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ABSTRACT   

The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron 
radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral 
(stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as 
possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the 
Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order 
polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope 
errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. 
PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides 
substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be 
propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of 
propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi 
core environment and the parallelization on a cluster. 
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1. INTRODUCTION 

In the past synchrotron radiation beamlines have been optimized utilizing ray tracing codes such as SHADOW [1] [2]or 
RAY [3]. With the advent of 3rd generation storage rings and diffraction limited 4th generation light sources such as X-
ray Free Electron Lasers (FEL) [4] [5] and Diffraction Limited Storage Rings (DLSR), e.g. [6] more advanced tools have 
to be used. Generally, the existing codes are either based on Fourier Optics (FO), e.g. SRW, or on the evaluation of the 
Fresnel-Kirchhoff integral by means of the Stationary Phase Approximation (SPA). Though time consuming, a numeric 
integration of the integral is successfully used for benchmarking. We call the method FKOE which indicates the 
integration of the Fresnel-Kirchhoff integral including an OE. In this article we concentrate on the SPA-method. The 
algorithm is implemented in the software package PHASE which has been developed over many years at BESSY / HZB.  

PHASE is based on power series expansions of the optical path length function. Analytic expressions for the principle 
rays and the related phase and the two-dimensional integrals over the OEs are derived. The method is described in [7] [8] 
[9]. Earlier versions were based on expressions derived with the algebraic code REDUCE which produced a huge source 
code and, thus it was limited to the 5th order expansion of the OE surface shape. A new Ansatz permits a compact 
formulation of the equations enabling an expansion up to 8th order and higher [10]. The new algorithm was implemented 
in PHASE three years ago. 

In section 2 the 2nd order stationary phase approximation is described and the limitations are discussed. Generally, the 
accuracy of the results depends strongly on the chosen geometry, i.e. the position of the Source Plane (SP) and the Image 
Plane (IP). The geometry can always be formulated in a manner which minimizes the errors related to the 2nd order SPA-
method. On the other hand, an extension of the asymptotic expansion of the Fresnel-Kirchhoff integral is obvious from 
literature and an implementation into PHASE is possible. 

The PHASE package consists of several program versions which are adapted to specific tasks. Additionally, many 
routines such as Fourier propagators are available. Section 3 reviews the current status of the complete PHASE package. 

Short range OE slope errors are limiting the performance of high end beamlines. In section 4 we present a new method 
for the simulation of slope errors within PHASE. The accuracy is discussed and examples are given. 



 
 

 

 

2.     PROPAGATION USING 2ND ORDER STATIONARY PHASE APPROXIMATION 

2nd Order Approximation of Path Length 
Let us assume a simple geometry with one optical element, an electric field distribution in a source plane and an image 
plane where the electric field distribution is to be evaluated (Fig.1). Following the SPA-method it is important to avoid 
geometries where SP and IP both are focal planes, i.e. planes with constant phase. Otherwise, the expressions diverge 
due to division by zero. Usually, the source plane is chosen not to be a focal plane. This does not limit the generality of 
the approach, because a source with a flat wavefront can always be propagated downstream towards the next OE. The 
PHASE package includes FO-propagators for this purpose. Different propagators for the near-field and the far-field as 
well as for the Fraunhofer limit are implemented.    

 

Figure 1: One optical element between a source plane and an image plane.  

The field distribution of a coherent beam as propagated across an OE is given by the Fresnel-Kirchhoff integral (Eq.1). 
The outer double integral is evaluated over the source plane. The double integral in the bracket is evaluated over the 
optical element surface. 

