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Abstract
Electrode materials for lithium-ion batteries (LIBs) typically show spherical particle shapes. For
cathode materials, the spherical shape is obtained through the synthesis method. For graphite, the
by far most popular anode material for LIBs, spherical particles are obtained through a
spheroidization process. The yield of that process is quite low and limited to about 50%, leaving
substantial amounts of by-products. Using such lower quality by-products would be quite
attractive for developing low-cost energy stores like sodium-ion batteries (SIBs), for which the
requirements for particle sizes and shapes might be less strict as compared to high performing
LIBs. Here, we study three different graphite ‘waste fractions’ as anode material for SIBs that are
obtained from the spheroidization process and how they compare to LIB battery grade material.
Only negligible differences between the fractions are found when analyzing them with x-ray
diffraction (XRD), Raman spectroscopy and elemental analysis (EA). More clear differences can be
seen from N2 physisorption, scanning electron microscopy (SEM) and particle size analysis. For
example, the surface areas of the ‘waste fractions’ can become roughly up to twice as large as
compared to the battery grade fraction and the d50 values shift by up to 11.9 µm to lower numbers.
Electrochemical measurements show that the ‘waste fractions’ can deliver the full electrode
capacity and behave similar to the battery grade fraction up to 10 C. However, the higher surface
areas lead to more irreversible losses in the first cycle. A surprising finding is that all graphite
fractions show almost identical discharge voltages, while the charging voltages differ by as much as
200 mV. This asymmetric behavior only occurs in SIBs and not in LIBs, which indicates a more
complex storage behavior in case of sodium.

1. Introduction

The graphite used as anode material in lithium-ion batteries (LIBs) can be prepared synthetically from
precursors or can be obtained from natural resources [1]. Both types consist of single-crystalline domains,
which are oriented in the same direction in the case of natural graphite, whereas a more arbitrary orientation
is present in the case of synthetic graphite [1]. In this manner, natural graphite particles tend to align with
their basal plane (002 plane) parallel to the current collector [2, 3] and therefore result in a hindered
diffusion (especially at high currents) of lithium ions as they are not able to enter between the graphene
layers perpendicular to the basal plane [3–6]. To overcome this drawback, pristine natural graphite particles
with flake morphology are generally spheroidized through a mechanical shaping process. Herein particles are
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rendered into a more spherical shape-like form (potato shape) [5]. Typically, the shaping of the graphite
particles leads to an increased tap density and easier processability during electrode manufacturing. Next to
the particle shape, parameters such as particle size distribution and surface area are relevant too. The
spheroidization process includes several steps in which undesired fractions (too large or too small particles)
are removed.

Whereas the coarse fraction (overcorn) can be theoretically reused again in the spheroidization process
[2] the fine fraction (smaller particles) can only be used in low-end applications, e.g. as lubricant or filling
material [7]. Overall, the yield results in around 50% of the raw material [8]. The use of those ‘waste
fractions’ for other battery chemistries with less strict requirements could therefore be quite appealing. One
alternative to LIBs are sodium-ion batteries (SIBs) that are close in energy density but aim at using low-cost
and less critical materials [9, 10]. It is important to note that graphite does not store larger amounts of
sodium due to thermodynamic reasons [11, 12]. This would normally rule out its use as anode material for
SIBs. However, graphite can be used in SIBs containing linear ethers as electrolyte solvents as these can
co-intercalate into the graphite lattice along with the sodium ions rendering charge storage possible. Various
aspects of this reaction have been addressed in the last years [13–43]. Just recently, graphite was combined
with TiS2 as co-intercalation cathode leading to a co-intercalation battery (CoIB) [44]. Formulas 1 and 2
show the conceptual difference between the conventional mechanism and the solvent co-intercalation
mechanism for graphite. The intercalation of lithium ions into graphite follows the well-known multistage
mechanism, with the lithium ions losing their solvation shell at the interface between liquid electrolyte and
carbon material before being intercalated. Complete lithiation leads to a stoichiometry of LiC6 (n= 6) which
corresponds to a capacity of 372 mAh g−1 [45, 46]. The solvents of choice are mixtures of linear and cyclic
carbonates, which decompose leading to the formation of a surface film (solid electrolyte interphase, SEI)
that prevents any solvent co-intercalation [47, 48]. For sodium, intercalation is only possible through solvent
co-intercalation which can occur for linear ethers (glymes) and few other solvents like ethylenediamine [34].
Values of 1–2 and 14–22 for y and n are typically found providing specific capacities between 100 and
162 mAh g−1, mostly around 110 mAh g−1 [13, 15, 16, 19, 20, 22, 23, 26, 40].

