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Abstract.8

Elliptic neutron guides are expected to be widely used for construction of long neutron9

beamlines at the future European Spallation Source and other facilities due to their superiour10

transmission properties compared to conventional straight guides. At the same time, neutrons11

traveling long distances are subject to the action of gravity that can significantly modify their12

flight paths. In this work, the influence of gravity on a neutron beam propagating through elliptic13

guides is studied for the first time in a systematic way with Monte-Carlo simulations. It is shown14

that gravity leads to significant distortions of the phase space during propagation through long15

elliptic guides, but this effect can be recovered by a sufficiently large source size. The results16

of this analysis should be taken into account during design of long neutron instruments at the17

ESS and other facilities.18

1. Introduction19

Flight paths of thermalised neutrons at reactor and spallation sources are modified by the action20

of gravity. Its influence increases with rising wavelength of the neutrons and longer flight paths.21

For example, a 10 Å neutron traveling a distance of d = 100 m is displaced by gravity by22

∆h = 0.5 × g × (d/v(λ))2 = 0.5 × 9.81 m/s2 × (
100 m × 10 Å

3956 mÅ/s
)

2

≈ 31 cm.

This effect is significant and needs to be taken into account when designing or operating long23

neutron beamlines.24

25

The gravity problem has already received some attention in the past. A way to counteract26

the vertical displacement of long-wavelength neutrons for instruments not comprising neutron27

guides was found to be a modification of the vertical position of the (virtual) source with respect28

to the sample and detector position [1], [2]. The influence of gravity on neutrons propagating29

through a collimation system and a consequential distortion of reflectivity measurements on30

liquid interfaces was included in an elaborated resolution theory that was confirmed by Monte-31

Carlo (MC) simulations [3]. On the other hand, the treatment of the gravity effect in neutron32

guide tubes requires a numerical approach due to the occurrence of reflections. At a time when33

computing power was limited and thus extensive MC simulations were difficult to carry out, an34



analytical matrix formalism being less demanding in terms of calculation time was developed to35

trace phase space during its propagation through straight or curved guides, including the influ-36

ence of gravity [4]. The calculation of neutron trajectories in and outside guides then became37

more accessible since the invention of MC software packages like VITESS [5].38

39

At the future European Spallation Source (ESS) facility [6], gravity will play a significant40

role due to the length of planned instruments that often exceed 100 m. Such long beamlines41

will need to include ballistic neutron guides to efficiently transport the neutrons to the sample42

position [7]. In particular, elliptically shaped guides have lately received a significant attention43

regarding their transmission and focusing properties [8], [9]. Currently, it can be expected that44

several instruments at the ESS will comprise elliptic guides. However, the influence of gravity45

on the beam properties after transmission through an elliptic guide has not been studied so46

far in a systematic way, even though it was found that the focusing ability of elliptic guides47

might be severely disturbed [8]. For a very long instrument of 300 m using a quite narrow48

waveband of 0.8 Å around 6.66 Å it appears that incorporating the trajectory curvature into the49

shape of the elliptic guide allows to remove the direct line-of-sight (LoS) without suffering flux50

losses and preserve the instrument resolution [10]. The latter study, however, was carried out51

for a potential ESS backscattering instrument, for which the influence of the beam divergence52

distribution on the measured resolution is significantly reduced. Hence the present work aims53

at studying the influence of gravity on the phase space structure for a large neutron waveband54

after propagation in elliptic guides, in particular concerning the shape of the vertical divergence55

distribution. This is important for instruments where the divergence distribution has a direct56

impact on the illumination homogeneity of the sample/detector or on the shape of structures in57

the scattering spectrum (e.g. for diffraction).58

2. Analysis and results59

The gravity effect is studied using a simple instrument layout, see Fig 1. A source emitting60

a constant spectrum as a function of wavelength is followed by an elliptic neutron guide with61

a square cross section, of which the semi-axes are a = 75 m along the instrument axis and62

b = 0.15 m in both directions perpendicular to it. The reflectivity of the guide coating R(m̃)63

is 0.99 for m̃ < 1 (with m̃ = 10 × θ [◦]/λ [Å], where θ is the reflection angle), decreases linearly64

to R(m̃ = 5.7) = 0.52 and then drops quickly [11]. The guide is followed by a 1 cm2 sample.65

Both the source and the sample are located in the focal points of the ellipse. This study66

utilises the new elliptic guide module available in the VITESS software from version 3.0, which67

handles neutron propagation through a perfect ellipse, thus avoiding effects connected with guide68

segmentation [8], since in such a study the gravity effect should be considered separately from69

other imperfections. The distance D0 between the source and the guide entry and between the70

guide exit and the sample is the same and the total length of the instrument is fixed to 15071

m. D0 is varied between 20 cm and 5 m, thus varying the entry/exit width W0 between 2.272

cm and 10.8 cm. The source is a square with the edge length X0, which is varied between73

