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Abstract

A Bayesian approach to reconstruction and segmentation of tomographic data is outlined and further detailed for the case
of absorption tomography. The algorithm allows the quantification of reconstruction errors and segmentation confidence.
Calculation results for various experimental settings (number of projections, incident dose, different materials) are shown
and discussed.
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1. Introduction

During the last years, three dimensional (3D) investi-
gation of materials has attracted more and more interest.
Advances made on the acquisition side, especially in elec-
tron tomography of materials [1, 2], are accompanied by
new computational methods for reconstruction and seg-
mentation of volumes from a tilt series of projected im-
ages [3, 4, 5]. However, although methods become more
and more sophisticated, still most of them require sub-
stantial user intervention to tune the parameters of the
reconstruction procedure and assist algorithms in finding
the correct segmentation thresholds. Moreover, for quan-
tification of the final data only estimates of the resolution
have been available [6, 7, 8]. Only recently attention has
been given to errors and artefacts in (SIRT) reconstruc-
tions that can deteriorate quantification [9, 10] and guide-
lines for the estimation of error bounds in binary tomog-
raphy have been described [11]. Nevertheless, a (voxel-
wise) error metric for the reconstructed density as well as
a confidence measure for the segmentation is still miss-
ing. Therefore future reconstruction methods should aim
to minimize user bias and to provide means to assess the
confidence of the reconstructed data.

This paper outlines a new statistical approach to tomo-
graphic reconstruction and segmentation. Our major focus
is to assess the confidence of the reconstruction and seg-
mentation parameters. This requires several new concepts
in comparison to standard reconstruction procedures. First
we develop a probabilistic model that quantifies the exper-
imental errors and comprises a hierarchical prior probabil-
ity for the reconstruction parameters. The prior proba-
bility differs from the regularizers that are typically used
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in image reconstruction [12] and introduces segmentation
parameters, which assign the voxels to different materials.
By means of Bayes’s theorem we obtain a joint posterior
probability for both reconstruction and segmentation pa-
rameters. The second innovation is how we explore the
posterior distribution. Rather than locating its maximum
by means of optimization procedures we sample from the
posterior using a Monte Carlo algorithm. Our sampling
procedure not only draws highly probable reconstruction
and segmentation parameters but also explores their un-
certainty. Using the posterior samples we can compute
the mean reconstructed volume and segmentation as well
as assess their reliability using a local entropy-based confi-
dence metric. We develop and demonstrate our algorithm
for problems in absorption tomography, but the approach
is more generally applicable and not restricted to this par-
ticular application.

2. Theory/calculation

We apply the framework of Bayesian probability to ab-
sorption tomography. To this end we first develop a prob-
abilistic model for the observed data, which in our context
are the measured intensities Dh where index h enumerates
all combinations of detector pixel positions and projection
angles; the complete data set is D = {Dh}. The proba-
bilistic model comprises a likelihood function that models
the experimental noise (section 2.1) and a prior probability

that implements data-independent properties of a plausi-
ble reconstruction (section 2.2). The resulting posterior
probability is explored using a Monte Carlo algorithm (sec-
tion 2.4). The reconstruction and segmentation parame-
ters generated with the Monte Carlo algorithm can be used
to assess the confidence of the reconstruction (section 2.5).
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2.1. Likelihood function for absorption tomography

According to the Beer-Lambert law the measured in-
tensities D are related to the absorption coefficients µ =
{µm} through:

Ih(µ) = Ih = I0 e
−
∑

m
thmµm (1)

where I0 is the dose (given in e.g. electrons per detector
pixel) and thm are the lengths of the beam path by which
sample voxel of index m is transversed [13]. The prob-
ability of observing intensities Dh is given by a Poisson
distribution [12]. Because we assume that the experimen-
tal errors are independent, the probability of observing the
full set of intensities D given the absorption coefficients is:

P (D|µ) =
∏

h

P (Dh|µ) =
∏

h

Ih(µ)
Dh

Dh!
e−Ih(µ). (2)

The Poisson model (2) relates the unknown reconstruction
parameters µ to the observed intensities D. General prop-
erties of a meaningful reconstruction can be implemented
by means of a prior probability on µ.

