscopy
(BFIB-SEM)

A dual-beam BFIB-SEM system (Zeiss NVision 40 FIB/
FEGSEM) equipped with a gas injection system was used to
record SEM images and for cutting FIB cross-sections. SEM
images were recorded at an accelerating voltage of 5 kV. Prior
to performing FIB cross-sections, an electron-beam-induced
tungsten protective layer was deposited on the top of the
electrodes in order to minimize damage caused by the gallium
ions in the subsequent cutting steps. After extraction, the
thickness of the lamella is further decreased to allow x-ray
transmission by low-energy ion polishing at a low incident
angle until a thickness of 40–70 nm is achieved.

2
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2.5. TXM-NEXAFS

The TXM-NEXAFS study was performed at the undulator
beamline U41-FSGM at the BESSY II electron storage ring
operated by the Helmholtz-Zentrum Berlin. The TXM has a
spatial resolution of 25 nm and spectral resolution of E/
ΔE=10 000 [28]. Sequences (stacks) of x-ray images were
acquired at closely spaced photon energies (0.1 eV steps)
using a TXM, in the Ti 2p (450–485 eV) and O 1s
(525–555 eV) energy range. Image size is 1340×1300
pixels corresponding to 5 nm per pixel. Each image was taken
with the sample at the proper focus position to optimize the
spatial resolution [29]. The stack of all images was created
followed by automatic alignment using Fourier cross-corre-
lation techniques in aXis2000 and in Stack_Analyze [30].
Each stack, consisting of 1053 images over the Ti 2p energy
range and 351 images over the O 1s energy range, was
carefully aligned using a cross-correlation iteration process
until the image shift was less than ±0.6 pixels (±3 nm) across
the entire energy range. The alignment of images is required
to correct for lateral motion of the x-ray beam on the sample
[29]. The incident x-ray intensity (Io) for each stack was
obtained from an internal region of each stack (off the FIB
section) and used to convert the aligned stack from trans-
mission to optical density (OD=−log[I(E)/Io(E)]). Ti 2p
and O 1s spectra were then extracted from the stack. Spectra
can be obtained from regions as small as the spatial resolution
of the microscope (25 nm). A detailed analysis involving
extraction of the x-ray absorption spectra of specific regions
of interest was performed [31, 32] using aXis2000 soft-
ware[30].

2.6. Materials and methods of choice

Several transition-metal oxides are of particular interest for
RRAM, in particular TaOx [33] and HfOx [34] due to their
simple reduction dynamics. On the other hand, TiOx provides
wider opportunities for multi-state memory capacity due to
the intrinsic variety of possible chemical phases. A previous
work by Kwon et al [4] based on high-resolution transmission

electron microscopy (HRTEM) study and interpretation of
electron diffraction patterns, identified Ti4O7 as the structure
of CFs buried underneath a TE deformation in a TiO2 based
RRAM device. However, HRTEM requires the use of high-
energy electron beam (200–300 kV), which could induce
sample crystallization and effectively alter the physical–che-
mical state of the film during irradiation. Furthermore, elec-
tron diffraction requires crystals to be aligned in specific
orientations with respect to the beam for unambiguously
capturing distinct diffraction patterns [4]. Previous works
have shown that synchrotron radiation-based techniques are
powerful tools for nanoscale characterization of changes in
RRAM devices [7, 10, 11, 15–17, 35, 36]. TXM-NEXAFS
allowed us to simultaneously perform imaging and
spectroscopy for investigating morphological changes in the
film as well as performing chemical analysis at nanometer
scale of localized regions, respectively. Identification of dis-
tinct TiOx phases formed in localized regions underneath the
TE damage has been achieved using Ti 2p and O 1s NEXAFS
spectra. The identification is based on fingerprint methods,
avoiding the difficulties imposed via multiple scattering
effects and/or the presence of diffraction spots from other
TiO2 phases and/or metallic electrodes when employing
electron diffraction.

