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Abstract
Vertical orientedGaNmicrorodswere grownbymetal-organic vapor phase epitaxywith four different
n-type carrier concentration sections above 1019 cm−3 along the c-axis. In cathodoluminescence
investigations carried out on each section of themicrorod, whispering gallerymodes can be observed
due to the hexagonal symmetry. Comparisons of the spectral positions of themodes from each section
show the presence of an energy dependentmode shift, which suggest a carrier-induced refractive
index change. The shift of the high energy edge of the near band edge emission points out that the
band gap parameter in the analytical expression of the refractive index has to bemodified. A proper
adjustment of the band gap parameter explains the observedwhispering gallerymode shift.

1. Introduction

The presence of whispering gallerymodes (WGMs)with high quality (Q-)factors as well as lasing activity inGaN
microrods enable their use as opticalmicrocavities in applications such as polariton and photon lasers and
ultrasensitive optical sensors [1–7]. Beside the size and shape of themicrorods, the refractive index determines
the optical properties ofmicrocavities such as spectral positions of theWGMs. Therefore, it is important to
know to identify processes, which influence the refractive index. The analysis ofWGMs frommicrorod
structures have already been used to determine the refractive index ofGaN [8]. In suchmicrorods, high carrier
concentrations above 2 × 1020 cm−3 have been reported [9]. High carrier concentrationsmightmodify the
refractive index as it has been proposed in [10]. The current-induced refractive index change for carriers injected
into aGaNbased laser diode has already been reported [11]. In this letter, the influence of different high carrier
concentrations on the refractive index of GaNwill be investigated. GaNmicrorods were grownwith four
sections each having different doping concentrations. Cathodoluminescence (CL)measurements on each
section showWGMs and a spectral energy dependentWGMshift as well as a shift of the near band edge (NBE)
emission. The band gap parameter in the analytical expression of the refractive index can bemodified to explain
theWGMshift.

2. Experimental

TheGaNmicrorod samples were grownby a self-catalyzed vapor-liquid-solid (VLS)method on 2 inch c-plane
sapphire substrates utilizing anAixtron 200RF horizontalflowmetal-organic vapor phase epitaxy (MOVPE)
reactor [12]. Trimethylgallium (TMGa), silane, hydrogen, and ammoniawere used as precursors. Silane is
needed for n-type doping and enhances the vertical growth due to the formation of surface SiN acting as a
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stabilization and antisurfactant layer [13]. The samples are grown at a pressure of 100 mbar and a susceptor
temperature of 1150 °C. AV/III ratio of 6–25was adjusted. All further details concerning growth can be found
in [6, 12]. Scanning electronmicroscopy (SEM) and room temperature (RT)CLmeasurements were performed
utilizing aHitachi S4800 in combinationwith aGatanMonoCL setup. For the SEM images andCL
measurements an acceleration voltage of 5 keV and a sample tilt of 60° were used. Ramanmeasurements were
performed at RT in backscattering configuration using a LabRamHR800 spectrometer fromHoriba Scientific.
The linearly polarized laser emitting at 457 nmwas focused by a 100× objective (numerical aperture 0.9)
resulting in a diameter of the normally incident probing beamof 0.7 μmand in a laser power on the sample
surface of∼582 μWusing afilter.

3. Theoretical background

WGMs in a hexagonal structure are based on reflections of light either at six or three sidewall facets, designated
as hexagonal or triangularWGMs, respectively [14]. In hexagonal cavities consisting ofmaterials having a
refractive index >n 2 (with n = 1outside the cavity), triangularWGMs are dominant becauseQ-factors by up
to two orders ofmagnitude higher compared toQ-factors fromhexagonalWGMs are possible due to strong
coupling of superscarmodes [15]. Coupling of triangularWGMs results in a suppressed field distribution at the
corners, thus reducing the scattering losses at the corners. Recalculations of the spectral positions ofWGMs
frommicrorods presented in a previous work [1] showmuch better agreement if triangularWGMs are used
instead of hexagonalWGMs together with amultiplication of the refractive index by a fairly uncommon factor
of 0.9103.