2.2. Prior probability

For materials science problems, the absorption coef-
ficients µm should ideally take distinct values (e.g. for
vacuum, metal particles, etc.). We allow them to vary
continuously but demand that they should roughly cor-
respond to the material’s absorption coefficients ck where
k = 1, . . . ,K enumerates the different materials. The prior
distribution of the absorption coefficients, p(µ|ck, σk), can
be any uni-modal probability distribution that scatters
about a maximum value close to the material’s absorp-
tion coefficient ck. Here we assume that the components
can be modelled with an exponential distribution in case of
vacuum with a mean absorption coefficient c1 and several
Gaussian distributions with mean ck and standard devia-
tion σk (2 < k < K). In case there is evidence that the
prior distribution of the absorption coefficient is not cap-
tured significantly well with a Gaussian distribution (e.g.
because it is skewed), the Gaussian should be replaced by
a more appropriate model. In the most general case, the
prior probabilities of the different materials are unknown
and have to be estimated simultaneously with the absorp-
tion coefficients of the individual voxels.

2.2.1. Segmentation

In order to utilize the prior knowledge we would need
to know the material contained in every voxel. To express
this knowledge formally, we introduce the discrete param-
eters zm ∈ {1, . . . ,K} where zm is a label indicating which
material voxel m contains. Given zm, the a priori proba-
bility for the absorption coefficient of the m-th voxel fol-
lows the prior probability p(µm|czm , σzm). The parameters
zm encode a segmentation of the volume into the different
materials. Because the correct segmentation is unknown,
we have to estimate the segmentation parameters during

Figure 1: Random configuration generated from the 3-state Potts
prior (5) without (J = 0; left panel) and with nearest neighbor cou-
pling (J = 1; right).

the reconstruction. That is, we estimate µ and z simul-
taneously. To do so, we also need to express our prior
knowledge about the segmentation. The simplest model
assumes that we only know the number of materials K
and that every voxel can contain each of the different ma-
terials with equal probability p(zm = k) = 1/K. The joint
prior probability of the reconstruction and segmentation
is then:

p(µm, zm|c, σ) = p(µm|czm , σzm)/K (3)

For this simple prior probability, we can remove the seg-
mentation parameters zm by summation:

p(µm|c, σ) =

K
∑

zm=1

p(µm, σm|c, σ)

=
1

K

K
∑

k=1

p(µm|ck, σk). (4)

Equation (4) is a mixture model with equal probability for
the K components corresponding to the materials.

2.2.2. Potts model

The assumption that the segmentation parameters zm
are statistically independent is not realistic because it ne-
glects correlations that result from the fact that the spec-
imen typically consists of spatially extended objects. We
capture these correlations with a K-state Potts model [14]:

p(z|J) =
1

Z(J)
exp

{

J
∑

〈mm′〉

δ(zm, zm′)

}

(5)

where δ(i, j) is the Kronecker delta and
∑

〈mm′〉 indicates
a double sum over all voxels and each voxel’s nearest neigh-
bors on a 3D grid; Z(J) is the normalizing partition func-
tion. The 2D and 3D Potts models are standard models
in statistical physics to study critical behavior. The inter-
action coupling constant J has to be chosen such that the
desired degree of spatial continuity in the segmentation is
achieved. For J = 0 we recover the simple prior proba-
bility neglecting spatial correlations in the segmentation
(Eq. 4). Representative segmentations drawn from the
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prior distribution (Eq. 5) are shown in Figure 1 with and
without nearest neighbor coupling.

In summary, the segmentation parameters are intro-
duced by means of a hierarchical prior probability on the
absorption coefficients µm. The sample densities are de-
composed into classes corresponding to the material com-
position of the specimen. The unknown class assignments
are spatially coupled using the Potts model (5).

2.3. Posterior probability

By using Bayes’ theorem we obtain a joint posterior
probability for the reconstruction and segmentation pa-
rameters:

p(µ, z|c, σ, J,D) ∝ p(D|µ) p(µ|z, c, σ) p(z|J). (6)

Therefore, our approach integrates tomographic reconstruc-
tion and segmentation into a single probabilistic model. In
the following we assume that the parameters characteriz-
ing the material absorption coefficients, ck and σk, as well
as the coupling constant J of the Potts model are known.
Both assumptions could be relaxed but this is beyond the
scope of this article [15].