,ᇱݕሺܧ ᇱሻݖ ൌ
ඥcosሺߙሻඥcosሺߚሻ

ଶߣ
ඵܧሺݕ, ሻݖ ൜ඵ

1
ݎ ∙ ᇱݎ

݁௜௞௉௅݀ݓ ∙ ݈݀ൠ ݕ݀ ∙  ሺ1ሻ																																																		ݖ݀

The integration over (y,z)  in the source plane can be replaced by an integration over angles (dy’,dz’) in the image plane 
introducing an appropriate functional determinant: 
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Eq.2 may be evaluated directly (FKOE method) which can be pretty time-consuming. Nevertheless, it serves as a 
valuable reference for benchmarking. The tricky part is an analytic integration of the double integral in brackets and we 
will concentrate on this term. Following Mandel and Wolf [11] we call this term F2(k) where the subscript 2 is related to 
the 2nd order expansion of the optical path length PL: 
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r, r’, PL depend upon the initial coordinates (y,z) and the final coordinates (y’,z’). For the moment, we assume that the 
finite dimensions of the optical element do not contribute to the integral (e.g. no diffraction at the edges). Then, the 
double integral can be evaluated analytically on the interval ሺെ∞,൅∞ሻ. The principle rays across an OE are defined by 
the critical points of the 1st kind, i.e. the points at the OE where the 1st partial derivatives of PL are zero. Around the 
critical points (CPs) of the 1st kind (w0,l0) PL can be expanded with respect to w and l: 
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In the following we will skip the D assuming that w and l are always taken with respect to w0 and l0 (rather than (0,0)). 
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Assuming r, r’ to be independent upon the location of the CP an analytic integration over the OE coordinates yields Eq.6  
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where j is defined as: 
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With an orthogonal coordinate transformation the cross term can be removed and the double integral splits into two 
individual integrals which are integrated separately. The coordinate transformation can be performed in various manners. 
Two of them are given in Eq.7 and Eq.8: 
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As a result we get the integral in the new coordinates [11]: 
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Power series expansions of the square root argument in Eq.6, Eq.9 & Eq.7 und Eq.9 & Eq.8 are implemented in PHASE. 
Mathematically, the three expressions, Eq.6, Eq.9 & Eq.7 and Eq.9 & Eq.8 are equivalent. However, they differ in the 
convergence of the power series expansion and in the numerical noise behavior as will be demonstrated with the 
following reference geometry: A toroidal mirror operated at 2° grazing incidence de-magnifies the source by a factor of 
30. The source is a 10nm wavelength Gaussian beam with a waist radius of 0.07mm. The distances are: source waist – 
OE = 15000mm; OE – focal plane = 500mm. The electric field distribution is defined in the source plane. In the example 
it is located 5000mm downstream of the source waist. In the source plane the radius of the Gaussian beam is grown to 
0.238mm and the wavefront is spherical. Fig. 2 left shows the exact intensity distribution in the image (focal) plane as 
evaluated with the FKOE method. Fig.2 right was evaluated in the 0th order SPA which is limited to the evaluation of the 
principle rays, only, where individual phases are attributed to the principle rays. This approach goes beyond the Ansatz 
of Schäfers [3], since the source is defined by a diffraction limited electric field distribution. A comparison with Fig.2 
left demonstrates the low accuracy of the 0th order SPA. Higher order terms have to be included.  

The 1st order terms of the SPA are zero by definition, and the 2nd order approximation is utilized in most cases. In Fig.3 
several versions of the 2nd order SPA are compared. Eq.6 describes the correct focus shape. However, the intensity is off 
by about 20% (Fig.3 left). The discrepancy from the FKOE result is due to an interference of neighboring CPs in this 
specific geometry. An integration to infinity for each individual CPs does not represent a precise integration of the 
interfering pattern. The results based on Eq.9&7 or Eq.9&8 are even worse. This is caused by the bad convergence of the 
Taylor series expansion of the expressions in Eq.7 and Eq.8. The convergence is still better for Eq.7 due to the steep 
curvature of the OE (2nd derivative of PL) in transverse direction in this specific case. 

 



 
 

 

 

  
Figure 2: Reference geometry as described in the text; SP=5000mm (distance to source waist); number of critical points (CPs) on the 
OE surface: 601 x 601. Left: FKOE. Right: 0th order SPA.  

 

Figure 3: Reference geometry; SP=5000mm; 601 x 601 CPs. Various methods of 2nd order SPA are applied: Left: 2nd order SPA, 
Eq.6; center: 2nd order SPA, Eq.9 & transformation 7; right: 2nd order SPA, Eq.9 & transformation 8. 

If the number of critical points at the OE surface is reduced the numeric noise increases (Fig.4). The sharp spikes result 
from small 2nd derivatives of PL in the denominator. Obviously, the singularities are sampled more accurately with a 
finer mesh as demonstrated in Fig.3. The spikes are most prominent when utilizing Eq.6 whereas they are damped a bit 
with the Taylor series expansions in Eq.7 and Eq8. Fig.4 suggests the use the Eq.9 with transformation Eq.7 for an 
efficient suppression of the noise with a small number of CPs.  