3. Results

The RRAM devices investigated here are based on a Pt
(30 nm) TE/TiOx active layer (50 nm)/Pt (30 nm) BE stack
fabricated on a SiO2/Si substrate, as schematically repre-
sented in figure 1(a). Figure 1(b) shows a single device with
an active junction of 40×40 μm2. The value of x in TiOx

was determined to be 1.95 by x-ray photoelectron
spectroscopy (data not shown).

3.1. Electrical characterization

Two devices were electrically characterized using voltage
sweeping and the corresponding current–voltage (I–V) curves

Figure 1. TiOx RRAM-based device: (a) schematic of the device’s architecture; (b) optical image of a single device with an active junction of
40×40 μm2.
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are reported in figure 2. The first device was electroformed at
+5.7 V (inset of figure 2(a), compliance current 10 mA) and
subsequently underwent a single switching cycle (figure 2(a)).
First, a negative sweep caused switching from an LRS to an
HRS at approximately −5.0 V. Next, a positive voltage sweep
caused the device to switch back to the original LRS. Despite
the high voltages employed, the device successfully switched
between ohmic and non-linear regimes reversibly, as shown
in the I–V curve of figure 2(a) and it will be hereafter called
Dev_SB. The second device was formed at 12.0 V and sub-
sequently cycled 20 times when breakdown occurred as
shown in the I–V curve in figure 2(b). The device will be
hereafter called Dev_HB. Figure 2 b) displays only four loops
out of the 20: electroforming (inset), 1st, 8th and the 20th
switching cycles where breakdown occurs. It has to be noted
that the voltages/currents used to reach HB are somewhat
higher than the usual values used in our commonly used
operational devices due to the higher thickness of the TiOx

film (50 nm), chosen considering the spot size of the TXM-
NEXAFS beam. Significant cycle-to-cycle variations in
switching voltages (+3.5 , −2.5 V and +9.0, −15.0 V for
cycles 1 and 8 respectively) were observed. A compliance
current of 10 mA was used during forming and raised to
100 mA during switching; a value that was never reached.
Throughout the electrical characterization, voltages as high as
±15 V were employed in order to account for the 50 nm
active layer thickness employed in this experiment. Even if
quite different electroforming voltages were required to form
the Dev_SB and Dev_HB, the qualitative aspects of the
switching behavior were broadly maintained.

3.2. SB sample

Several studies have shown that protrusions of the TE (both in
the center [8, 16, 37–39] and at the rim [16, 38]) could
indicate possible critical regions of the film responsible for the
RS. The AFM image of the Dev_SB viewed from the TE,
reported in figure 3(a), shows two defects: a 300 nm high
isolated protrusion in the center of the active area and an
extended defect at the rim of the Pt TE in the top right region.

We have only investigated the extended defect at the rim of
the TE as this study is mainly focused on the understanding of
device failure. Therefore, the most damaged area is likely to
give more detailed information on the breakdown mechanism
of devices. Moreover, it has been recently reported that this
position could give significant information on the RS being a
preferred reduction site since it is a three-phase contact site
(oxide, metal and ambient atmosphere) [36]. The detailed
AFM image of the extended defect at the edge of the elec-
trode, reported in figure 3(b), shows that the Pt TE forms
several protrusions up to 400 nm high. The corresponding
SEM images are reported in figures 3(c) and (d). The detailed
SEM image (figure 3(d)), shows that the TE is protruded,
forming several rounded features, suggesting melting of the
Pt. It has to be noted that damage at the rim of the TE has
been previously observed in similar devices [12].

Optical images taken before and after electrical switching
(figure S.I.1), prove that central and edge deformations were
not present in the pristine device and are, therefore, due to the
RS. In particular, it has been suggested that these irreversible
morphological deformations are caused by the development
of oxygen gas at the interface TiOx/TE due to the formation
of reduced TiOx phases which aggregate in CFs according to
the following reaction [40, 41]:

( ) ( )+  +- + +O 2 Ti 1 2 O g 2 Ti 12 4
2

3

The temperature in the localized conductive nanofilaments
increases significantly due to Joule heating causing the Pt to
melt [12, 40].

