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2National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.

3Dresden High Magnetic Field Laboratory (HLD),
Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany.

4Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,
Department Quantum Phenomena in Novel Materials, Berlin, Germany.

(Dated: July 21, 2017)

The field-induced ordering transition in the quantum spin system NiCl2·4SC(NH2)2 is studied by
means of neutron diffraction, AC magnetometry and relaxation calorimetry. The interpretation of
the data is strongly influenced by a finite distribution of transition fields in the samples, which was
present but disregarded in previous studies. Taking this effect into account, we find that the order-
parameter critical exponent is inconsistent with the BEC universality class even at temperatures
below 100 mK. All results are discussed in comparison with previous measurements and with recent
similar studies of disordered Ni(Cl1−xBrx)2·4SC(NH2)2 .

I. INTRODUCTION

Over the past decade, a great deal of attention has
been given to so-called Bose-Einstein condensation of
magnons.1 These are quantum phase transitions induced
in axially symmetric spin systems by the application of
an external magnetic field. The simplest example is that
of “conventional” antiferromagnets at their saturation
fields.2 For purely technical reasons, these transitions
are easier to study in gapped quantum antiferromagnets,
which in zero field have a non-magnetic ground state.3

An external field drives the spin gap to zero by virtue
of Zeeman effect, at which point spontaneous long-range
ordering of transverse spin components may occur, as in
the much-studied TlCuCl3 system.4,5 Quite a few such
materials have been studied to date.30

An all too common experimental problem is magnetic
anisotropy. In anything but the axially symmetric case,
the field-induced transition is of the Ising (rather than
BEC) universality class. The result is a re-opening of
the gap in the high-field phase6–8 and other features not
compatible with BEC physics,8 including unusual val-
ues of critical exponents.4 For this reason, experiments
on one particular material, namely NiCl2·4SC(NH2)2
(DTN), have been of special importance.9 This com-
pound is tetragonal, and applying the field along the
unique crystallographic axis ensures the required axially-
symmetric geometry. A number of studies were aimed
at measuring the critical properties of the correspond-
ing BEC quantum critical point. Specifically, studies
of the (H − T ) phase diagram9–13 provided data on
the so-called crossover exponent φ, which describes the
temperature dependence of the critical field Hc: T =
[Hc(T ) − Hc(0)]φ.31 The exponent is expected to have
a particular value φ = 2/3 for the magnon BEC transi-
tion in three dimensions. Several experiments reportedly
confirmed this prediction for DTN.10,11 Other exponents,

particularly the order parameter critical index β have not
been studied experimentally as yet, although the high
field ordered state has been investigated with neutron
diffraction and inelastic scattering in some detail.14

DTN gained renewed attention in the context of
BEC in the presence of disorder. In experiments on
Ni(Cl1−xBrx)2·4SC(NH2)2 (DTNX), where randomness
is introduced on the non-magnetic halogen sites,15,16 dis-
order was shown to substantially affect the (H−T ) phase
diagram. According to Yu et al.,15 the crossover expo-
nent changes drastically to φ ∼ 1 in the low-temperature
regime T . 250 mK.15 This behavior was interpreted
in the context of Bose Glass physics,17,18 though there
remains a controversy regarding the value of φ even on
the theoretical side.15,17,19,20 Confusingly, recent neutron
diffraction experiments have measured the order param-
eter exponent β as well at the crossover exponent φ in
DTNX, but failed to find any indication of Bose Glass
behavior.16