2.4. Posterior sampling algorithm

We aim to not only compute high-quality reconstruc-
tions and segmentations but to also assess their confidence.
For this purpose we use a Monte Carlo algorithm to draw
highly probable reconstruction and segmentation param-
eters, µm and zm, from their joint posterior distribution
(6); we thereby solve the reconstruction and the segmen-
tation problem simultaneously. In contrast to algebraic
techniques, our approach does not determine a single op-
timum or most probable result but generates an ensemble

of highly probable solutions. The generated specimen den-
sities and voxel labellings allow us to calculate statistical
figures of merit for the reconstruction and segmentation.

We use a Gibbs sampler [16] to generate random sam-
ples from the full posterior probability distribution (6).
Gibbs sampling is an iterative Markov chain Monte Carlo
algorithm that cycles over successive parameter updates
based on the conditional posterior distributions:

µ(l+1) ∼ p(D|µ) p(µ|z(l), c, σ) (7)

z(l+1) ∼ p(µ(l+1)|z, c, σ) p(z|J) (8)

In step (7), the symbol “∼” indicates that the absorption
coefficients are generated from p(D|µ) p(µ|z, c, σ) where z
is set to the current segmentation; the next subsection
explains this part of the algorithm in more detail. The
second step (8) involves sampling from the Potts model
under an external field given by log p(µm|ck, σk) for voxel
m and label k. We update the segmentation by using
Metropolis Monte Carlo (MMC) [17].

2.4.1. Hamiltonian Monte Carlo

In sampling step (7), we use Hamiltonian Monte Carlo
(HMC) [18, 19] to update the absorption coefficients µm

conditioned on the current segmentation z(l). HMC is an
efficient method to generate random samples from prob-
ability distributions over continuous variables. The dif-
ference to standard MMC is that additional momentum
parameters are introduced for every µm. A new set of
absorption coefficient µ is proposed by integrating Hamil-
ton’s equations of motion using the leapfrog algorithm [19].
During leapfrog integration, the absorption coefficients are
guided by the gradient of −[log p(D|µ) + log p(µ|z, c, σ)].
Thereby the HMC sampler takes the parameter dependen-
cies and the shape of the conditional posterior distribution
into account, which suppresses the random walk behavior
from which standard MMC algorithms typically suffer.

2.4.2. Replica-exchange Monte Carlo

The Gibbs algorithm [Eqs. (7) and (8)] explores the
joint posterior distribution only locally and is likely to
get trapped in a local mode. Already the generation of
random labellings z from the Potts model is a challeng-
ing task. The Replica-exchange Monte Carlo (RMC) algo-
rithm [20, 21] circumvents this problem by “heating up” the
posterior distribution and drawing samples from multiple
versions of the system at different temperatures T = 1/β.
If the temperature is chosen high enough, the Gibbs sam-
pler can escape from local modes and samples the heated
posterior ergodically. Intermediate distributions bridge
between the high-temperature distribution and the true
posterior distribution (6). Exchange swaps between neigh-
boring systems allow for the diffusion of states between the
high- and low-temperature systems and therefore propa-
gate large rearrangements in the configurations down to
the target posterior distribution. RMC is in spirit similar
to simulated annealing but has the additional advantage
that it samples from the posterior distribution rather than
optimizing it. That is, RMC produces µ and z samples
whose variability and relative proportions match the pos-
terior distribution.

2.5. Segmentation and error metrics

The posterior samples generated by our algorithm can
be used to quantify the quality of the reconstruction in a
clear and statistically sound way. First, we can obtain a
distribution of absorption coefficient for every voxel and
compute its mean absorption coefficient and standard de-
viation. In addition, the labels zm provide the segmenta-
tion of the continuous absorption coefficient. The posterior
probability that the m-th voxel contains material k is the
frequency:

pkm =
1

L

L
∑

l=1

δ(k, z(l)m ) (9)

where l enumerates all L samples generated with our algo-

rithm such that z
(l)
m is the class assignment of voxel m in
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Figure 2: Visualization of the (normalized) segmentation entropy for
a three component segmentation.

Figure 3: Left: Phantom used for simulation of projections for later
reconstruction using the presented algorithm (black: vacuum, grey:
carbon black, white: metal). Right: sinogram comprising 45 projec-
tions at 4 degrees intervals for the very phantom using a dose of 103

counts/pixel.

the l-th sampling iteration. The most probable segmenta-
tion is obtained by voxel-wise determination of the most
frequent indicator:

lm = argmaxk pkm. (10)

The confidence in the segmentation can be found by cal-
culating the (normalized) segmentation entropy for each
voxel:

Sm = −

K
∑

k=1

pkm log pkm/ logK. (11)

For a three component system this metric is visualized in
Fig. 2 from which it is evident that an entropy value of less
than 0.7 is required to avoid ambiguity (p1m = p2m = 0.5,
p3m = 0).