In order to visualize and characterise the area buried
underneath the damaged TE, an FIB lamella was extracted
along the red line indicated in figure 3(a) using the lift-out
technique as shown in figure S.I.2(a). Details of the cross-
sectional lamella (figure S.I.2(b)), show that under the iden-
tified protrusion, the TE bulges and partially aggregates in
rounded features connecting the BE and TE. The TE is lifted
from its original position, supporting the argument that the
protrusions were caused by O2 gas escaping through the
weakest point of the TE, the rim, in agreement with previous

Figure 2. I–V characteristics of (a) Dev_SB and (b) and Dev_HB. Insets: electroforming steps. Each switching cycle consists of a negative
polarity sweep followed by a positive polarity sweep.
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observations [40]. The SEM image of the lamella thinned for
electron transmission, reported in figure S.I.2(c), shows that
the damaged region is also lifted from the support as indicated
by the bright area in the inset image.

In order to investigate chemical changes across the TiOx

layer as a consequence of SB switching, TXM-NEXAFS
measurements were performed on the FIB cross-section of the
device. In figure 4, x-ray images of the lamellae at 450 eV
(below the Ti 2p edge), 465 eV (on the strongest Ti 2p
absorption peak), 525 eV (below the O 1s edge) and 531 eV
(on the strongest O 1s absorption peak) are presented.

The stack of layers i.e. Pt/TiOx/Pt/SiO2/Si are high-
lighted in figure 4(a). By examining the Ti 2p and O 1s image
sequences at different energies, we can spatially resolve the
location of the regions containing Ti and O species, respec-
tively, as the contrast of the image changes in correspondence
with changes in the Ti and O absorption peak intensities. At
450 eV (figure 4(a)), the TiOx layer appears dark as Ti does
not absorb at this energy. At 465 eV (figure 4(b)), the same
layer appears bright due to the strong absorption of Ti.
Therefore, the regions that appear dark at 450 eV, but bright
at 465 eV, correspond to Ti-containing areas. Similarly, for

Figure 3.AFM (a-b) and SEM (c-d) images of the Dev_SB viewed from the TE. The red line in (a) indicates the region where the FIB lamella
was cut.

Figure 4. Optical density TXM micrographs of Dev_SB obtained at
the Ti 2p absorption edge with photon energy of 450 and 465 eV and
at the O 1 s absorption edge with photon energy of 525 and 531 eV.
Scale bar=200 nm.
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the O 1s at 525 eV (figure 4(c)), the TiOx layer appears dark
as O does not absorb at this energy and bright at 531 eV
(figure 4(d)), due to the strong absorption of O. Therefore, the
regions that appear dark at 525 eV, but bright at 531 eV,
correspond to O-containing areas. Different from what is
observed in the cross-section of functioning devices in the
LRS [27] a main Pt agglomeration is observed underneath the
defect, exactly underneath the rim of the TE, as indicated in
figure 4(a). Electrochemical dissolution of Pt in oxides under
high electric fields in RRAM cells has already been reported
by Yang et al [42]. Spatially localized NEXAFS spectra at the
Ti 2p and at the O 1s absorption edges were then extracted
from various regions of the TiOx film area in both sides of the
Pt agglomeration. Five regions of interest (ROI) were iden-
tified, indicated in figures 4(b) and (d) by numbered circles.
The Ti 2p and O 1s x-ray absorption spectra extracted from
each of these localized regions are reported in figures 5(a) and
(b), respectively. Different spectral features at both Ti and O
edges appear for the different ROI, indicating changes from
the pristine structure (as-deposited TiOx).