The initial purpose of the present study was to use
neutron diffraction and complementary methods to care-
fully measure β and the (H−T ) phase boundary in stoi-
chiometric (disorder-free) NiCl2·4SC(NH2)2, for a direct
comparison with previous results on DTNX.16 Our main
finding is that our measurements, as well as all previous
studies, are significantly influenced by a distribution of
transition fields in the sample. Taking this effect into ac-
count, for DTN we find a critical exponent β that is not
consistent with the BEC universality class all the way
down to T < 100 mK. Moreover, we come to the con-
clusion that the previously reported11 φ ∼ 2/3 is likely
due to an inappropriately wide choice of fitting range,
while the actual data support a much larger value for
T < 170 mK. Finally, comparing the results on DTN and
DTNX, we conclude that there is no statistically signifi-
cant evidence of any effect of disorder on the critical prop-
erties at low temperatures. These findings cast doubt on
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FIG. 1: The bulk of neutron diffraction peak inten-
sity data measured in constant-temperature field sweeps in
NiCl2·4SC(ND2)2 at the (0.5, 0.5, 0.5) reciprocal space point.
Larger symbols highlight the scans shown in more detail in
Fig. 5.

the relevance of the BEC and Bose Glass paradigms to
the realities of DTN and DTNX.

II. EXPERIMENTAL

Single crystal samples of DTN for the present study
were grown from solution using the thermal gradient
method, as in Refs. 9–13. It is important to stress
that virtually all previous studies used samples from the
same source,9 but the crystals for this work were grown
independently. All DTN material used in the present
study was fully deuterated, to facilitate neutron diffrac-
tion measurements. The crystal structure was verified
using single crystal X-ray diffraction on a Bruker AXS
diffractometer equipped with an APEX-II detector, and
found to be indistinguishable from that of protonated
DTN to within accuracy of the instrument.

Neutron diffraction was performed at the E2 diffrac-
tometer at Helmholz-Zentrum Berlin with λ =
2.38 Å neutrons. The single-crystal sample had the size
7× 7× 6 mm3 and mosaic spread of 1◦ full width at half
maximum (FWHM). We used a 3He-4He dilution refrig-
erator in a 4.2 T superconducting split-coil magnet. The
crystal alignment was verified in-situ. The measured an-
gle between the field direction and the crystallographic c
axis was 1.7 ◦. Most data were collected in the vicinity of
the (0.5, 0.5, 0.5) reciprocal-space point. It corresponds
to the smallest-angle magnetic Bragg peak in the high-
field ordered phase.14 The measured Bragg widths were
in all cases resolution-limited. The corresponding peak
intensity was collected by sweeping the magnetic field at
constant temperature. The bulk of the data are visual-
ized in Fig. 1.

Thermal-relaxation calorimetry was performed on a
Quantum Design PPMS with the 3He-4He dilution re-
frigerator insert. A deuterated single crystal sample with
a mass of 1.7 mg was aligned using X-ray diffraction.
The misalignment of the applied field with the crystallo-
graphic c axis was smaller than 5◦.

The complex magnetic AC susceptibility of
NiCl2·4SC(ND2)2 was measured by using a com-
pensated mutual inductance mount to the mixing
chamber of a 3He-4He dilution refrigerator placed in the
bore of a superconducting magnet system. The sample
was a 52 mg single crystal attached to a silver holder by
a small amount of vacuum grease and aligned to better
that 5◦ relative to the field direction. The temperature-
and field-dependent AC susceptibility was recorded by
applying a primary AC field with µT amplitude at a
frequency of 2 kHz to the sample. For that, we used a
Stanford Research SR 830 lock-in amplifier to sense the
induced picked-up voltage in the compensated secondary
coil pair. The AC field was superimposed by axially
co-aligned static fields up to 14 T.

III. RESULTS AND INITIAL DATA ANALYSIS

A. Magnetic susceptibility

Typical constant temperature measurements of mag-
netic AC susceptibility are shown in Fig. 2a (thin lines).
The transition is marked by a distinct step in χ(H),
in agreement with previous studies.9 The step is visibly
broadened at all temperatures. Its shape can be approx-
imated by the error function. The field derivative of the
measured susceptibility dχ/dH is plotted in Fig. 2b (thin
lines), for a direct comparison with Fig. 2a from Ref. 11,
where the raw data look very similar.