 

Figure 4: Reference geometry; SP=5000mm; 41 x 41 CPs; left: Propagation based on Eq.6; right: Propagation based on Eq.9 with 
transformation Eq.7.  
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The interference of critical points can be reduced efficiently when the source plane is shifted further from the source 
waist away towards the OE. The numeric noise is reduced as well. Fig.5 left and center are evaluated with the same 
number of CPs as Fig4 left and right, however, the total intensity is now closer to the FKOE result and the spikes are 
suppressed. Interestingly, the 0th order SPA delivers more accurate results, as well (Fig.5 right).  

Thus, the appropriate choice of the source plane is an essential issue for high computation speed and accurate results. A 
further reduction of the number of CPs is possible with a non-equidistant grid of CPs where the density has to be 
increased close to small 2nd derivatives of PL (not implemented in PHASE, yet).  

  

Figure 5: OE and image plane as in reference case; source plane moved to SP = 10000mm; 41 x 41 CPs.  Left: Eq.6; center: Eq.9 with 
transformation Eq.7; right: 0th order SPA. 

The FKOE method which we use for benchmarking is implemented as a two-step algorithm for the evaluation of the 
integral in Eq.1: i) propagation from the source plane to the OE; ii) propagation from the OE to the image plane. In both 
steps the CPU time is defined by a 4-dimensional sum (in contrast to the 6-dim sum of Eq.1), and, thus, the CPU time 
seems to be comparable to the PHASE algorithm. The phase advance of the electric field at the intermediate plane, the 
OE surface, is extremely high. Nevertheless, surprisingly good results are achieved if the image plane is a bi-focal plane 
and, thus, the FKOE method is a valuable tool for benchmarking SPA. Interestingly, the FKOE method permits an 
elegant implementation of slope errors and apertures at the OE surface in this case. Unfortunately, out of focus the 
method is not adequate because the CPU time increases dramatically due to the required refinement of the grid at the OE 
surface which is not needed in PHASE. Even an enhancement of the grid points of an order of magnitude in both 
directions provides worse results than 2nd order SPA (Fig. 6). In specific cases one may propagate with the FK-method to 
an intermediate focus and, then, propagate the beam back via Fourier optics. Mostly, however, intermediate bi-focal 
planes do not exist.   

 

Figure 6: Source plane and OE as in reference geometry; image plane moved 200mm upstream with respect to the focal plane. Left: 
2nd order SPA with 61 x 61 critical points; right: FKOE with 601 x 601 data points on the optical element surface.  
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Limits of Second Order Expansion 
In extreme cases the interference of neighboring critical points determines the accuracy of the 2nd order approximation 
which is illustrated in Fig.7 where the contribution from a critical point at  ݓ଴ ൎ 17݉݉ is studied. Obviously, this CP 
interferes with another CP at ݓ଴ ൎ െ30݉݉ which degrades the precision. The results may be improved with the 
implementation of a 3rd order term in PL. As described in [10] with a suited coordinate transformation the integral of 
Eq.3 can be written in the form of Eq.10 (k is integrated in the new factors ෤ܽ and ෨ܾ). 
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Then, the integral including the third order terms can be integrated analytically: 
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Figure 7: Top: Normalized optical path exactly evaluated (red) and approximated to 3rd order in w and 2nd order in l (blue). The black 
line is the difference multiplied by a factor of 10. Bottom: cos-function of the normalized optical paths (colors as above). 

Two equivalent methods for the evaluation of the 1st integral in Eq.10 are implemented in PHASE: i) direct evaluation of 
Eq.11; ii) interpolation utilizing a table which has been generated with an analytic integration with Mathematica. The 
cos- and sin-terms of the integral are plotted in Fig.8. The applicability and accuracy of this method is under 
investigation. For our reference case it does not improve the results of the 2nd order SPA because only small errors 
(represented by the residuals in Fig.7 top) change the phase substantially and, hence, the contributions to the integral 
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from interfering CPs at large distances are encounter large errors. Instead of integrating over two CPs in a single step it 
may be better to include 3rd order terms of the asymptotic expansion for each individual CP. Though not yet 
implemented in PHASE, the relevant terms of the complete asymptotic expansion are adressed in the next chapter. 

 

 

 

Figure 8: Integration of the cos-part (red) and the sin-part (blue) of the 1st integral in Eq.10 using Mathematica. The results are 
identical to the result from the series expansion of Eq.11. The x-coordinate corresponds to ෨ܾ in Eq.11. 