Spectral positions λWGM of triangularWGMs, which are observed for the investigatedmicrorod, can be
calculated applying a simple planewavemodel [14, 16]:
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the transparent region below the band gap can be determined from the real part of the dielectric function ε1
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1 [17, 18]. The
experimental data of the ordinary and extraordinary refractive index are shown infigure 1. The following
equation derived from theKramers–Kronig relation can be used for analytical expression of the experimental
data [19]:
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TheE0 parameter represents the effective band gap energy of GaN,A0 andA1 aremagnitude parameters and E1 is
the contribution of all high-energy optical transitions [19]. Using the parameters summarized in table 1, good
agreement is achieved in a range between 1–3.37 eV for the ordinary and 1–3.36 eV for the extraordinary
refractive index.

It has already been shown that theNBE emission peak position is dependent on the carrier concentration
[20, 21]. A shift towards higher (lower) energy is expected for increasing carrier concentrations above (below)
∼8× 1018 cm−3 due to the Burstein–Moss effect (band gap narrowing) [10, 20, 22, 23]. Therefore, it is necessary
to check the influence of the band gap parameter E0 in the analytical expression of the refractive index. The
ordinary and extraordinary refractive index has been calculatedwith a band gap parametermodified by +25 and
+50meV, respectively. It is shown in the upper graph offigure 1 that an increase ofE0 slighlty decreases the
refractive index. The lower graph infigure 1 displays the difference between the initial refractive index and the
modified one. In the lower energy range there is only a small deviation.However, in the energy range close to the
band gap there is a significant deviation of larger than 2%. Increasing E0 leads to a decreased differential change
of the refractive index.

4. Results and discussion

4.1. Growth ofGaNmicrorodswith four different doping sections
AGaNmicrorod sample was grownwith four sections of different doping concentrations along the c-axis. A
sketch of the growth sequence is shown infigure 2. To initializemicrorod growth, a high TMGaflowof 40 sccm
(180 μmol min−1) is applied for 20 s. To improve the optical properties, TMGawas then reduced to aflowof

2
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Figure 1.The upper plot shows the ordinary and extraordinary refractive index ofGaN. The black symbols are experimental data
taken from [17, 18]. Each solid line is a bestfit using equation (2) together with the parameters in table 1. Each dashed and dotted line
is calculatedwith amodifiedE0 parameter plus 25 and 50 meV, respectively. The lower plot shows the corresponding energy
dependent deviation ΔnGaN,ord (difference between the dashed/dotted and solid lines).

Table 1.Bestfit parameters for equation (2) of the experimental data
shown in figure 1 for the ordinary and extraordinary refractive index of
GaN, valid in a range between 1.00–3.37 eV and 1.00–3.36 eV,
respectively.

Refractive index A0 A1 (eV) E0 (eV) E1 (eV)

Ordinary 1.52001 44.0405 3.40581 8.52205

Extraordinary 1.72242 43.4421 3.41977 8.08019

Figure 2.Growth scheme (left) and definition of the four sections of themicrorod (right) with different Si doping concentrations. The
basis of themicrorod, grownwith a higher TMGaflux, has different optical properties compared to the upper part and is therefore not
considered in this study.

3
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10 sccmwithin 50 s [6, 12, 24]. Afterwards, fourmicrorod sections eachwith a growth time of 5 min andwith
different Si doping concentrations were deposited.

4.2. CL investigations of a singleGaNmicrorod
Among an ensemble of differently sizedmicrorods, a longGaNmicrorod is chosen for further investigations
with a height and inner diameter of 9.21 ± 0.04 and 1.75 ± 0.01 μm, respectively. The diameter along the
microrod axis is constant within the error range, i.e., no tapering such as in previous reportedGaNwires is
present [25] (for the details of the diametermeasurements see the supplementarymaterial). The SEM image of
themicrorod and the corresponding panchromatic CL image are shown infigures 3(a), (b). The basis grown
with a high TMGaflux has poor optical properties (strong yellow defect luminescence andweakGaNNBE

Figure 3. (a) shows an SEM image and (b) the corresponding panchromatic CLmap of amicrorod. The four sections of themicrorod
with different silane flows can be separated by the transitions with different CL contrast and are highlighted by thewhite dashed
arrows. (c) CL spectra of the four sections each recordedwith a fixed electron beam at the center of each section (shifted for clarity).
The black dashed and dotted lines are calculated TMandTE triangularWGMswithmode numbers 18–34 and 21–32, respectively. (d)
Graph shows the shift of theNBE emission and of fourWGMs at different spectral positions (left axis). Furthermore, the FWHMof
theNBE emission is plotted (right axis).