Our χ(H) data were analyzed using fits with an er-
ror function on a linear sloping background (Fig. 2a,
heavy solid curves), which corresponds to Gaussian in
dχ(H)/dH (Fig. 2b, heavy solid curves). The center of
the Gaussian determined at each temperature is shown
in solid squares in Fig. 3. The FWHM of peak ∆H is
plotted versus temperature in Fig. 4. ∆H remains con-
stant below ∼ 300 mK, and gradually increases at higher
temperatures.

The observed transition width exceeds any expected
field inhomogeneities or inaccuracies in setting the field
value, all estimated to be below 5 mT. The broadening is
also not a finite-T effect, as its temperature dependence
totally levels off at T → 0. We conclude that this width is
an intrinsic feature of the samples studied. In fact, in our
case it is about 30% narrower than in the experiments of
Refs. 11 and 9.

As will be discussed in detail below, we interpret the
apparent width of the transition as a distribution of tran-
sition fields Hc in the sample. In the analysis of the
neutron and calorimetry data, we shall approximate this
distribution as normal (Gaussian), with FWHM equal to
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FIG. 2: Thin lines: typical field dependence of magnetic sus-
ceptibility χ = dM/dH (a) and its field derivative dχ/dH (b)
measured in NiCl2·4SC(ND2)2 at several temperatures. The
thick lines are Gaussians in (b) which corresponds to an error
function on a sloping background in (a). Except for the high-
est temperature, all data are plotted with arbitrary offsets for
visibility.

that of dχ/dH at base temperature: ∆Hc = 650 Oe.

B. Neutron diffraction

Some representative field-sweeps of the (0.5, 0.5, 0.5)
magnetic Bragg peak intensity are shown in Fig. 5. Sim-
ilarly to what was previously done for DTNX,16 and fol-
lowing the procedure outlined in Ref. 21, each such data
set was analyzed using power-law fits in a progressively
shrinking field window. The fit parameters were the crit-
ical feld Hc, the exponent β, and an overall scale factor.
The difference in our present approach was that instead
of using a “bare” power law function, we convoluted it
with a Gaussian distribution of transition fields with a
fixed FWHM ∆Hc = 650 Oe, as discussed above. The
convoluted function gives comparable fits to the data and
reproduces the slight “rounding” of the transition clearly
visible in some field scans.

Following Ref. 21, for each field sweep, we identified
the “narrowest useful fitting range” around the transi-
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FIG. 3: (a): Magnetic field-temperature phase diagram of
DTN. Circles (neutron diffraction), squares (magnetic AC
susceptibility) and triangles (calorimetry) are data obtained
in this work on deuterated samples. Open squares,9 circles10

and triangles11 are results for protonated DTN reported in lit-
erature. (b): The low temperature data shown in more detail.
The solid lines in (a) are power law fits in a wide temperature
range. The solid line in (b) is a power law fit to the data of
Ref 11 up to Tmax = 170 mK, yielding φ = 1.00(14).

tion point, defined by the maximum field Hmax used in
the fits. Decreasing the fitting range further does not lead
to a statistically significant change in the fitted param-
eter values, while the error bar increases. Having com-
pared Hmax −Hc for all temperatures studied, we chose
a common fitting range for all data sets: Hmax = Hc+ δ,
δ = 4 kOe.

Analyzing all field sweeps in the common fit range gives
the temperature dependence of Hc and β shown in solid
circles in Figs. 3 and 6, respectively. For comparison, in
Fig. 6 open circles show the values obtained using “bare”
power law fits in the same range.
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FIG. 4: Symbols: temperature dependence of the peak in
dχ/dH in NiCl2·4SC(ND2)2, as determined by Gaussian fits
described in the text. The solid line is a guide for the eye
only.
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FIG. 5: Symbols: typical field dependencies of the neutron
diffraction peak intensity at the (0.5, 0.5, 0.5) reciprocal-space
position measured in NiCl2·4SC(ND2)2 at several tempera-
tures. Solid lines are fits to a power law function convoluted
with a Gaussian distribution of transition fields, as described
in the text. In all cases the fitting range is 4 kOe above Hc.
All data for 160 mK and 80 mK are plotted with offsets of
2 · 103 counts/5 min and 4 · 103 counts/5 min, respectively.