3. Results

3.1. Reconstruction of phantom data

To test our algorithm we set up a two-dimensional
phantom of 64 by 64 voxels, i. e. a slice of a three-
dimensional volume. (Fig. 3). It resembles in its compo-
sition and morphology the specimens studied in catalyst
research; in addition to vacuum voxels (absorption coef-
ficient ≈ 0.0 voxel−1) there are voxels for carbon black
(≈ 0.01 voxel−1) and a metal (≈ 0.03 voxel−1). The ab-
sorption coefficients have been chosen in accordance with

experimental data and settings obtained from the study of
Ru catalysts on carbon black [22]. Projections onto an one-
dimensional detector have been calculated for various com-
binations of projection angles and incident intensities. We
refer to the different simulations parameters by <no. of

projections>-<angular interval>-<logarithm of dose>,
i. e. 180-1-3 refers to 180 projections at 1◦ intervals and
103 counts/pixel.

The absorption coefficients are initialized by an itera-
tive procedure:

µ(n+1)
m = µ(n)

m

B({Dh})

B(P ({µ
(n)
m }))

∣

∣

∣

∣

∣

m

, (12)

where P (·) denotes the forward and B(·) the backward pro-

jection function. The initial configuration {µ
(0)
m } is filled

with random values; iteration (12) is stopped after 500
steps. The mean absorption coefficients of the mixture
model ck are fixed to the values used for the phantom [15].
The standard deviation parameter, σk, for the Gaussian
mixture model components are determined by subclassing
the result of Eq. 12 using the k-means algorithm and calcu-
lating the standard deviation of the absorption coefficient
of the individual classes.

We use a total of eight replicas to simulate the pos-
terior distribution. In the first four replicas, J is kept at
zero (i.e. neighboring voxels are completely uncoupled a

priori), while β increases linearly from 0.2 to 1.0. In the
second half of the chain, J is raised linearly from 0 to 1
(i.e. neighboring voxels are increasingly coupled). After
the RMC algorithm has converged, we calculate the mean
absorption coefficient and its standard deviation for every
class (Figure 7) by averaging over the ensemble of gener-

ated segmentation parameters z
(l)
m and absorption coeffi-

cients µ
(l)
m .

3.2. Characteristic results

Figure 4 depicts snapshots of the continuous absorp-
tion coefficient for different replicas as found in the course
of the calculation. Figures 5 and 6 show all quanti-
ties that can be deduced for each voxel from the ensemble
of possible solutions: mean absorption coefficient and its
standard deviation, segmentation (Eq. 10), segmentation
entropy (Eq. 11) and, as the solution is known for the
present case, correct segmentation. For each setting, 5000
samples were drawn and statistically analyzed. Besides
visual representation of the reconstruction and its error
metrics we calculate global quantities that allow us to fol-
low the reconstruction process in a clear manner. Using
the segmentation, the slice of continuous absorption coef-
ficients can be subdivided into label classes (three in our
application). The class mean and its standard deviation
can be determined and plotted against the iteration index
(Fig. 7). The development of the segmentation entropy is
another informative diagnostic. It is expected that the en-
tropy adopts stable values while accumulation of samples
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Replica snapshots showing the continuous absorption co-
efficient (black: 0.0 voxel−1, white: 0.03 voxel−1). Replicas are
ordered by β and J left to right and top to bottom. Calculation
settings are 20-9-2 (a), 180-1-2 (b), 20-9-3 (c), 180-1-3 (d), 20-9-4 (e)
and 180-1-4 (f).

Figure 5: T. t. b.: mean continuous absorption coefficient (range
displayed: 0 - 0.03 voxel−1), its standard deviation (0 - 0.01 voxel−1),
segmentation, segmentation entropy (0 - 0.7) and correct labeling
(white: correct); left column: setting 20-9-3, right column: setting
180-1-3.
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Figure 6: T. t. b.: mean continuous absorption coefficient (range
displayed: 0 - 0.03 voxel−1), its standard deviation (0 - 0.01 voxel−1),
segmentation, segmentation entropy (0 - 0.7) and correct labeling
(white: correct); left column: setting 16-9-3, right column: setting
144-1-3.
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progresses. In Figure 8 the mean, standard deviation and
maximum value of the segmentation entropy are plotted
for the last replica in the chain. In addition, we calculate
the fraction of correctly labeled voxels for each material
(Fig. 9 and 10).