4
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emission) and is not considered for the following investigations. Details on the optical properties can be found in
[6]. The upper part of themicrorod grownwith a lowTMGa flux having improved optical properties can be
separated into four sections defined infigure 2: between each section there is a thin layer of different contrast
visible in the panchromatic CLmap infigure 3(b). From each section aCL spectrawas recordedwhile fixing the
focused electron beam at the center of each section (see figure 3(c)). DominatingNBE emission aswell as weak
yellow luminescence centered at 2.2 eV and surface related emission at 2.7 eV are visible [26].

4.3.Observation ofWGMs in each section of themicrorod
Independent of the respective section of themicrorod,WGMs are observed in the energy range from theNBE
emission to the yellow defect luminescence. The spectral positions of theWGMs in the blue spectrumobtained
from section 1 have been calculated using equation (1). The inner diameter used for the calculationwas set to
1779.8 nm,which is in good agreementwith themeasured inner diameter of 1.75 ± 0.01 μm.The band gap
parameter E0 wasmodified in order to get the best agreement between experimental and calculated data. For the
ordinary and extraordinary refractive index, E0 was set to 3.386 and 3.429 eV tofit with the TE andTMWGMs,
respectively. The calculated spectral positions of theWGMs are also in agreement with the black spectrum from
section 4, but not in good agreementwith the green and red spectra from sections 2 and 3, respectively, especially
in the high energy range.

Figure 3(d) displays the energy shift of four selectedWGMs at different energetical positions. There is a
WGMshift towards higher energywith increasing silane flow and the shift ismore pronounced at higher
energies. TheTM19WGMat∼2.15 eV shows only a small shift of up to 6 meVwhereas the TM34WGMat
∼3.34 eV is shifted by 30 meVwith respect to the spectrum from section 1.

Due to the superposition of theNBE emissionwithWGMs, theNBE emission peak position can not
unambiguously be determined. Compared to section 1, aNBE emission peak shift of∼10 and∼20 meV for
sections 2 and 3, respectively, can roughly be estimated.However, these values are not very reliable due to the
presence ofWGMs at the peak and low energy edge of theNBE emission. Amore precise estimation is possible
when only considering the high energy edge of theNBE emission at halfmaximumwhich is not in superposition
withWGMs. The shift is displayed infigure 3(d) (black line).With increasing the silane flow a shift up to 34 meV
towards higher energy is observed, which can be explained by the Burstein–Moss effect.

4.4.Determination of the carrier-concentration by analysis of the FWHMof theGaNNBE emission
The FWHMof theNBE emission of each spectrawas determined and is shown infigure 3(d) (right axis). Values
in a range between 100–160 meV are present. The carrier concentration of each sectionwas estimated from the
FWHMof theNBE emission according to [27] and are summarized in table 2.High n-type carrier
concentrations up to ×1.2 1020 cm−3 were found. The estimated carrier concentrations reveal that not all the
supplied Si atoms are incorporated intoGaN as dopants. An increase of silane supply by a factor of 4 and 7
enhances the carrier concentration only by a factor of∼2 and∼3, respectively. This is attributed to the self-
catalytic VLS growth of themicrorods and the low solubility of Si atoms into theGa droplet on top of rod leading
to enhanced formation of SiN on the sapphire surface and on the sidewalls of the rods acting as a sink for Si
[12, 13, 28]. The high carrier concentrations above 1×1019 cm−3 in all four sections of themicrorod are in
agreementwith the trend showing a shift of the high energy edge of theNBE emission towards higher
energies [21].