C. Calorimetry

Typical measured field dependencies of specific heat
are shown for different temperatures in Fig. 7. The tran-
sition is marked by a well-defined maximum. Compared
to similar features in other organic gapped quantum mag-
nets at a field-induced ordering transition,32 the peak
is somewhat broadened. Following the logic of the dis-
cussion above, we attributed this broadening to a finite
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=0.39(1)

FIG. 6: Exponent of the power law describing the field depen-
dence of the order parameter in NiCl2·4SC(ND2)2, plotted as
a function of temperature. Solid symbols represent fits that
take the finite distribution of critical fields into account. For
comparison, open symbols are fits using a “bare” power law
function. In all cases the fitting range in field in 0.4 T above
the transition. The line is a linear fit to the solid symbols
below 700 mK.

distribution of transition fields, and analyzed the data
accordingly. Our model for each field scan at a constant
temperature was based on a power law function, with the
critical exponent α = −0.015 for a thermodynamic XY
transition in three dimensions.23 For each temperature,
the parameters of the fit were Hc, two scales factors for
C(H) below and above the transition, respectively, and
an overall flat background.

The power law function was numerically convoluted
with a normal distribution of fixed FWHM ∆Hc =
650 Oe. In all cases we used a fitting range of +1250/−
850 Oe around the peak position. Good fits are obtained
at all temperatures. Typical fits are shown as smooth
curves in Fig. 7. As a reference, the sharply peaked curve
is the “bare” (non-convoluted) power law function corre-
sponding to the fit curve for T = 72 mK. We see that
even if there is a lambda anomaly at the transition, it is
totally masked by the critical field distribution.

The arrows in Fig. 7 indicate the fitted value of Hc

at each temperature. Note that due to the convolution
effect, it is always below the apparent specific heat max-
imum. The temperature dependence of the critical field
obtained in our analysis is plotted in solid triangles in
Fig. 3.
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FIG. 7: Symbols: typical field dependencies of specific heat
measured in NiCl2·4SC(ND2)2 at several temperatures. The
solid lines through the data points are fits to the data using a
power law convoluted with a finite distribution of transition
fields, as described in the text. The sharply peaked curve is
the“bare” non-convoluted power law for the T = 72 mK data
set. Arrows are the fitted transition fields.

IV. DISCUSSION

A. Phase boundaries and transition width

What is immediately noticeable are significant differ-
ences between phase boundaries measured with differ-
ent techniques. The discrepancies between our mea-
surements and previous studies of the protonated ma-
terial may be at least in part due to us using deuter-
ated DTN in all experiments. However, this circum-
stance can not account for the differences in phase bound-
aries that we measure with neutrons, magnetometry and
calorimetry in deuterated DTN, or between previous
magnetometry9,11 and magnetocaloric10 studies of pro-
tonated crystals. A point of concern is the orientation
of the magnetic field in the sample. The phase dia-
gram in fields applied in the (a, c) plane, at an angle
to the unique tetragonal c axis, has been thoroughly in-
vestigated by neutron diffraction.14 Approximating that
measured phase boundary by an ellipse, we conclude that
even a 5◦ misalignment will change the critical field by

only about 100 Oe. Therefore, sample alignment is not
an issue in any of our or previous studies.

As pointed out in Ref. 12, a much larger concern is
mechanical stress in the sample. Those measurements
have shown that the transition field in DTN is excep-
tionally sensitive to pressure. Indeed, it was estimated
that the stress produced on the sample by a rather gentle
dilatometer spring may alter Hc by as much as 300 Oe.
The stress may be much larger for the samples used in
our calorimetry experiments and magnetometry. They
are attached to the calorimeter platform with vacuum
grease that is bound to stress the sample upon cooling
due to a different thermal expansion coefficients. The
lowest stress occurs in our neutron experiments, where a
large sample is mounted without any glue, but is simply
held in place with thin Al wire.

