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ABSTRACT

X-ray fluorescence techniques in special operation modes can provide valuable quantitative insights for semicon-
ductor related applications and can be made compatible to typical sizes of homogenously structured metrology
pads. As they are usually in the order to several 10 µm per direction, it must be ensured that no adjacent
regions are irradiated or that no X-ray fluorescence from adjacent areas reaches the detector. As this can be
realized by using small excitation beams, a multitude of information can e retrieved from such XRF data. In ad-
dition to elemental composition, including sensitivity to sub-surface features on can derive quantitative amounts
of material and even dimensional properties of the nanostructures under study. Here, we show three different
approaches for studies related to semiconductor applications that are capable to be performed on real world dies
with commonly sized metrology pads.
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1. INTRODUCTION

The technological advances in the field of nanoelectronics, especially for lithography1 as well as the ongoing
pursuit of Moore’s law2 result in a drastically increased complexity of the three dimensional structure of a modern
semiconductor device. The reasons are on the one hand side the incorporation of many different materials3 and
on the other hand, the decreasing critical feature dimensions4–6 as well as the growing importance of the third
dimension for a further densification of the structures.7,8 It is easy to imagine that these developments require
a significant amount of metrology in order to be producible at a reasonable yield.4,9, 10

Therefore, 3D-metrology plays a crucial role for these developments as well as for the quality control during
manufacturing. Typical metrology techniques being used in this context are electron microscopy based tech-
niques, either scanning electron microscopy (SEM) or transmission electron microscopy (TEM), which reveal
topographical details with high spatial resolution but no elemental sensitivity if not coupled with an energy-
dispersive X-ray (EDX) instrument. However, existing metrology options are approaching inherent limits. For
example, sub-surface or buried nanoobjects such as a lateral cavity etch11 are either inaccessible to techniques
such as scanning electron microscopy or can be made accessible only very localized (e.g., using cross-sectional
transmission electron microscopy).

X-ray fluorescence based techniques can help to overcome these limitations due to the superior penetration
behaviour of X-rays. It is a non-destructive technique and provides an elemental discrimination capability and
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thus allows to probe the elemental composition of the sample. Employing grazing incidence XRF, 2D and 3D
nanostructures can also be characterized with respect to their dimensional parameters.12–14 However, typical
XRF techniques are not directly compatible to typical metrology pad sizes, which are in the order of a few
hundred µm2 or smaller. Especially if grazing incident techniques are to be used, the beam footprint on the
sample surface is much larger resulting in cross-talk signals from surrounding areas.

In this work, several recent XRF-related developments of the Physikalisch-Technische Bundesanstalt for
semiconductor related scientific questions will be presented. On the one hand side, µXRF is employed to study
elemental compositions with lateral resolution in the order of 10 µm. By adopting the reference-free XRF
approach,15 absolute quantification of elemental mass depositions can be performed. Employing an X-ray mi-
croscope with a more sophisticated focussing unit, even smaller lateral resolution in the order of 100 nm can be
achieved allowing also for absolute quantification of amounts of material at such lateral resolution.16 In fact,
this technique even allows to count the atoms within individual nanoobjects and to reconstruct dimensional
properties of these objects. Furthermore, we enabled a dimensional and compositional reconstruction of arrays
of nanostructures on small targets by grazing exit XRF.17 This technique provides sub-nm sensitivity for dimen-
sional properties of the nanostructure in addition to the compositional information. All of these techniques are
readily compatible to typical target sizes.

Even though we are using synchrotron radiation beamlines as excitation sources, the presented techniques
either are already available by commercial vendors or can in principle be made available on laboratory scale
instruments.

2. REFERENCE-FREE µXRF

The so-called µXRF technique is based on mapping the sample using a micrometer sized incident beam recording
the emitted X-ray fluorescence radiation from the sample at each position. Such experiments can be realized
employing capillary optics to focus the beam into a small spot. Even though several commercial vendors for such
instruments exist, it is not yet a common technique in semiconductor related metrology. But for next generation
device structures, µXRF is being studied to probe sub-surface features such as cavities.11,18

In many cases however, a quantitative information about the compositional changes versus sample position
is needed and simple fluorescence count rate distributions are not sufficient. Existing fundamental parameter
(FP) based physical quantification schemes for µ-XRF,19,20 however, require a pre-calibration of the employed
instrument using adequate calibration samples as well as a good knowledge of the transmission behaviour of the
employed micro focusing optic.

Here, we present a reference-free µ-XRF approach, which allows to derive absolute quantitative informa-
tion from the recorded elemental maps without the need for any calibration. Employing physically calibrated
instrumentation, the emitted fluorescence intensities from the sample can be recorded and the elemental mass
depositions of the elements of interest can be calculated. Using a monocapillary optic, beam focus sizes in the
order of 15 µm full-width-at-half-maximum (FWHM) can easily be achieved. A sketch of the setup employed is
shown in part a of figure 1.

We have applied this setup to study the SiGe recess etch in so-called fork-sheet nanostructures21 from imec.
Here, the SiGe serves as sacrifical material that is to be removed during recess etching. In figure 1 b) a TEM
cross section of the nanostructure before etch (A) is shown with the SiGe as the white part. For two different
recess etch durations (B and C), the removal of the SiGe progresses. Regular gratings of these structures are
available on the die in 80 µm by 80 µm large pads as indicated in the picture as the region of interest (ROI).