Complete asymptotic expansion an application to PHASE 
Focke presents a complete asymptotic expansion of the Fresnel-Kirchhoff integral [12]. He presents the formalism to 
solve the integral in many specific cases, e.g.: 

- critical points of the 1st kind: points on the OE with zero derivatives 

- critical points of the 2nd kind: points on the boundary with zero derivative along the boundary 

- critical points of the 3rd kind: edges on the boundary 

We briefly recall Focke’s equations for the critical points of the 1st kind and comment on the applicability to PHASE. 
We skip the critical points of the 2nd kind because apertures can be treated separately as individual elements located close 
to the OEs. 

In a first step the cross term in the expansion of PL must be removed. The quadratic form can be transformed to principle 
axis with an orthogonal transformation.  
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The transformation matrix to the new coordinates (h, k) has a determinant of 1. The form is not unique and must be 
chosen appropriately for low numeric noise. The number small depends upon the specific geometry and grid size. 
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The partial derivatives of the path length in new coordinates are abbreviated with 
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Following the philosophy of PHASE the orthogonal transformation and the evaluation of the partial derivatives of PL 
has to be done only once for a given geometry. Having the Taylor series expansions of the partial derivatives in terms of 
(y’, z’, dy’, dz’) the complete asymptotic expansion of the FK-Integral is given by the sum over the contribution from all 
critical points. With the substitutions ߮ி௢௖௞௘ ൌ െܲܮ  and ݃ி௢௖௞௘ ൌ 1 ⁄′ݎݎ  we get the contribution from the CP (w0,l0) 
from Eq.15, Eq.16 and Eq.17 [12]. 
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All non-addressed Φఛ,ఙ,ద are zero.  

For ݊ ൌ 0 we get ܣ଴ ൌ 1 and the result is the well-known 2nd order stationary phase approximation (Eq.6). The next 
order terms are derived from ܣଵ ൌ ଵ௔ܣ ൅  ଵ௕. A1a (Eq. 18) summarizes the terms of A1 with the approximation ofܣ
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The first three terms of A1a are evaluated for τ ൌ 1 ∧ σ ൅ ρ ൌ 4	and the next six terms for ߬ ൌ 2 ∧ ߪ ൅ ߩ ൌ 6. Including 
the dependence of 1/rr’ on h and k six additional terms show up which are abbreviated with A1b (Eq.19): 
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Analytic expressions of PL, r, r’ are already implemented in PHASE and their partial derivatives can easily be derived. 
Thus, the coding of A1 is straight forward. The influence of the 3rd order derivatives on the accuracy will be subject of 
future studies. 

3. FEATURES AND IMPLEMENTATION DETAILS 

The PHASE program suite has been developed over the last 20 years from a proof of principle study on a VAX 
computing environment to an almost full featured ray tracing and physical optics package tailored to the specific 



 
 

 

 

requirements of synchrotron and Free Electron Laser (FEL) optics simulations running on any UNIX like operating 
system1. It consists of various executable programs coded in C++, C and Fortran 77 with VAX extensions. We also 
compiled an ISO image which can directly be booted from CD or USB stick without prior installation of Linux or can be 
executed on a virtual machine. 

The main program is called phaseqt for interactive usage with a graphical user interface based on the modern Qt 2 
widget set. Plotting of inputs and results is realized with the Qwt 3 plotting library. phasesrv and phasempi are slim 
versions of the program without graphical user interface. They have less dependencies to external libraries and can be 
installed on servers without root access. Additional programs are phaseopti, phaseextract, fkoe and fkoempi 
which provide beamline optimization 4, detailed evaluation of aberrations and Fresnel- Kirchhoff integration.  

PHASE takes full advantage of modern multi-core CPU's by executing the calculations in parallel. For physical optics 
calculations we define one task for each pixel in the image plane. The programs use different approaches: phaseqt 
uses the QtConcurrent API for multi-threaded programs. Internally QtConcurrent works with a 1d task vector- in our 
case we use the index of the pixel to identify a task. QtConcurrent distributes the tasks to the available cores or threads 
until all tasks are finished. There is a very useful Pause, Resume and Abort functionality. The maximum number of 
threads can be chosen. This is particular important on multi-user machines. Without restriction QtConcurrent uses all 
threads which are available. phasesrv is based on POSIX threads. This approach divides the total number of pixels 
into packages before the calculation starts, each package becomes one task which is then executed by one thread. 
Typically the number of used threads is chosen equal to the number of packages. On a single user machine a much 
higher number of packages may result in faster execution since the computation time for the individual pixels can be 
quite different. phasempi uses the master slave approach of Open MPI 5. It distributes the tasks on different nodes on a 
High Performance Computing (HPC) cluster. One host acts as the master and distributes the tasks from a task-vector to 
the slaves. At the beginning the slaves register at the master that they are ready to take any task, the master sends a 
message with the taskid (the pixel-number) to each slave. After the slave has finished his task it sends a message back to 
the master. The process continues until all tasks are finished. Usually for HPC there is a Resource Management System 
in place. It manages the number of nodes, scheduling, accounting, billing. Typically: a higher number of nodes executes 
faster but it may take longer to get scheduled.  