4. Discussion

Our approach differs in many aspects from other recon-
struction methods. First, absorption coefficients in physi-
cal units are retrieved, not grayscale values. As for DART,
segmentation is part of the reconstruction process. Cur-
rently we assume that the absorption coefficients of the
materials are known. This assumption is not very strong
because absorption coefficients can be measured by other
means [15]. They could also be estimated as part of an
extended algorithm but this is beyond the scope of the
present paper. The most important difference to other
reconstruction techniques is that it is possible to assess
reconstruction errors and confidence metrics both glob-
ally and at the voxel level. We will now compare the re-
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constructions that we computed for different experimental
conditions.

We find agreement between the different possibilities
to assess the reliability of the reconstruction. As illus-
trated in Figs. 5 and 6 voxels with high standard deviation
of the continuous absorption coefficient are also identified
as problematic in the segmentation entropy map and vice

versa. The problematic spots are often at the boundary
between voxels with different absorption coefficient. This
is to be expected, because the continuous specimen has
been discretised via the detector pixelation and the “vox-
elation” of the model slice. In addition, in case of poor
illumination and/or a small number of projections, plau-
sible solutions are expected to be spread much wider in
parameter space.

Our algorithm automatically takes care of the differ-
ent experimental conditions. Figure 11 illustrates this for
two voxels by plotting all values of the continuous absorp-
tion coefficient that have been visited during HMC. The
voxel denoted as “center” is located inside a carbon parti-
cle, whereas the voxel termed as “edge” is located at the
edge. It is clearly visible that for a smaller dose and/or
fewer projections, the range of values is generally larger
than under better experimental conditions. In particular,
for setting 20-9-3, the absorption coefficient of the edge
voxel scatters more strongly, while the coefficient for the
center voxel is spread much less. Accordingly, the seg-
mentation entropy is higher for the boundary voxel (see
e.g. entropy plot in Figures 5, right column). In addi-
tion, the averaged values of the absorption coefficient and
of the entropy (Figure 7 and 2) demonstrate, that better
experimental parameters improve the confidence in the re-
construction/segmentation.

Up to this point, error and confidence quantification
has been achieved without knowledge of the ground truth.
This is another difference to existing methods, because
this knowledge is used in almost every publication on re-
construction algorithms and the assessment of their relia-
bility. Sometimes even the noise is not taken into account
(see e.g. [23]). The present calculations are done for a
known model configuration. Therefore, we can addition-
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Figure 11: Scatter plots of the continuous absorption coefficient for
two voxels as marked on the model image. Settings left column:
20-9-2, 20-9-3, 20-9-4; right column: 180-1-2 180-1-3, and 180-1-4.

ally compare the results to the ground truth. Generally
we find good agreement between wrong labels and high
values both for the standard deviation and segmentation
entropy (see Figs. 5 and 6). Ambiguous edge voxels can
have severe consequences because deduced sizes (and vol-
umes) of particles have to be discussed with caution. An
error of δr = 1 voxel for a particle of radius r = 4 results
in a surface error of about 50 % and a volumetric error of
about 100 %. Our algorithm identifies these regions, which
allows the user to quantify their impact on, for example,
size distributions.

In preparation of a real experiment, different condi-
tions can be simulated to estimate possible reconstruction
problems with some prior knowledge about the expected
specimen morphology. For example, our calculations show
that even for 90 projections and I0 = 1000 cts./pixel, a
typical setting in electron tomography, a large percent-
age of voxels is still labeled incorrectly. Nevertheless, such
data are used in extensive data analyses (see e.g. [24]).
On the other hand, a missing wedge does not necessar-
ily lead to artefacts in the reconstruction. Figure 6 shows
results which have be obtained using projection angles cov-
ering only 144°, a typical range for a standard tomogra-
phy holder in transmission electron microscopy. Elongated
particles are not visible. However, the reconstruction and
segmentation is worse than the results for a full 180° tilting
range (Figure 5). We attribute this to the reduced amount
of experimental data resulting in worse statistics. A gener-
alization to smaller ranges is not valid. Even the range of
144° might give other results for a phantom with changed
morphology and/or absorption coefficients(see below).
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It is noticeable that the reconstruction of the vacuum
region is already quite good for settings, where the regions
filled with matter are still reconstructed rather poorly.
This demonstrates that the reconstruction depends strongly
on the number of different materials involved. In this
sense, data sets from binary specimens are much “easier”
to reconstruct and segment, which should be taken into
account when different reconstruction and segmentation
approaches are compared.