Stress, specifically intrinsic residual stress due to de-
fects, is also the most likely explanation for the observed
broadening of the transition. Since all DTN samples are
solution grown, they all inevitably have cracks, imperfec-
tions and solvent inclusions.22 A microscope inspection
of our samples reveled numerous defects of this type.33

Upon cooling, such defects, particularly solvent inclu-
sions subject to freezing, will most certainly generate a
distribution of strong strain fields in the sample, resulting
in a distribution of critical fields. The broadening will be
sample-dependent. As mentioned above, in our samples
it is about 30% smaller than reported in previous studies.

B. Critical exponent β

One of the main results of this work are measurements
of the magnetic order parameter. Compared to previ-
ous studies,14 assuming that the transition is continuous
and described by a power law, our data provide enough
statistics to extract the corresponding critical index β.
As shown in Fig. 6, below ∼ 0.7 K the experimental value
slowly increases with decreasing temperature. Averaged
over the upper 100 mK of this range, β = 0.36(1), which
is fully consistent with the expectations for a thermody-
namic XY transition in three dimensions.23 The tempera-
ture dependence could be interpreted as a crossover to the
quantum critical regime at low temperatures. However,
linearly extrapolating the measured exponent to T = 0
(see solid line in Fig. 6), we get β = 0.39(0.01). This
value is inconsistent with the mean field expectation for
3-dimensional BEC of magnons, β = 0.5. If there is a
crossover to larger values, it occurs at still lower temper-
atures.

How reliable is this conclusion? As always in a diffrac-
tion experiment, the main potential pitfall is that near
the transition some critical fluctuations are picked up
due to the finite resolution of the instrument. However,
this has always the effect of increasing the intensity near
Hc, resulting in larger apparent critical indexes, and can
not explain the discrepancy. Another concern is whether
the field range has been chosen appropriately, i.e., suf-
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ficiently narrow to access the quantum critical regime.
This indeed was a problem for the previous studies of
DTNX,16 where even at T → 0 we expected a crossover
vs. field from BEC behavior to that dominated by disor-
der. In disorder free DTN, the only expected crossover is
to the classical (thermodynamic) regime at T > 0. For-
tunately, the field range of the classical transition rapidly
tends to zero as T 1/φ, with the same power law exponent
as the phase boundary.24 With the assumption that the
field-width of the classical region is of the same order
as the change in Hc compared to zero temperature, for
DTN at 200 mK it is narrower than 500 Oe. Our fits
over a range of 4 kOe are therefore not affected. At the
same time, the maximum Bragg intensity used in our fits
is still three times smaller than the saturation value.14

Thus, saturation effects are also unlikely to influence the
analysis. We conclude that assuming the transition is
continuous and described by a power law, our estimate of
β is quite robust.

C. Critical exponent φ

Previous studies of the phase boundary in DTN in
temperatures up to 1 K, have given a critical exponent
φ ∼ 0.4.9 This result is generally consistent with power-
law fits to our neutron diffraction data up to 0.8 K
(φ = 0.41(1), Hc = 21.0(1) kOe), calorimetry up to 0.6 K
(φ = 0.45(1), Hc = 21.2(1) kOe) and susceptibility up to
0.55 K (φ = 0.50(1), Hc = 21.0(1) kOe). The corre-
sponding fits are shown in solid lines in Fig. 3a. While
these values appear to be at odds with the prediction
φ = 2/3 for a 3-dimensional BEC transition, a likely
reason for the discrepancy was discussed in Ref. 11. It
was suggested that the BEC value for the crossover ex-
ponent is recovered only for the lowest temperatures, be-
low T ∼ 270 mK. At higher temperatures one observes
classical (thermodynamic) critical behavior which, with
a corresponding change in φ.