The prominent feature of  PHASE is the physical optics calculation based on the stationary phase approach. Some recent 
extensions in the physical optics mode are: (a) Considering the phase shift due to slope errors of real optics, given by a 
2d height error file, in the past we considered only ideal optics and some waviness. (b) Considering apertures and the 
usable size of optical elements, in the past the size was not constrained. (c) Considering coating materials via the atomic 
scattering factors [13] quantitative evaluation of intensities and polarization is now available. The current calculation 
takes the medium deflection angle of the optics as input, an extension to use the local slope is possible in principle. (d) 
Support of the HDF5 6 file format for input and output allows easy data exchange with other programs like GENESIS 
[14]. (e) The grid size in the source and image plane is no longer limited by the program, just by the available dynamic 
memory. (f) Fourier optics propagators based on the fftw3 7 library have been added to phaseqt. This allows quick 
cross-checks and fast free-space propagation. A Transfer function (TR) based propagator (Fourier) and two Impulse 
Response function (IR) based propagators (Fresnel, Fraunhofer) are implemented and can be selected manually or will 
be automatically selected based on the critical sampling. (g) Significant extension of phaseqt plotting and statistics 
capabilities, for instance plotting of Stokes parameters, height errors or unwrapped phases. 

The PHASE package contains a selection of scripts for IDL 8. The functionality is integrated in an IDL class which 
allows an object-oriented access. The class has a comprehensive inline documentation and provides a great variety of 

                                                 
1 The installation works on actual Linux distributions but also on Solaris and on High Performance Clusters (HPC), we have recent 
installations on Scientific Linux, Ubuntu, Suse, Debian and HPC. PHASE uses various external libraries which must be installed in 
advance to use all features. 
2 Qt: qt-project.org/ 
3 Qwt: http://qwt.sourceforge.net/ 
4 Optimization is based on Minuit2 as part of Root: http://root.cern.ch 
5 Open MPI: http://www.open-mpi.org/ 
6 HDF5: http://www.hdfgroup.org/HDF5/ 
7 fftw: http://www.fftw.org/ 
8 IDL:   http://www.exelisvis.com/ProductsServices/IDL.aspx 



 
 

 

 

functions for electrical field generation, field propagation, field modulation and field import/export, visualization and 
statistics. To mention some of them: interactive or script oriented propagation with Fourier optics propagators, HDF5 
input/ output with auto-detection of various structures, Gaussian and other artificial sources, apertures, slits, mirrors, 
compound refractive lenses (CRL), phase-unwrapping, plotting etc.. Scripts for the propagation of time dependent pulses 
are under development. The complete time dependent pulse is represented in a single HDF5 file. Unpacking the time 
slices, Fourier transformation to frequency slices, propagation of the frequency slices, back-transformation to time slices 
and packing will be realized from a script.   

The PHASE modules use as common interface a simple ascii file *.phase which describes the beamline or optical 
system. The file may contain references to other data files for sources or height errors. For all used file formats 
downward compatibility to read old data files has fully been maintained when implementing new features. Writing 
occurs always in the actual file format. 

4. SLOPE ERROS 

Theory 
A new method to consider the slope errors of the OE's has been implemented to PHASE. In the past PHASE was only 
capable to consider the surface errors by fitting an 8th order polynomial function to the surface profile of an OE [10]. 
Such method is sufficient to consider surface errors with low spatial frequencies, but the high frequency part had to be 
neglected. In an alternative method a phase screen in an auxiliary plane just behind the mirror inserted, where the phases 
are obtained by the projection of the surface profile onto this auxiliary plane. This method has been used for instance by 
[15] and [16]. In this method a linear relation between the beam spatial coordinates in the OE and in the auxiliary plane 
is assumed. A similar and more sophisticated method uses ray tracing to obtain the phase shifts and has been described in 
[17]. It is also shown in [17] that the relation between the OE coordinates and the auxiliary plane coordinates can be non-
linear. 