This ROI as well as surrounding areas were mapped for several dies of each etch state. Fluorescence intensity
maps (part d of figure 1) can be derived and the ROI area can be easily localized (part c). Here, an averaged
emitted fluorescence intensity for each element of interest can be derived within the marked region (horizontal
and vertical dashed lines) in order to derive the present mass deposition of germanium, oxygen and nitrogen
(not shown). These can either be compared directly (part f of figure 1) employing the standard deviation
within the averaged area or further processed to derive the number of remaining Ge atoms per unit area. Using
the information about the SiGe stoichiometry and its density22 and the geometrical information about the
nanostructure, also a total SiGe thickness can be calculated (part e). Here, we clearly found remaining Ge n the
nominally fully etched wafer (C) which corresponds to about 3 % of the originally present Ge.
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Figure 1. a) schematic view of the experimental arrangement for reference-free µXRF, b) images of the target area and
cross section of the available fork sheet nanostructures, c) focussed map of the measured Ge mass deposition in the vicinity
of the indicated region of interest (ROI), d) full area maps for oxgen and germanium fluorescence intensities, e) quantified
remaining SiGe thickness equivalent within the forks, f) quantified oxygen mass deposition within the ROI

3. REFERENCE-FREE NM-XRF

Very similar experiments can be performed employing our setup for X-ray microscopy (XRM).16,23 Here, we adopt
a rather simple optical bench consisting of a pinhole, a fresnel zone plate and an order selection apperture (OSA)
to enable XRM experiments at the PGM beamline.24 The set-up is mounted on a 6-axis manipulator25 which
allows for an alignment of all three linear as well as all three rotational axes. The optics and the transmission
sample are mounted on piezo positioning stages with 8 axes providing 1 nm resolution and encoder control. A
sketch of the setup is shown in fugure 2 part a.Even though the achievable spatial resolution, which is in the 100
nm regime, is not competitive to dedicated XRM setups, this instrument can provide interesting insights as it is
suited to derive quantitative information.

Similarly as for the µ-XRF approach, absolute amounts of material can be derived from the measured flu-
orescence mappings by performing reference-free quantification.16 But more importantly, the number of atoms
within a nanostructure can be quantified within certain limitations employing a reconstruction of the measure-
ment process.16 During this reconstruction, the 3d elemental composition and dimensions are convolved with
a model of the incident beam. The resulting fluorescence intensity of the element of interest is calculated and
matched against the experimental data to derive a representative set of model parameters.

In parts c and d of figure 3 the resulting model data for two different nanoobjects is shown in comparison to
the experimental data. From this reconstructed 3d model of the nanoobject, the varous dimensional parameters
can be compared and validated against other techniques available (see part b of figure 3). Here, the agreement
with respect to the derived width and height is quite well. The deviation on the derived length as well as
the relatively large uncertainties could be further reduced by increasing the point density during the mapping.
Further details about this technique can be found in ref.16

4. GRAZING EXIT XRF

With an experimental technique called grazing-exit X-ray fluorescence, we can provide similar results for an
ensemble of regularly ordered nanoobjects17 and not for single nanoobjects. The technique is based on exciting
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Figure 2. a) schematic view of the experimental set-up for nm-XRF, b) reconstructed dimensional properties for cuboid
nanostructure (shown in d), c) SEM image, experimental data and reconstruction result of tilted cuboids, d) SEM image,
experimental data and reconstruction result of isolated cuboid

X-ray fluorescence radiation in the area of interest and detecting it using a position and photon energy sensitive
detector such as a CCD camera (part a of figure 3). If that detector is aligned well with the orientation of
the nanostructures very distinct fluorescence intensity patterns can be recorded (see part b of figure 3). This
examplary dataset is from a TiO2 capped silicon fin structure as sketched in part d of figure 3 and shows both
the experimentally recorded Ti fluorescence intensity map (left side) and a simulated map (right side) for a
reconstruction of the nanostructure.

The reconstruction is based on a parameterized model of the nanostructure cross section as shown in the left
part of figure 3 d. The optimal parameters are determined by performing finite element solver based calculations
for the X-ray standing wave forming inside and around the nanostructure at each exit angle pair. By matching
the experimental data with the calculation the nanostructures parameters are reconstructed. Comparison with
AFM and TEM reveals a high degree of agreement (parts c and d of figure 3).

This type of experiment if easily applicable to small target sizes due to the relatively high incident angles
needed for excitation. As demonstration examples an array of vertical SiGe nanowire structures26 (inset e)
and an array of fork sheet transistor structures (inset f) was measured using the GEXRF technique. For both
examples, the obtained Ge-Ka fluorescence intensity distributions are very rich in angular variations from which
the dimensional properties of the nanostructures could be reconstructed. Further details about this technique
can be found in ref.17

5. CONCLUSIONS

In the present work we demonstrate our toolset for X-ray fluorescence based characterization techniques for state-
of-the-art nanostructures for semiconductor applications. All of these techniques are compatible to typical test
pad sizes and can be applied to look at lateral distributions for a wide range of chemical elements in a quantitative
manner. Due to the superior penetration characteristics of X-rays, also buried parts of such nanostructures can
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Figure 3. a) schematic view of the experimental arrangement, b) comparison of an experimental GEXRF map (lft) versus
a reconstructed map (right) for the nanostructure shown in d, c) reconstruction results in comparison to TEM and AFM
data, d) parameterization, cross section and comparison to TEM and AFM of GEXRF reconstructed nanostructure,
e) SiGe nanowire structures and a recorded Ge fluorescence map, f) Fork Sheet nanostructures with SiGe layers, an
experimental Ge fluorescence map and a calculation based on the nominal nanostructure parameters

easily be characterized. Employing the nm-XRF and GEXRF techniques, also dimensional properties of the
nanostructures can be reconstructed with sensitivities in the low nm regime or even below. A more detailed
overview about these two techniques is provided in dedicated works.16,17
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