4.5.Determination of the carrier-concentration by analysis of the Raman spectra
Micro-Ramanmeasurements were used as an additionalmethod to determine the carrier concentration in the
microrod [29, 30]. Themicro-Raman spectra infigure 4 recorded on a singlemicrorod show theA1(TO),
E1(TO) and E H

2 (TO)modes at 531.3 , 558.2 and 567.2 cm−1, respectively. The values are comparable to Raman
measurements on high-quality nonpolar and strain-free GaN substrates grown by hydride phase epitaxy [31].
The spectral position of the longitudinal optical phonon plasmon coupledmode (LOPPCM)provides

Table 2. Summary of the carrier concentrationsN obtained fromFWHMofNBE emission (see figures 3(c),
(d)) and from the LOPPCM-position in the Raman spectra (see figure 4). The LOPPCM-measured at
515 cm−1 corresponds to contributions from sections 1, 2 and 4.

Silane flow FWHMNBE NFWHM LOPPCM- −NLOPPCM

Section (×0.045 μmol min−1) (meV) (cm−3) (cm−1) (cm−3)

1 1 106.0 ×3.1 1019 ∼515 ∼5.4 × 1019

2 4 141.0 ×7.6 1019 ∼515 ∼5.4 × 1019

3 7 163.7 ×1.2 1020 528 2.7 × 1020

4 0 102.9 ×2.8 1019 ∼515 ∼5.4 × 1019
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information about the carrier concentration. A LOPPCM-and a LOPPCM+peak showup below the transversal
optical (TO) phonon frequency in the uncoupledmode ωT (= 531.3 cm−1) and above the LOphonon frequency
in the uncoupledmode ωL (= 734 cm−1) for high and low carrier concentrations, respectively. The following
equation, derived from the dielectric function, reproduces theN dependent LOPPCM± frequency ω± [32]:

ω ω ω ω ω ω ω= + ± + −± ( ) ( )1

2

1

4
, (3)L p L p p T

2 2 2 2 2 2 2 2

with the plasmon frequency ω π ε= ∞Ne m4 ( *)p
2 , e as the elementary charge, ε =∞ 5.3 as the optical

dielectric constant of GaN and =m* 0.216 as the effectivemass of an electron inGaN valid for high doping
concentrations [33].

Twomeasurement configurations have been used for themicro-Raman investigations as illustrated in the
inset offigure 4 [34]. In the −x z x( , ) ¯ configuration, i.e., laser excitation and detection is perpendicular to the
microrod side-wall facet, the intense A1(TO)mode at∼531.3 cm−1 covers the LOPPCM-peak. The latter is
expected to be located between 500–531.4 cm−1 for high carrier concentrations above 3 × 1019 cm−3, as for the
microrod in the present study. Therefore, each section of themicrorod can not be analyzed bymicro-Raman
with respect to the LOPPCM-peak. TheA1(TO)mode is not allowed in the −z x z( , ) ¯ configuration, i.e., laser
excitation and detection is perpendicular to themicrorod top facet, however, all sections are probed at once.
Two LOPPCM-peaks are visible at 515 and 528 cm−1 corresponding to 5.4 × 1019 and ×2.7 1020 cm−3,
respectively, using equation (3). The LOPPCM-at 528 cm−1 originates from section 3 of themicrorods, while
the LOPPCM-at 515 cm−1 is a superposition of all other sections. The carrier concentrations obtained from
micro-Ramanmeasurements and from the FWHMof theNBE emission are in good agreement as can be seen in
table 2. Finally, there is a peak at 735.5 cm−1 referred to aA1(LO)/LOPPCM+, which is expected to stem from
unintentional dopedGaN located at the base of themicrorod formed during the initialmicrorod growth. Such a
peak at 735.5 cm−1 (corresponds to a carrier concentration of 6 × 1016 cm−3 using equation (3)) can also be
observed in unintentional dopedGaN layers grown in the usedMOVPE system (not shown here).