In PHASE we use a new approach where the surface height value in the position of the critical points h(wo,lo) is used to 
determine an additional phase shift of the electric field. Mathematically, the phase shift is introduced by a phase factor 

outside of the integral of Eq.2. The phase term has the form ݁௜∆஍ where Δ߮ሺݓ଴, ݈଴ሻ ൌ ݇ ∙ ܮܲ∆ ൌ
ଶగ

ఒ
݄ሺݓ଴, ݈଴ሻ ∙

ሺcosሺߙሻ ൅ cos	ሺߚሻሻ. The height value h(w0,l0) is the difference between the real and the ideal surface of the OE and ΔPL 
is the additional path length due to h(w0,l0). 

This new approach is similar to those methods using a phase screen in the sense that the surface errors are also converted 
to phase shifts. This means that the surface errors have no effect in the determination of the PL, which remains the same 
as for an ideal surface. The error in the calculation of the E(y',z') in Eq.2 is discussed in more details in the end of this 
section. It is important to mention, that on top of this the low frequency errors still can be modelled with a high order 
polynomial. 

Different from the phase screen method, in the new scheme as implemented in PHASE the coordinates on the OE and 
the coordinates in the image plane are already well defined. This permits a simple introduction of a phase error term to 
each individual CP-contribution in Eq.2. Moreover, a proper implementation of the phase factor does not cause a 
significant increase of computational time as compared to an ideal surface. 

This method has however some limitations. First of all the phase errors are added to the electric field at the image plane, 
and therefore the changes due to the surface errors are not considered in the free space propagation between the OE and 
the image plane. This can be avoided by using an auxiliary image plane as close as possible to the OE, and then 
propagating the radiation from such plane to the desired position. 

An additional limitation becomes clear when regarding the values of the height errors around a critical point. The new 
method assumes a constant height error in the “surrounding region” of the critical point. The “surrounding region” is 
understood as the region of the OE around a critical point where the function cos	ሺ݇ ∙  ሻ oscillates slowly. Significantܮܲ
contributions to the integral in Eq.3 arise from this area of integration. This is illustrated in Fig.9, where the function 
cos	ሺ݇ ∙  .ሻ is plotted versus w, together with its integral value for some different conditionsܮܲ



 
 

 

 

             

 

             

 Figure 9a-e: Blue curves: cos	ሺ݇ ∙ ׬ :ሻ; red curvesܮܲ cos	ሺ݇ ∙ ሻܮܲ ∙ ݓ݀
ஶ
଴ ; black lines: theoretical values of ׬ cos	ሺ݇ ∙ ሻܮܲ ∙ ݓ݀

ஶ
଴ ൌ

ඥߨ ሺ2݇ ∙ ⁄௪௪ሻܮܲ ; magenta curves: ሺ1 േ 0.1ሻ ∙ ඥߨ ሺ2݇ ∙ ⁄௪௪ሻܮܲ  , showing where the oscillations of the integral is within a interval of 
10% of the theoretical value. The point with the black marker is the value of w10 calculated with Eq.20. For all the graphs: elliptical 
mirror, focal planes at 10m and 1m (10:1 demagnification), α=89deg, r=1m. See the values of wavelength and r, r’ on the titles. 



 
 

 

 

It can be noted that after a certain number of oscillations of cos	ሺ݇ ∙  ሻ the value of the integral converges within aܮܲ
certain interval. We can thus (arbitrarily) define the surrounding area as the region where the integral of cos	ሺ݇ ∙  ሻܮܲ
oscillates at values bigger than ±10%. For the cases presented here, this occurs within the region of the first ten 
oscillations. The value of w after ten oscillations w10 (i.e. the value of the 20th root of the function	cos	ሺ݇ ∙  ሻ can thenܮܲ
be used to compare the size of the surrounding region at different conditions. Fig.9 a-c show that the values of w10 are in 
the interval between ~1mm and ~10mm in the wavelength range from 1Å to 10nm. This means for the integration of 
Eq.2, that an entire region of few millimeters around the critical point is assumed to have the same height error of the 
critical point. 