Cn + e− + Li+ ⇌ Li+C−
n (1)

Cn + e− +Na+ + y solv⇌Na+(solv)yC
−
n (2)

Few aspects of the solvent co-intercalation mechanism should be highlighted here. First, it leads to a large
volume expansion of the electrode in every cycle [25, 29, 30, 34], pointing out the possible need of different
graphite properties (e.g. particle size or porosity) for SIBs. Second, a major advantage of the co-intercalation
reaction is the very good high C-rate behavior [15, 17, 24, 49], exceeding the already good performance of
lithium intercalation in graphite [50, 51]. This might be related to the de-solvation step, which is not
necessary in the case of sodium. Third, a major difference between these mechanisms is the formation of an
SEI. Whereas it is commonly known for the lithium intercalation that an SEI is formed on the graphite
surface in the first cycle, preventing a further electrolyte decomposition [52, 53], the existence of an SEI in
the case of solvent co-intercalation is debatable [22, 25, 29, 33, 37, 41, 43]. Its existence very likely depends on
the salt used [29, 37].

Commercial graphite is optimized to facilitate the intercalation of lithium ions in its structure. However,
the insertion mechanism and properties are tremendously different compared to the sodium co-intercalation
and the use of raw and only slightly purified graphite material with a carbon content of 55 wt% and 85 wt%,
respectively (way lower compared to commercial graphite material) as host for sodium ions has already been
shown by Laziz et al [38]. The low purity influences the specific capacity. However, a good cycling stability as
well as the typical voltage profile can still be achieved [38].

In this work, several natural graphite fractions that are produced during a lab-scale spheroidization
process [54] are physically characterized and their properties as negative electrode for SIBs are reported. The
use of those ‘waste fractions’ would be another step towards more environmentally friendly batteries.

2. Methods

2.1. Spheroidization of graphite
The production process of the main fraction aimed for LIB-application (green fraction) is described
elsewhere [54]. The fine (red) fraction that was separated from the green fraction during air classification
was further separated into two fractions with the Picosplit 20 ATP classifier module of the Picoline
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multiprocess mill (Hosokawa Alpine AG) using different process parameter. The obtained coarse fraction
and fine fractions are named as orange and blue fraction, respectively.

2.2. Electrode preparation
The electrodes contained 90 wt% graphite and 10 wt% poly(vinylidene difluoride) (PVDF) (PI-KEM Ltd).
N-methylpyrrolidone (NMP) was used as solvent during electrode production. The slurry was casted on a
carbon coated Cu-foil (MTI-Corp.) and dried in air. The electrodes were punched out with a diameter of
12 mm and dried at 120 ◦C under vacuum overnight.

2.3. Electrochemical measurements
All electrochemical measurements were conducted in a two-electrode set-up using coin cells. 12 mm graphite
electrodes were used as working electrode and 12 mm sodium (BASF) or lithium (Rockwood Lithium) discs
as counter electrode. About 100 µl of 1 M NaOTf (purity > 98.0%, Sigma-Aldrich) in diglyme (2G,
Sigma-Aldrich, pre-dried) and 1 M LiPF6 in ethylene carbonate/dimethyl carbonate (EC/DMC, v/v, 1/1,
Sigma-Aldrich) were used as electrolyte for the sodium and lithium cell, respectively. NaOTf was purified
beforehand by dissolving in ethanol, reflux, hot filtration and drying for 24 h at 120 ◦C under vacuum. Two
glass microfiber filters (GF/A) fromWhatman with a diameter of 16 mm were used as separators.