All our experiments lack sufficient data at the low-
est temperatures for a reliable power-law analysis in this
regime. An additional problem is posed by the distribu-
tion of critical fields. A 650 Oe variation of Hc in the
sample corresponds to a ∼ 200 mK variation of Tc. Any
measurements of the “critical exponent” φ in this range
may be strongly affected. In fact, the transition field at
each temperature can not be unambiguously extracted
from the data without an implicit assumption regarding
the shape of the singularity in the susceptibility. For ex-
ample, taking the maximum of the derivative dχ/dH as
a measure of the “average” Hc, as was done here and
in Ref. 11, implies a BEC-like step of χ(H) and a sym-
metric distribution of transition fields. A rather different
definition of Hc was used in Ref. 9, and may potentially
lead to a different extraction of φ. The ambiguity be-
comes acute if the shape of the measured χ(H) curve is
itself temperature-dependent. Fortunately, for DTN, at
low temperatures this does not appear to be the case.

However, for DTNX, χ(H) curves become visibly broad-
ened at low temperatures,15 which may severely impact
the determination of φ.

For DTN, at best, one can assume the transition corre-
sponds to BEC, analyze the data accordingly, and check
whether the outcome is consistent with the BEC inter-
pretation. In this spirit, analyzing the data measured
up to Tmax = 270 mK , the authors of Ref. 11 obtained
φ = 0.68(1), in excellent agreement with BEC. However,
given that at higher temperatures there is a crossover to
φ . 0.5, is 270 mK is low enough? Apparently not. For
the same data, reducing Tmax to 170 mK gives a statisti-
cally significant change in the fitted value: φ = 1.00(0.14)
(solid line in Fig. 3b).34 This behavior is consistent with
the obvious observation that the data in Fig. 3b of Ref. 11
appear almost linear at low temperatures. The same is
actually true for the upper critical field Hc2 as well, as
shown in Fig. 3a of Ref. 11. In fact, for Hc2 the au-
thors note an “abnormal change in slope” at 150 mK,
but fail to note a very similar feature in the lower critical
field. In this context, for both critical fields, the data
of Ref. 11 point to φ ∼ 1 at low temperatures, with a
crossover to φ ∼ 0.4 at high temperatures. The reported
φ ∼ 2/3 simply corresponds to an accidental choice of
fitting range and a crossover between the two regimes.

D. Comparison with DTNX

Our neutron diffraction data for DTN can be di-
rectly compared to those for DTNX (8% Br) reported
previously.16 Apart from the substantial difference in
critical field (Hc ∼ 12 kOe in DTNX vs. Hc ∼ 21 kOe in
DTN), the behavior observed in the two compounds is re-
markably similar. In DTNX, the observed exponent β is
somewhat larger, β = 0.52(3),16 vs. DTN’s β = 0.39(1).
However, this discrepancy may be due to limitations in
the analysis of DTNX data: i) a much larger fitting range
δ = 10 kOe and ii) not taking into account the finite dis-
tribution of critical fields. Indeed, by roughly estimating
the width of the transition from the measured specific
heat curves in DTNX, and then using the result to re-
analyze the corresponding neutron data, for 8% DTNX
at T < 300 mK we obtain β = 0.32(5).35

At this point, the only experimentally observed effect
of disorder on the field-induced phase transition in DTN
is the claim of Ref. 15 that in the low-temperature limit φ
changes from φ ∼ 2/3 in the pure material (as estimated
in Ref.11) to φ ∼ 1 in DTNX. As discussed above, the
former result is an artifact of an accidentally selected
fitting range. In fact, the existing data suggest φ ∼ 1
in disorder-free DTN as well. Of course, this value of
φ seems to govern the phase boundary in DTN below
∼ 300 mK, and only below ∼ 170 mK in pure DTN. This
difference in range is, however, not unexpected. These
are different materials, after all, with even critical fields
differing by a factor of two.

Thus, there is no statistically significant evidence of
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that disorder is at all relevant for the phase transition in
DTNX. The only real difference is the value of Hc. It is
most likely due to a change in the exchange parameters
and anisotropy, due to the effect of “chemical pressure”.
Considering the extreme sensitivity of Hc to strain,12,25

a substantial change of Hc on Br-“doping” is only to be
expected.