The Ti 2p spectrum presents distinct features for the
different polymorph phase of crystalline TiO2 and for amor-
phous TiO2 [43]. The Ti 2p spectrum of the pristine sample
(figure 5(a)) shows broad peaks, and no splitting of the (2p3/2,
eg) peak. These features are consistent with a high structural
disorder caused by a range of bond angles and lengths as
expected for amorphous TiOx. Ti 2p spectrum of region 5, on
the right side of the Pt agglomeration, exhibits broad peaks as
an amorphous structure. In addition, an energy shoulder
appears at around 456 eV, which is consistent with the pre-
sence of a partially reduced phase containing Ti3+ [38]. The

presence of a mixture of Ti3+ and Ti4+ could contribute to the
fact that the peaks are slightly broader compared to the
pristine sample, as inferred from the reduced 2p3/2 and 2p1/2
peak-to-valley ratio. In addition, spectra of phases containing
Ti3+ show broader features compared to the pure Ti4+ phases,
because of the binding energies of the Ti3+ levels and over-
lapping and increasing numbers of allowed transitions in the
Ti3+ spectra [44]. Spectra from regions 1–4, all extracted
from the TiOx areas underneath the damaged TE show shar-
per features with significant variation in shape, clearly indi-
cating significant changes in the chemical structure of TiOx.
In particular, all spectra show splitting of the (2p3/2, eg) peak,
which indicates distortion of the TiO6 octahedra [45]. The
relative intensities of these two peaks depend on the particular
type of octahedral distortion, and therefore, on the particular
polymorphic form of TiO2. In the spectrum of region 4, very
close to the Pt agglomeration, the relative intensities of the
split (2p3/2, eg) peak are different, being higher for the peak at
higher energy. This is typical of the TiO2 rutile phase, which
has tetragonal distortion of the TiO6 octahedra [43, 46]. In the
spectra of regions 1–3, the relative intensity of the split (2p3/
2, eg) peak is the opposite to that in rutile, with the intensity
being higher for the peak at lower energy. This profile is
typical of anatase [45, 47]. The peak-to-valley ratio of the
2p1/2 peak in regions 2 and 3, where the TiOx film is dela-
minated from the Pt BE, are particularly high, indicating a
high degree of crystallinity. In contrast, 2p1/2 peaks of region
1, where the TiOx layer is not yet delaminated, are much
broader, indicating a lower degree of crystallinity.

If Ti 2p spectra give a clear indication of the phases
formed, while O 1s spectra, shown in figure 5(b), are more
difficult to interpret. Variations between the selected regions
of interest are less evident at the O 1s, as the change in
structure of TiOx has less influence on O 1s than Ti 2p
spectra. O 1s spectra of the pristine device show broad and
smooth spectral features typical of amorphous TiOx. More-
over, the dip between the (O 1s, t2g) and (O 1s, eg) peaks is
shallow compared to the spectra of all the other regions and
their energy difference, which is often used to evaluate crystal
field splitting, it is smaller and typical of disordered materials
(2.0 eV) [48]. In the spectra extracted from regions 1–4, the eg
and t2g peaks appear more defined and intense. The energy
gap between eg and t2g in regions 1–4 is ∼3.0 eV, a value
reported for both anatase and rutile phases [43]. In region 5,
the dip between eg and t2g is less intense, which is in agree-
ment with the Ti edge that shows broad peaks, as an amor-
phous structure. It has to be noted that no signal due to the
presence of oxygen vacancies is observed beneath the O 1s
jump, as expected for a reduced TiOx. This could be ascribed
to the fact that only a small amount of Ti4+ is reduced to Ti3+

so the amount of Ti3+ might not be high enough to generate
an observable peak. In support of this statement, in the work
of Strachan et al [38], where a shoulder at 456 eV of similar
intensity corresponding to Ti3+ was observed in the Ti 2p
spectrum, no signal due to defect state was observed in the O
1s spectrum.

Figure 5. NEXAFS Ti 2p (a) and O 1s (b) spectra of Dev_SB
extracted from the regions circled in the x-ray images of figures 4(b)
and (d).
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3.3. HB sample

We now consider the sample switched for 20 cycles until HB.
Figure 6(a) depicts the SEM image of Dev_HB viewed from
the TE taken using a conventional secondary electron detector
(EHT=5 kV).