It has to be pointed out that the reconstruction results
presented here cannot be generalized in simple terms like
more projections lead to better reconstructions. In regard
of the reliability of the segmentation, different results are
obtained if e.g. doubled absorption coefficients are used
for the model and its reconstruction (0.02 voxel−1 and 0.06
voxel−1, see Fig. 10). Stronger absorption leads to higher
signal variations in the recorded projections with respect
to intensity variations by noise (defined by the incident
dose I0). This results in a higher number of correctly la-
beled voxels. Of course, variation of the absorption co-
efficients is limited in real experiments (e.g. by varying
the beam energy). If possible one should tailor the ex-
perimental conditions such that the detected intensities
range from I0 down to almost zero. However, zero count
detection should be avoided, since opaque objects lead to
ambiguous reconstructions.

5. Conclusions

The presented algorithm is fully self-contained and re-
quires only known parameter values (absorption coeffi-
cients of the sample species, dose). No further user inter-
action or parameter settings are required. Tomographic
reconstruction and segmentation are carried out simulta-
neously; quantitative assessment of reconstruction errors
and confidence evaluation are built-in. Example calcula-
tions demonstrate the importance of the dose parameter
and an optimized range of measured intensities. Although
this may seem self-evident, a number of publications, espe-
cially in the field of electron tomography in materials sci-
ence, exist where these experimental parameters are not
reported, which makes it difficult to compare the qual-
ity of experimental data and results deduced from them.
We therefore suggest that for better assessment of electron
tomography data the declaration of I0 and the dynamic
range within the projection images should be mandatory,
in the same way as it is common practice to indicate the
projection directions.
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------------------------------------------------------------------------------- 
 
1. 
The description of the method should be more explicit and easier to follow for 
audience without extensive mathematics background. A paragraph briefly 
describing the concepts would be helpful. How does the single step segmentation 
+ reconstruction produce 3D volume ? Can this be described in a simple and 
explicit manner ?      
 
----------- 
 
In our method, reconstruction and segmentation are integrated into a 
unifying probabilistic model for the projection data. The segmentation 
comes in as an auxiliary quantity that allows us to couple neighboring 
absorption coefficients. This is implemented as a prior probability 
and different from the regularizers that are typically used in image 
reconstruction. We revised the introduction and theory sections in 
order to make this point clearer and more comprehensible.  
 
------------------------------------------------------------------------------- 
 
2. 
The section 2.4 should be rewritten so that the relevance to tomographic 
segmentation and reconstruction becomes clear.  
 
Figure 10 - I suspect that the left column is for pixel at the edge while the 
right column is for pixel inside the metal particle? The figure should be 
labeled more clearly so that there is no guessing on what is what.  
 
----------- 
 
We revised section 2.4 to clarify how the segmentation and reconstruction is  
done in our approach.  
 
We also changed Figure 10 and its caption (in addition, other pixels are used  
to make the effect even more evident).  
Changed Text in 'Discussion' at end of first paragraph. 
 
------------------------------------------------------------------------------- 
 
3. 
Determination of particle boundaries (segmentation) does not appear to be much 
better than standard methods including simple. Or at least it is not clearly 
obvious why the current method would be more reliable than manually selecting a 
range of greyscale values from the histogram as the object boundary on a volume 
reconstructed by standard FBP method. The results in the reference X. Wang et al 
Ultramicroscopy 113 p. 96 may be a suitable to comment on.   
    
---------- 
 
The main benefit of our algorithm is not so much that it produces highly accurate  
segmentations but rather that it quantifies the reliability of the estimated  

*Detailed Response to Reviewers



parameters without knowledge of the ground truth. This knowledge is, however,  
utilized in almost every publication on reconstruction algorithms and their  
reliability. Often even the noise is not taken into account. 
We try to clarify this point and added/changed text in the discussion at the  
beginning of the second paragraph. 
 