1 × 1 cm2 and 12 × 12 cm2. All input parameters are summarized in Tab. 1. The coordinate74

system follows the convention used in VITESS, i.e. the x-axis corresponds to the75

instrument axis, while the y- and z-axis are completing a right-handed coordinate76

system in horizontal and vertical directions, respectively.77

The goal of the performed simulations is to monitor the beam characteristics at the sample78

position with regard to gravitational effects. Since it can be expected that gravity modifies79

the vertical divergence distribution (and thus the distribution in real space at the detector), an80

asymmetry parameter ∆γ is introduced in order to describe this effect:81



Figure 1. A sketch of the instrument layout used in the present study. The distance between
the source and the sample is kept constant at 150 m, whereas the distance between the source
and the guide entry (the guide exit and the sample) is varied between 20 cm and 500 cm. The
source edge length is varied between 1 cm and 12 cm. See text for further details.

Table 1. Summary of input parameters used in the simulations.
Source Spectrum: I(λ) = const

Continuous wavelengths: 1 Å – 12 Å
Discrete wavelengths: 2 Å, 6 Å, 10 Å
Edge length X0: 1 cm, 2 cm, 4 cm, 6 cm, 8 cm, 10 cm, 12 cm

Guide Elliptic guide, a = 75 m, b = 15 cm, m=6 coating
Source-to-guide (guide-to-sample) distance D0:
0.2 m, 0.5 m, 1 m, 2 m, 5 m
Guide entry (exit) W0: 2.2 cm, 3.5 cm, 4.9 cm, 6.9 cm, 10.8 cm
Source and sample at focal points

Sample Size: 1 × 1 cm2

∆γ =

∣

∣

∣

∣

I(γ)+ − I(γ)−
I(γ)+ + I(γ)−

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

+∞

0
[I(γ) − I(−γ)]dγ

∫

+∞

0
[I(γ) − I(−γ)]dγ

∣

∣

∣

∣

∣

, (1)

where I(γ) is the beam intensity as a function of divergence γ either in vertical or horizontal82

direction. The simulations are carried out for the waveband ranging from 1 Å to 12 Å and83

for discrete wavelengths 2 Å, 6 Å and 10 Å to illustrate the different behaviour of short- and84

long-wavelength neutrons.85

86

The results of the simulations are illustrated in Figs. 2 - 6. A careful consideration of the87

obtained distributions reveals the following major findings:88

• Gravity can strongly affect the vertical divergence distribution in long elliptic guides, as89

opposed to propagation through a straight neutron guide of comparable dimensions, see90

Fig. 2.91

• The magnitude of distortion of the divergence distribution due to gravity depends on two92

parameters:93

(i) Wavelength: As it could be expected, the divergence distribution is more distorted with94

increasing wavelength, see Fig. 3. For short wavelengths (and small sources/samples95



[8]), the final divergence distribution is more affected by propagation through an ellipse96

than by gravity [8].97

(ii) Source and guide entry size: The asymmetry decreases with increasing source size98

(Fig. 2 (b), Fig. 3 (b) and (c)) or with decreasing entry width W0/source-to-guide99

distance D0 (Fig. 4).100

• Despite the asymmetry in the divergence distributions, elliptic guides still provide a101

reasonable focusing in space, i.e. the flux is the largest at the sample position. At the102

same time, the focusing is more strongly reduced for larger X0 distances in vertical than in103

horizontal direction (if the source size W0 is kept constant), see Fig. 5.104

• To minimize the distortion of the divergence distribution, the source needs to be of the same105

size or larger than the guide entrance, see Fig. 6 (a). But – not surprisingly – the actual106

ratio needed of the source size X0 to the guide entrance size W0 is wavelength dependent,107

see Fig. 6 (b) for a (rough) quantification1.108

• When a symmetric and featureless divergence distribution is reached, a further increase of109

the source size does not increase the flux at the sample, see Fig. 2 (a), (b) and Fig. 3.110

In particular the last two points are important findings. It can be observed that for a111

given elliptical guide there is a certain (virtual) source size that completely smears out the112

gravity distortion and features characteristic for transmission through elliptic guides. At the113

same time, the source of this size provides the maximum flux on the sample, a fact deserving114

serious attention when designing a neutron beamline. This is confirmed by an additional set of115

simulations using an elliptic guide with the semi-axes a = 37.5 m, b1 = 0.15 m and b2 = 0.075 m,116

a fixed distance between the source and the guide of 1 m and varying the size of the source again117

between 1×1 cm2 and 12×12 cm2. Here it was again observed that the divergence distribution118

obtains a symmetric shape around zero every time the source is larger than the guide entry, see119