Major damage of the TE occurred, with tree branch-like
patterns spreading over the junction area and peeled-off metal
as a result of heating and oxygen pressure. A similar branch-
like pattern of local defects has already been observed as a
result of electrical conduction through thin sandwich struc-
tures [18]. A complete detachment of the TE from the active
area is observed on the right rim of the junction. Very similar
morphological changes with the formation of dendrite-like
structures were observed by Skaja et al [49] in the TE of Pt/
Ta2O5/Ta devices. As evident from the magnified SEM
(figure 6(b)) and optical (figure 6(c)) images, several parts of
the Pt TE are delaminated. However, the BE is still mainly
unaffected as proved by the dark blue regions observed in the
optical image underneath the delaminated Pt TE. The AFM
images reported in figure 6(d) and figure S.I.3(a), show that
the Pt protrusions are mostly 100–150 nm high with a few
features up to about 400 nm. The deflection error image,
reported in figure S.I.3(b), reveals additional details of the
defects, such as the 2 μm elongated crater shown in the inset.

An FIB lamella was cut in the region highlighted by the
red line in figure 6(a). Details of the lamella extraction are
reported in figure S.I.4(a). Different from Dev_SB, cross-
section views reported in figure S.I.4(b) and figure S.I.4(c),
show several Pt inclusions lying on the BE. In particular, a
main Pt aggregate about 200 nm wide protrudes across the
oxide film, marked in figure 7(a). It has to be noted that in this
device, the number of Pt protrusions across the active oxide is
much higher than inDev_SB.

TXM micrographs at the Ti 2p (450 and 465 eV) and at
the O 1s (525 and 531 eV) are reported in figure 7. As
described previously for the Dev_SB, regions that appear
dark at 450 and 525 eV and bright at 465 and 531 eV,

correspond to Ti- and O-containing areas, respectively.
NEXAFS spectra at the Ti 2p and the O 1s were extracted
from the TiOx film area. Due to the extent of the damage, ten
ROI were identified, indicated in figures 7(b) and (d) by
numbered circles.

The Ti 2p and O 1s x-ray absorption spectra extracted
from each of these localized regions are reported in
figures 8(a) and (b), respectively.

Let us first consider the Ti 2p spectra. As observed in the
case of Dev_SB, significant spectral variations are observed
in different regions. Region 1, extracted from an unaffected
area, shows mainly amorphous features. Regions 2, 3, 6, 7, 8
and 10 show crystalline features typical of anatase phase
as the first peak of the 2p3/2 eg splitting has higher intensity
than the second. Region 4, very close to the main Pt

Figure 6. (a) SEM image of Dev_HB view from the TE with the region where the lamella was cut (red line); (b) magnified SEM image of
lamella-cut region; (c) optical and (d) AFM images of the region inside the yellow square in (a).

Figure 7. Optical density TXM micrographs of Dev_HB obtained at
the Ti 2p absorption edge with photon energy of 450 eV (a) and
465 eV (b) and at the O 1s absorption edge with photon energy of
525 eV (c) and 531 eV (d). Scale bar=200 nm.
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agglomeration, again shows crystalline features, but the
intensity of the 2p3/2 eg splitting is comparable. This part-
icular (2p3/2, eg) profile has been reported for orthorhombic-
like phases such as TiO2-II [47] and brookite [46]. However,
the authors cannot exclude the possibility that such a profile
could be due to the simultaneous contribution of anatase and
rutile. Finally, in regions 5 and 9, which are close to the main
defects, the first peak of the 2p3/2 eg splitting has lower
intensity than the second, a feature typical of rutile phase.
Spectra at the O 1s edge are more difficult to interpret.
However, it is confirmed that the pristine sample has broader
features compared to the highly crystalline phases.

It has been previously shown that the main TE defects
(such as craters or protrusions) are typically surrounded by
broad areas with scattered surface residue, which has mod-
erate conductivity [25, 50]. We have observed the presence of
a halo surrounding the tree-like defect by imaging the TE
using a SEM in-lens detector (figures 9(a) and (b)).