E. Is the transition continuous?

It is often overlooked that, based on very robust sym-
metry arguments, the field-induced transition in DTN is
necessarily not a BEC of magnons, but a discontinuous
transition.8 In a tetragonal crystal, due to magnetoelas-
tic coupling, a 1st-order transition that lifts the crystal
symmetry occurs just before the spin gap closes. The
spin gap never closes completely, and increases again be-
yond the transition, since broken tetragonal symmetry
implies Ising-like anisotropy in the system. This mecha-
nism for a quantum phase transition is akin to the famous
argument of Larkin and Pikin that certain magnetic ther-
modynamic transitions involving a coupling to acoustic
phonons must be discontinuous.26 Usually, the hope is
that the discontinuity is very slight, in which case the
transition may be studied as a continuous one. However,
for DTN, where magnetoelastic coupling is enormous,25

there are no obvious theoretical grounds for such opti-
mism.

Due to the ever-present distribution of transition fields,
the question of the continuity of the transition appears
impossible to resolve experimentally. Simply put, a con-
tinuous distribution of transition fields will lead even a
discontinuous transition to look continuous. Magnetic-
susceptibility measurements are hardly an indicator since
χ(H) is discontinuous already in ideal BEC case for the
T → 0 limit. Specific heat may have been more sen-
sitive to the continuity of the transition. However, the
weak lambda anomaly in the case of small negative α,
when convoluted with the normal distribution of transi-
tion fields, is indistinguishable from a discontinuous step
function. A further complication is that such a disconti-
nuity will be superimposed on a peak-like feature due to
an almost vanishing spin gap in the vicinity of Hc.

Neutron diffraction could in principle provide the most
direct measure of the discontinuity. However, a finite Hc

distribution will smear out any jump of the Bragg peak
intensity as well. From the known ∆Hc, we can say with
certainty that a 5% jump of Bragg peak intensity com-
pared to the saturation value14 would be undetectable
in our data. Since Bragg intensity scales as the square
of the ordered moment, this corresponds to an order pa-
rameter jump as large as 20% of saturation! The same
inhomogeneity of residual stress will ensure an abundance
of nucleation sites and eliminate any hysteresis even for
a discontinuous transition.

As a side remark, discontinuous magnetoelastic transi-
tion of the type described in Ref. 8 would be the most nat-

ural explanation to another established feature of DTN,
namely the gap in the spin excitation spectrum observed
with both ESR27 and neutron spectroscopy.14 To date, it
is not clear whether there are Goldstone modes in addi-
tion to the gap mode as follows from the model in Ref. 27,
or whether the system is truly gapped. The latter sce-
nario is exactly what follows from symmetry arguments,
but would be totally inconsistent with BEC.

V. CONCLUSION

The above discussion can be summarized as follows:

1. A finite distribution of transition fields is a ma-
jor complication for any experimental studies of
DTN. Without specific assumptions regarding the
functional form of singularities at the transition, a
meaningful discussion of critical exponents in DTN
in the low-temperature regime is hardly possible.
In fact, none of the new or previously published
data can even prove that the transition is contin-
uous. The order parameter jump may be absent,
but may also be as large as 20% of saturation.

2. Assuming a continuous field-induced transition at
temperatures below ∼ 170 mK, our neutron diffrac-
tion data for the order parameter exponent β, as
well as the previously published data for the phase
boundary,11 are not consistent with the BEC uni-
versality class.

3. Neither the neutron experiments on DTNX and
DTN, nor the previously published susceptibility
data contain any evidence of that disorder signif-
icantly influences the critical behavior below T ∼
170 mK. In particular, the assertion that BEC crit-
icality in DTN gives way to Bose Glass criticality in
DTNX, at present lacks experimental justification.

All in all, DTN demonstrates some fascinating physics
at low temperatures, but appears not to be a particularly
good BEC prototype system, by any measure.
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