Some analytical results for the value of w10 can be derived by using some approximations. First, by assuming that the PL 
in Eq.5 has only a quadratic dependence in w, we can derive that 
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where n=20 for the 20th zero of cos	ሺ݇ ∙  ሻ. The expression for PLww (z,y,z',y',w,l,r,r',α,β) is in general complicated forܮܲ
elliptical surfaces. But it becomes simple in the case of a toroidal mirror at distances z=y=z'=y'=w=l=0 and β=-α. At 
this condition the expressions for PLww reduces to 
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where R and ρ are the radii of the toroidal mirror. Although this seems a very particular result, this expression can be 
used to understand the general dependences of PLww and w10 for a general surface. Combining Eq.21 and Eq.22 we 
obtain that w10 has a dependence of ݓଵ଴~√ߣ and that it is smaller for smaller values of r and r'. From this we conclude 
that the current method yields better results for small wavelengths and by using source and image planes close to the OE, 
that is for r→0 and r'→0. These dependences are illustrated in Fig.9, where in a-c we see the dependence of w10 with the 
wavelength, whilst Fig.9b, d and e show the dependence upon r. 

The effect of the surface errors in the value of the integral in Eq.2 can be evaluated by comparing the values of  
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ஶ
ିஶ . In Fig.10 we compare some real 

error profiles h(w,l) with the function cos	ሺ݇ ∙   .ሻܮܲ

 

Figure 10: Blue curves: cos	ሺ݇ ∙  ሻ. Optical values on the titles. The points show the height values of the same profiles of Fig.16a andܮܲ
b, respectively, profiles in l in the interval ±6mm in steps of 1mm. 



 
 

 

 

In those graphs we see a smooth variation of h(w,l) within the region of w < w10. This permits the assumption of a linear 
dependence of h(w) on w in the form of ݄ሺݓሻ ൌ ݄௪ ∙ ݓ ൅ ݄଴, where ݄௪ ൌ ߲݄ሺݓሻ ⁄ݓ߲ . Thus, in the second order 
approximation of the path length, we obtain 
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where the constant term 2cos	ሺߙሻ݄଴ can be dropped for the discussion because it is already included in the phase term  
݁௜∆஍. With these approximations the integral I2 results in 
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Comparing the integrals I1 and I2 we have I1≈ I2 for 
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By using the numerical values of Fig.10, we obtain for those examples ϵ = 0.00126 for hw=1nm/mm (Fig.10a), and ϵ = 
0.0317 for hw=5nm/mm (Fig.10b), where this latter value represents a typical poor quality optical surface. Finally, the 
error in the calculation of E(y',z') for ϵ <<1 is given by ሺܫଵ െ ଶሻܫ ⁄ଵܫ ൌ െߝ. Again we observe that bigger values of Pww 
produce more accurate results. Moreover, from these numerical results we conclude that even poor quality surface would 
have a small effect in the result of the integration in Eq.2. The same comparison done above was done to the sinሺ݇ ∙  ሻܮܲ
part of the integral and the results are consistent to the ones presented here. 

Numeric Tests and Examples 
The validity of the method proposed here was studied by simulating a plane mirror where the surface error h(w,l) has a 
linear dependence with the mirror coordinate w given by ݄ሺݓ, ݈ሻ ൌ ߜ ∙  This particular error profile is similar to an .ݓ
ideal plane mirror (i.e. no surface error) with an angular misalignment of – δ radians around the axis l in Fig.1. Since 
PHASE can perform calculations considering misaligned OE's, we can therefore compare the results of the simulations 
of the linear surface error with the results of a misaligned mirror. For these simulations was used a simple circular source 
with a plane wavefront. To avoid diffraction artefacts in the results we used a source with smooth edges (instead of a 
source defined by a plane wave trough an aperture). In the test cases we modelled a source with a spatial distribution 
defined by a Fermi-Dirac like distribution of the form E(y,z) = 1/{1 + exp[(r – 0.5E-3)/5E-5]}, where r = sqrt(y2 + z2). 
This results in a circular source with 1mm of diameter (FWHM) and a smooth edge, as shown in Fig.11. The source and 
image plane are placed 1m before and after the plane mirror, which operates at α=88deg. The resulting phase values of 
the image for the ideal surface are shown in Fig.12 for comparison.  

 

Figure 11: Source intensity spatial distribution for the test cases. 



 
 

 

 

     

Figure 12: Test case results for an ideal surface(no surface error and no misalignment): (a) intensity and (b) phase values in the image 
plane. All the graphs of phase show only the values for points which the corresponding intensity is bigger than 1%. 