The conventional secondary electron detector (used for
the image shown in figure 6(a)) is positioned outside the lens
system and it is more bulk sensitive. The in-lens detector is
positioned in the optical axis in the SEM column and has high
surface sensitivity as the image is formed by low-energy
electrons. Therefore, the in-lens image contains direct infor-
mation of the sample surface. The contrast difference between
images taken using a conventional secondary electron
detector and an in-lens one can be clearly distinguished and
different features are observed. In figures 9(a) and (b), two
areas with different brightness can be distinguished, the
brightest area forming a halo around the defect. Different
brightness could be related to difference in the work function
(e.g. electronic variations) of the Pt TE in that area. Kelvin

probe force microscopy (KPFM) measurement, reported in
figure S.I.5, indicates that there is a difference in work
function between the heavily damaged area and the unda-
maged electrode. However, the change in work function in
the halo area is not clear. Further analysis is required in order
to clarify this point. It has to be noted that other factors
affecting the Pt TE in that area could cause differences in
brightness such as recrystallization or a cleaner surface due to
Joule heating. Chemical characterization of the oxide film
underneath the two areas was performed using TXM-NEX-
AFS chemical mapping. In the inset of figure 9(b), the FIB
lamella cut along the green (outside the halo) and red (inside
the halo) regions is presented, showing the cross-sections of
the film underneath both areas. Chemical maps were gener-
ated using the components corresponding to the optimal fits,
TiOx amorphous and TiO2 anatase, represented as white
regions in the inset in figure 9(b). While the region outside the
halo corresponds to amorphous TiOx, as expected, the region
underneath the halo has crystallized to anatase.

4. Discussion

The aim of this work is to shed light on the failure mechanism
of RRAM devices. It has been proposed that failure in RRAM
devices occurs by two different mechanisms: electrical di-
electric breakdown or thermally assisted dielectric breakdown
[24]. The former is purely due to electronic processes,
whereas the latter is mainly caused by Joule heating [51]. This
study shows that underneath the TE damaged regions, the
TiOx layer undergoes crystallization from the initial amor-
phous state and that the Pt electrode diffuses in several
regions of the film with the formation of voids in both cases
of SB and HB. Crystalline phases such as anatase were
observed in several regions of both Dev_SB and Dev_HB,
whereas rutile phase was observed only in fewer localized
areas. Reduced Ti3+ was only observed in Dev_SB. The
presence of reduced titanium suggests that prior to the
breakdown, a CF was formed in this area, which is believed to
be formed by the reduced TiOx phases. It is interesting to note
that the rutile phase in Dev_SB is observed in a region very
close to the reduced area containing Ti3+ (region 5). It was
previously shown that by annealing a TiO2 amorphous film,
the anatase phase is formed first, because of energy surface
minimization around 650 K [52]. Formation of rutile only
occurs after further annealing at higher temperatures, around
1000 K [53]. These results suggest that the temperature
increased in all regions to at least 650 K and only in a few
localized areas where rutile is present, did the temperature
reach 1000 K. The high current density flowing through the
CF explains the high increase in temperature in these loca-
lized regions, causing crystallization of rutile [36]. This also
supports the fact that the regions where rutile was observed,
correspond to the areas where CFs were located. The for-
mation of CF could be responsible for the RS of these devices
prior to the formation of Pt inclusions that have then caused
electric breakdown. It has to be noted that rutile phase appears
to be formed only as a side effect of the CF. The high increase

Figure 8. NEXAFS Ti 2p (a) and O 1s (b) spectra of Dev_HB
extracted from the regions circled in the x-ray images of figures 7(b)
and (d).
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in temperature in localized regions up to 1000 K also suggests
that cation interstitials could have played a role in the RS
mechanism. Oxygen vacancies are often considered the spe-
cies responsible for RS in transition-metal oxides due to the
fact that they have a better mobility than the metal cations at
room temperature. However, cation mobility cannot be
neglected at higher temperatures. Using scanning tunneling
microscopy, Wedig et al [54] gave clear evidence that the
cations in thin films of TiOx are mobile under the influence of
the electric field and participate in the RS process in com-
petition with oxygen vacancies. Moreover, high cation
mobility was also observed in TiO2−x at high temperature
[55], but also in thin films grown at room temperature [56].
Therefore, we believe that the mobility of titanium should not
be excluded when discussing the switching mechanism in
TiO2, in particular when considering the high temperatures
caused by Joule heating.