Fig. 7. The conclusion is that the recovering of a symmetric divergence distribution happens by120

mixing the neutron trajectories through multiple reflections, which are by far the most dominant121

transmission regime in elliptic guides [8], such that all inhomogeneities are smeared out. This122

process is more efficient if the source injects more phase space into the guide.123

3. Discussion and conclusions124

The simulation results described in the last section clearly show that gravity can play an im-125

portant role in neutron transport in long elliptic guides, in particular for small sources and126

long wavelengths. At the same time, it has been shown that these effects can be removed by127

increasing the size of the (virtual) source such that it exceeds the guide entry dimensions. Such128

a source is able to smear out the features in the divergence distribution at the sample position129

coming both from gravity influence and transmission effects. Hence in principle, elliptic guides130

are able to transport neutrons over long distances and provide a smooth phase space at the131

sample position, if provided with an adequate input beam. This should be kept in mind for132

design of instruments that are in need of a smooth phase space at sample/detector position.133
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entrance size ratios that still led to an asymmetry smaller than 1% and 5% thresholds, respectively,

for all source sizes under study.
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(a) Horizontal divergence distribution at sample
position for an elliptic guide
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(c) Horizontal divergence distribution at sample
position for a straight guide
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position for a straight guide

Figure 2. (a) and (b): Divergence distribution at sample position for W0 = 4.9 cm (D0 = 1
m) for an elliptically shaped guide, see Tab. 1, using source sizes from 1× 1 cm2 to 12× 12 cm2

and the full spectrum between 1 Å and 12 Å. (c) and (d): Horizontal and vertical divergence
distributions at sample position for a 148 m long guide with a constant 10 × 10 cm2 cross
section having the same source-to-guide and guide-to-sample distance D0 = 1 m. The y-axis
is logarithmic to fit in distributions for small source sizes. The zig-zag structures, which are
particularly visible for small source sizes, are a systematic effect and arise due to fractions of
the total phase space missing the 1 cm2 sample, since straight guides lack focusing abilities.
Here and in other plots the error bars (mostly too small to be visible) represent the statistical
uncertainty due to the number of simulated trajectories.
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 in deg
z

γ
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

) zγ
I(

0

100

200

300

400

500

600

700

800

900

310×
 < 0.01γ∆, 212x12 cm

 = 0.05γ∆, 26x6 cm

 = 0.17γ∆, 24x4 cm

 = 0.38γ∆, 22x2 cm

 = 0.45γ∆, 21x1 cm

(c) Vertical divergence distribution at sample

position for 10 Å neutrons

Figure 3. Vertical divergence distribution
at sample position using W0 = 4.9 cm
(D0 = 1 m) for 2 Å, 6 Å and 10 Å
neutrons. Gravity leads to a modification
and an asymmetry ∆γ of the vertical
divergence distribution in particular for
long wavelengths.
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Figure 5. Distribution of neutrons in space for a 2 × 2 cm2 source. The 1 × 1 cm2 sample
indicated by dotted lines is located at the guide symmetry axis that coincides with the location
of the highest flux even for a 5 m distance between guide and sample (corresponding to ≈ 11
cm guide exit width).
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Figure 6. Vertical divergence distribution at the 1 × 1 cm2 sample being in the focal point of
two different elliptic guides with given parameters. The distance D0 is 1 m. The guide entry
width is 3.44 cm for b = 0.075 m and 6.88 cm for b = 0.15 m, respectively. The divergence
distribution saturates for source sizes being larger than the guide entry and the asymmetry
parameter ∆γ becomes negligible.
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Figure 7. (a) The vertical asymmetry parameter ∆γ defined in Eq. 1 as a function of the
source edge length X0 and the entry width W0 of the elliptic guide for all neutrons. The colour
plot is saturated at 0.2, with the maximum asymmetry at X0 = 1 cm and W0 = 10.8 cm.
The white line corresponds to the relation X0 = W0. It is well visible that the gravity effect
dominates for X0 < W0, i.e. for sources being smaller than the guide entrance. (b) The ratio
of the source edge length X0 to the entry width W0 as a function of the neutron wavelength λ
that is needed to achieve a vertical divergence distribution at sample position, which exhibits
an asymmetry of less than 5% or 1%, respectively. As expected, larger source sizes are needed
for larger wavelengths.
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