------------------------------------------------------------------------------- 
 
4. 
Further on the point above: at the end the appearance (and volume) of 
particles appears to depend on the choice of the parameters for the algorithm. 
Figure 10  seems to demonstrate the concern: how does one know what are the 
correct  parameters ? Even in simple FBP reconstructed volume one can define 
various metrics of correctness of the reconstruction.     
 
----------- 
 
This is probably a misunderstanding. The parameters changed in Figure 10 are  
experimental parameters (number of projections, angular interval and zero  
intensity) and not parameters of the algorithm. The only parameter we are  
(at the moment) free to set is the interaction constant J (for this, please see 
point 6 and 9).  
 
The only metric we know, for a single reconstruction by (W)FBP is the Fourier 
shell correlation, which can be calculated without knowing the ground truth.  
But this gives a measure for the resolution only, not for the reliability of the 
absorption coefficient of a single voxel and its assigned labeling. 
 
------------------------------------------------------------------------------- 
 
5. 
The error in determination of edge voxels was discussed for example in X. Wang 
et al  Ultramicroscopy 113 p. 96. The authors should consider adding the 
reference.   
 
----------- 
 
As far as we understand the paper of Wang et al., they attribute problems for 
the reconstruction of edge voxels to artifacts from filtering during Fourier back  
projection. This has no relation to our approach, since filters are not used. 
 
------------------------------------------------------------------------------- 
 
6. 
Parameter J in Eq. 5 seems to be almost arbitrary fudge factor. Is that so ? 
 
----------- 
 
J is not a fudge factor. It controls the coupling strength between the segmentation 
parameters of neighboring voxels and plays a role similar to the regularization  
parameter in SIRT. In general, it is a delicate problem to choose this parameter  
because the Potts model undergoes a phase transition at a critical J value above  



which the segmentations no longer appear to be random but exhibit some clustering 
depending on the strength of J (see Figure 1 in the paper). However, it is possible 
to estimate this parameter in a data-driven fashion (please confer point 9 for further 
details). Another possibility would be to use cross-validation to determine the  
optimal J.  
 
------------------------------------------------------------------------------- 
 
7. 
How sensitive is the method to accurate alignment of the individual 
projections ? The accuracy of alignment seems to be of sufficient concern to spend the 
effort to fabricate precise fiducial markers (see for example Hayashida et. al. 
Micron 50 p. 29)    
 
--------- 
 
Indeed, one might expect some deteriorating influence from inaccurate alignment,  
also from defective values of the projection angles. But as pointed out in  
answer to comment 10, a different set of absorption coefficients and/or specimen  
morphology can lead to other results in terms of confidence. Thus, also here we  
are reluctant to check possible influences of all kinds as we do not want to promote  
generalization of our results. We rather would like to encourage that such tests 
are done, but keeping in mind certain experimental/specimen conditions. 
 
------------------------------------------------------------------------------- 
 
8. 
Similarly how important is a precise measurement of tilt angle for correct 
reconstruction ? The discussion in Hayashida et al Rev. Sci Instr 82 103706 may 
be relevant.   
 
----------- 
 
see previous comment. In addition, we would suggest to invest into an accurate  
protractor as has been used by Hayashida et al. We think a precise measurement  
of the tilting angles would make a discussion of related artifacts obsolete. 
 
------------------------------------------------------------------------------- 
 
9. 
In the reconstruction, it is assumed that the materials absorption constants 
are known as prior knowledge and the authors claim that their determination 
doesn't fall in the scope of this paper and they refer to a forthcoming paper . 
I understand that it may be difficult to give a complete explanation how they 
want to determine these constants, but I believe they must already include a 
small paragraph on this topic. Also the coupling constant J of the Potts model 
has to be known in advance.  
 
----------- 
 
The coupling parameters as well as the parameters of the distribution of the materials 
absorption constants can be estimated in a data-driven fashion. The latter step is  



straightforward as it only involves standard parameter updates used to fit mixture  
models. Estimation of J is more involved but also possible. J can be viewed as a  
regularization constant and the particular difficulty to estimate this parameter  
stems from the fact that we cannot evaluate the partition function Z(J) [cf. Eq. (5)]  
analytically. However, in Mechelke and Habeck (Phys Rev E, 2012) we explain one  
possibility to determine this parameter using Bayesian model comparison. For the  
Potts prior also a simpler approach should be possible because we can estimate Z(J)  
accurately using, for example, the Wang-Landau algorithm. 
 