In Dev_HB, the presence of Ti3+ is not evident, but full
crystallization of the oxide along with several Pt intrusions
(many more than in Dev_SB) are observed. This is in
agreement with the more drastic switching conditions that
caused a higher extent of the defect on the TE. Crystalline
anatase was observed in the halo surrounding the main defect
area, where the effect of heating is not localized, but spread
across a wide area. The growth of crystalline TiO2 phase
requires a significant increase in temperature, which is likely
to be induced by the localized Joule heating produced during
the switching cycles, suggesting a thermally assisted dielec-
trical breakdown mechanism. However, crystallization of the
initially amorphous active film was also observed in [27],
where structural investigation was performed on a functioning
device switched into LRS. In that case, as in the present work,
reduced TiOx and crystallization of amorphous TiO2 with the
formation of anatase, rutile and most probably brookite (or
TiO2-II) occurs. The main difference between the functioning
LRS device considered in [27] and the Dev_SB reported in
this work is the extent of the switching voltage, in the range
of ±1.5 V and ±5 V, respectively. Even if, in both devices,
the resistance can toggle reversibly between LRS and HRS,
the functioning LRS device can be switched for a larger
number of cycles, whereas the Dev_SB permanently breaks

down after about 20 cycles. TXM-NEXAFS results suggest
that this behavior is caused by the formation of Pt intrusions,
which accumulate at every switching cycle creating more and
more damage until HB. Our working hypothesis is that the
switching mechanism is filamentary in nature and dominated
by one filament at a time. Therefore, when the device starts
cycling, a filament is formed and then broken until SB occurs.
At that point, the device experiences some damage, including
the Pt intrusions we observed and the switching site is
destroyed. At the next cycle, another filament is formed and
the device carries on cycling. This procedure repeats and the
device gradually accumulates damage. As the device accu-
mulates more and more damage, the switching voltage biases
increase until HB. The main difference between the cross-
section of the functioning LRS device reported in [27] and
that of devices after SB and HB reported in this work, is the
extent of the TE defect and the formation of Pt intrusions.
Diffusion of Pt in the oxide film could create a short between
the BE and TE. Therefore, we believe that these Pt intrusions
are actually the final cause of the device failure, which can be
considered to be caused by pure electrical dielectric break-
down. Our results provide useful insights into understanding
the cause of failure in RRAM devices.

5. Conclusions

TXM-NEXAFS was used to perform morphological analysis
and chemical identification of spatially localized areas of
TiOx-based RRAM. Changes in the morphology and structure
of the initial amorphous TiOx film are observed underneath
physical deformations of the Pt TE and in the adjacent area. Pt
inclusions and the formation of voids in the TiOx film are
observed after both soft (reversible) and hard (irreversible)
electrical breakdown. A reduced TiOx phase containing Ti3+

has been observed close to the Pt protrusion in the SB sample,
suggesting the location of a CF prior to failure. Crystalline
anatase and rutile have been identified in both samples, with
rutile being observed in localized areas where the temperature
increased up to 1000K.

Figure 9. SEM images of Dev_HB obtained with an in-lens detector (EHT=1 kV).
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Optical images, SEM images and AFM maps of
Dev_SB, SEM images of Dev_HB and KPFM of Dev_HB.

Supplementary information

Additional optical/SEM images and AFM/KPFM maps are
reported in the supplementary information stacks.iop.org/
NANO/27/345705/mmedia
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