4.6. Adjusting the refractive index band gap parameter towardsfitting of the spectral energy dependent
WGMshift
Concerning theWGMshift, theNBE emission shift, and the FWHM, there is no significant difference between
the spectra from sections 1 and 4, i.e., there is still some Si incorporation taking place after switching off silane
supply during growth of section 4.High temperature decomposition of the surface SiNmight act as a source
leading to a background doping effect.

Figure 4.Micro-Raman spectrameasured on a singlemicrorod in top and side configurations shown in the inset. The dashed lines at
ωT =531.3 cm−1 and ωL =734 cm−1 indicate the positions of the TOand LOphonon frequency in the uncoupledmode, respectively.

6

New J. Phys. 17 (2015) 083047 CTessarek et al



Figure 5 is showing a detailed view of three selectedmodes at different spectral positionswith a small and
largeWGMshift at low and high energies, respectively, as already shown infigure 3(d). The blue dashed lines are
the calculated TM19,24,34 WGMs similar tofigure 3(c). The new spectral positions of theWGMs for the green and
red spectra obtained from sections 2 and 3, respectively, were also calculated. For that purpose, the band gap
parameter E0 was set to 3.457 eV for the green spectra and to 3.480 eV for the red spectra, i.e., the initialE0 used
for the blue spectrawasmodified by+28 and+51meV. The trend of these values is in agreementwith the high
energy edge shift of theNBE emission. The green dashed–dotted and red dotted lines infigure 5 are in good
agreementwith the new spectral positions of theWGMs in the green and red spectra. The samemodification of
the ordinary refractive index is also in good agreementwith the observed shift of the TEWGMs (not
shownhere).

It was already stated that the diameter along themicrorod is constant, however, a small variation of a few nm
might not bemeasureable via SEM.Using equations (1) and (2) it can be calculated that a diameter reduction of
10 nm for themicrorod having a diameter of 1780 nmwould lead to a blue shift of 11, 13, 13 and 7 meV for the
TM19, TM26, TM30, andTM34WGM, respectively (for the details of the diameter dependentWGMshift see the
supplementarymaterial). Comparing these values with the observedWGMshift infigure 3(d), which shows an
increasingWGMshift with increasingN, it is clear that a diameter variation can not be responsible for the
observedWGMshift.

Si is known to induce tensile strain in aGaN layer leading to a reduction of the band gap [35–37]. This is in
contrast with the data presented infigure 3(d) showing a blue shift with increasing the Si doping concentration
and can therefore not be considered as a reason for the observedWGMshift.

It is clear that the carrier concentration effects the refractive index change, which leads to aWGMshift. The
high carrier concentration induces a Burnstein–Moss shift, i.e., an increase of the band gap. Amodification of
the band gap parameter E0 in the refractive index equation (2) is therefore a proper tool to explain theWGM
shift caused by different carrier concentrations.

The present study is not only limited to theGaNmaterial system, but can also be applied to othermaterial
systems such as ZnO [38].

5. Conclusion

In conclusion, GaNmicrorods with four different doping concentration sections were grown byMOVPE. The
carrier concentration in the range between 1019–1020 cm−3 was determined by the FWHMof theNBE emission

Figure 5.Graph shows a detailed view of threeWGMsTM19 (left graph), TM24 (center graph), andTM34 (right graph) from the four
spectra obtained from each section of themicrorod. The blue dashed, green dashed–dotted, and red dotted lines are calculated spectral
positions of eachWGMwith =E0,ext 3.429 eV, =E0,ext 3.458 eV, and =E0,ext 3.480 eV, respectively.
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and confirmed by an analysis of themicro-Raman spectrum. Spatially and spectrally resolvedCL investigations
have been performed on themicrorods. The four sections of themicrorod can clearly be identified in the
panchromatic CLmap and from each section aCL spectrumwas recorded. Independent of the respective section
of themicrorod,WGMs are observed and there is a spectral energy dependent shift observed for the sections
with increasing carrier concentrations. The new positions of theWGMs can be calculated bymodification of the
band gap parameter of the analytical expression of the refractive index, which accompanies with the observed
NBE emission high energy edge shift.
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