In addition when the chemical elements in the specimen are known, one could  
determine the absorption coefficients experimentally by measuring the absorption 
of thin films of the respective species deposited with a known thickness. 
 
------------------------------------------------------------------------------- 
 
10. 
In the last column of figure 5, the correct labeling of the segmented pixels 
is shown. From this figure, it seems that a non-negligible amount of the pixels 
is classified incorrectly, even with a large number of projection data (tilt 
interval of 1º). This is only discussed briefly in the discussion section of the 
paper, but it would also be interesting to see a graph where the number of 
misclassified pixels is displayed as a function of tilt interval. Maybe you can 
also compare the quality of the reconstruction to the quality of more 
conventional reconstruction algorithms such as SIRT or DART. I also suggest to 
enlarge figure 5 to improve the visibility.         
 
----------- 
 
Yes indeed, there are a number of misclassified voxels. However, a graph showing 
the amount of correctly identified voxels is only of limited use as a 
generalization is not possible. For similar experimental parameters one might 
obtain much better results if the absorption coefficients are different, i.e. 
higher, leading to a better signal to noise  ratio/contrast, which in turn 
reduces the volume of highly probable solutions within the parameter space. 
 
The comparison to other algorithms/papers is also not straightforward. A large 
number of articles neglect noise and/or deal only with binary phantoms.  
For the remaining cases employing SIRT, ART and (w)FBP segmentation has to be  
done manually or by a heuristic approach. In our algorithm, the segmentation is  
inherent. DART also estimates a segmentation, but does not provide quantitative 
error/confidence metrics (only an overall estimate for binary tomography  
(Fortes et al. 2013), which we would like to stress as the main achievement of  
our approach. 
 
------------------------------------------------------------------------------- 
 
11. 
A very common problem in electron tomography is the presence of missing 
wedge artifacts. I therefore believe that the authors must also include this in 
their simulation experiments and discuss the impact on the quality of the 
reconstruction.     
 



Yes, indeed. We added results for a limited range of 144°. Apparently, here  
artifacts are not visible. However, we are sure, that this cannot be generalized,  
even for the 144° range. We detailed this in the discussion. 
 
 
------------------------------------------------------------------------------- 
 
12. 
In the paper, the authors claim that the distribution of the absorption 
coefficient values are assumed to be Gaussian distributions. Can the authors 
comment when this assumption is valid and what may change when the density of 
the different materials varies largely inside the samples.     
 
----------- 
 
The assumption of a Gaussian distribution is not essential (besides, we assume an 
exponential distribution for the vacuum). If there is evidence for a more suitable  
distribution such as, for example, a log-normal distribution, it should be used  
instead of the Gaussian. We added a comment in the revised section 2.2. A formal  
justification for the use of a Gaussian distribution is given by a maximum entropy 
argument: The Gaussian distribution is the least biasing distribution assuming that 
we now the materials mean absorption coefficient and its variance.  
 
Regarding the number of possibly influencing parameters, we would like to see  
that the authors of other reconstruction/segmentation approaches had spent time 
to investigate only a part of the possible influential aspects that you mention.  
Being serious again, regrettably, a number of papers deal with noise-free binary  
systems only. In fact, the absorption coefficient of the two materials used in our  
simulation is already quite different bearing in mind the exponential attenuation. The 
effect on the reconstruction is that the vacuum is reconstructed more accurately than  
the metal particle and finally the carbon. This is demonstrated by Fig. 9, but is  
also evident from Fig. 5.  
If the absorption coefficient of a given material is not constant (e.g. gradients  
in an alloy of miscible elements) we expect that the standard deviation of the  
classified absorption coefficients increases and probably classification/segmentation  
collapses into a single class (not tested yet).  
 
-------------------------------------------------------------------------------- 
 
other changes: 
 
Enlarged Figs. 4 and 5 
 
Fig. 6 (now 7) changed caption to: 
Development of the >classified< absorption coefficients >$\mu_c$< over 
sample accumulation. Left: 20-9-3, right: 180-1-3 
 
Changed unit in plots from pixel-1 (used for the detector only) to voxel-1 
(used for volume elements of the reconstruction/model/sample) 
 
 