Several values of δ have been simulated. Here we discuss the cases of δ equal to 300nrad, 1μrad and 5μrad. The phase 
values for the case δ=1μrad are shown in Fig.13, where we clearly see the tilt of the wavefront. 

The comparison with the simulation of a misaligned mirror is shown in Fig.14 for the profile taken at z'=0. We observe 
that the maximum difference in intensity (blue curve) corresponds to ~1% of the maximum intensity value whereas the 
difference in the phase values is of ~1% in the central part and of ~5% on the borders. If we consider that the footprint of 
the beam on the mirror surface has a size of 1mm / cos(88o)= 28.6mm, then, the borders of the beam are at w=±14.3mm 
and thus the surface errors h at the borders are h=±1e-6*14.3e-3≈±15nm. From this we can estimate that for the current 
method and geometry the height error must be smaller than ≈10nm (20nm peak-to-valley) in order to have results with a 
difference of roughly 1%. For δ =5μrad the differences are of 10% for both intensity and phase values (Fig.14). And 
finally for δ =300nrad the phase difference at the borders reach 2% and the differences of intensities are smaller than 
0.5% (Fig.14). 

A final test was done by propagating the results for δ =1μrad by 100m. It is expected that the peak value is displaced by 
200µm. This displacement is observed in the simulations (Fig.15) in agreement with the results obtained with a 
misaligned surface.  

 

Figure 13: Phase for the test case δ =1µrad. 



 
 

 

 

 

 

   

Figure 14: Results of the test cases comparing the results with slope error h(w)= δw and misaligned surface. Top: δ =300nrad; center: 
δ =1µrad; bottom: δ =5µrad. Left column: comparison of intensities; right column: comparison of phases. Red: simulation with the 
new slope error functionality; black: simulation with the misalignment feature of PHASE; blue: difference of red and black curves. 

 



 
 

 

 

 

Figure 15: Result for δ =1µrad propagated by 100m, where is observed a peak of intensity at y=200µm, as expected. 

Finally, we used a height error profile from a real mirror for beam propagation. Two profiles are used as examples for a 
good and a poor quality surface (Fig.16 left (a) and right (b), respectively). The data have been taken at the 
Helmholtzzentrum Berlin with the BESSY-NOM [18]. The local curvature of the measured elliptical mirror ranges from 
6m to 16m. The measurement accuracy accompanied with these variations is of the order of 1nm rms. These height 
errors were used as the surface error for a hypothetic elliptical mirror in a 10:1 demagnification geometry operating at 
α=89deg. A Gaussian source with beam waist of 50µm and λ=10nm was used. The image plane was placed 10mm 
behind the focus to highlight the artefacts in the image due to the surface errors. The results are presented in Fig.17 and 
Fig.18 in comparison with results of the ideal surface. These graphs illustrate the new capability of PHASE.  

 

 

     

Figure 16: Real surface error profiles in nm as used in the simulations. These are examples of a good (left, a) and poor (right b) quality 
surfaces. The data are actually from the same mirror where surface (a) is the resulting surface after the final polishing and (b) is the 
profile before the final polishing. The data is the difference between the real and the ideal surface. 



 
 

 

 

 

Figure 17: Results of simulations considering an elliptical mirror in a 10:1 geometry with the surface errors of Fig.16a. Left: 
Difference of the phases for simulations with and without slope errors. Right: Difference of intensities. 

 

Figure 18: Same as Fig.17 for the profile of Fig.16b. 

5. CONCLUSION 

The new developments of the PHASE package have been presented. The accuracy of the 2nd order stationary phase 
approximation was studied in detail and it was concluded that the best results are obtained when the source and the 
image planes are located close to the optical element. Short range slope errors were implemented into PHASE and tested. 
Flat error profiles are assumed in a certain region around the critical points. The size of these regions is in the order of a 
few mm. The size is minimized when the source and image planes are at short distances to the optical element. Apertures 
can easily be implemented as independent objects and if beam scraping by the optical element is important an equivalent 
aperture (oriented perpendicular to the beam) should be located shortly behind the OE. Mathematically, there is a 
freedom in choosing the exact location of the source and the image plane. All results of this article, however, strongly 
favor locations close to the OE. The Fourier Optic propagators included in the PHASE package will support an easy 
propagation of a source to the starting position and the results to the final position.       
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