All cycling experiments were conducted on a Biologic BCS 805. Galvanostatic charge and discharge with
potential limitation (GCPL) experiments were conducted in a potential window of 0.01–2 V versus Na+/Na
or Li+/Li with a C-rate of C/10 (11 mA g−1 for sodium and 37.2 mA g−1 for lithium). The mass loading of
the active material varied from 4.7 to 5.8 mg cm−2 for the sodium cells and between 1.6 and 8.4 mg cm−2 for
the lithium cells. Rate capability tests for the sodium cells were performed in the same voltage window and
C-rates of C/3, 1 C, 5 C, 10 C, 20 C, 30 C, 40 C, 50 C, 60 C and again C/3 were applied. The mass loading of
the active material varied from 4.8 to 7.5 mg cm−2. Galvanostatic intermittent titration technique (GITT)
were performed after two GCPL pre-cycles with a voltage window of 0.01 V–2 V versus Na+/Na and a C-rate
of C/10. For the GITT experiments the cells were (dis)charged for 30 min, followed by a 1.5 h waiting period.
The lower and upper cut-off voltages during cycling were set to 0.01 V and 2 V versus Na+/Na, the cut-off
voltages after relaxation were set to 0.03 V and 1.9 V versus Na+/Na. The mass loading of the active material
varied from 5.9 to 7.9 mg cm−2. Calculations of the diffusion coefficients are based on the following
equation [55].

D̃=
4

πτ

(
mVM

MS

)2(
∆Es
∆Et

)2

valid for τ ≪ L2/D̃

where
π: the number Pi
τ : pulse length (s)
m: mass of the active material (g)
VM: molar volume (Vm(graphite)= 5.29 cm3 mol−1)
MB: molar mass (M(carbon)= 12.01 g mol−1 (g mol−1)
S: geometrical surface area (1.13 cm2) (m2)
∆ES: change of the voltage during waiting time
∆Et: total transient voltage shift during the time when the current is applied
L: characteristic length (m)
To ensure steady state voltage, only data points were evaluated where the voltage shift did not exceed

5 mV h−1 within the last 5 min of the relaxation time.
We are aware that the boundary condition τ ≪ L2

D̃
might not be fulfilled as the measured diffusion is very

high which would require very small values for τ . Further limitations of the method must be mentioned. For
reasons of simplification the geometric surface area (instead of the electrochemical active surface area) has
been used and the square root time dependence of the transient voltage shift has shown partial deviation
from ideal linear behavior.

2.4. Physical and chemical characterization
Scanning electron microscope (SEM) images were taken with a Phenom Pharos Desktop SEM from Phenom
world using an accelerating voltage of 10 kV and a secondary electron detector.

X-ray diffraction (XRD) experiments were conducted with a D2 Phaser instrument from Bruker, using a
Cu x-ray tube (30 kV, 10 mA). Experiments were performed between 5◦ and 80◦ using a step width of 0.05◦.
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Elemental analyses (EAs) were conducted on an Euro EA 3000 from EuroVector S.P.A. The provided
values were the mean values of two measurements (red, orange and blue fraction) or three measurements
(green fraction).

Brunauer–Emmet–Teller (BET) specific surface area evaluations have been conducted on adsorption
isotherms measured with a 3Flex 3500 fromMicromeritics Instrument Corp. at 77 K using nitrogen as
adsorptive. The BET specific surface area was calculated in a relative pressure range p/p0 between 0.04 and
0.3 using the Auto-Fit-Function of the measurement software.

Raman experiments were conducted using an inVia confocal Raman instrument from Renishaw with a
laser wavelength of 532 nm. Data was acquired using five accumulations each having 20 s exposure time and
a reduced laser intensity to 5%. Measurements were performed in the middle of the powder sample.

Particle size distribution measurements were done with a Mastersizer Micro MAF5000 fromMalvern
Panalytical.

3. Results and discussion

3.1. Physical characterization
Four different fractions of graphite particles have been investigated, including the fraction designed to be the
target for LIBs. Figure 1 shows a schematic overview of the process starting from the raw material (natural
graphite flakes). After spheroidization of the raw material and by using air-jet sieving and air classification,
the green and red fractions are obtained. The green fraction represents the rounded product with target
characteristics for LIBs, while the red fraction is the fine/‘waste fraction’ of the process. This remaining
graphite fraction has been further split up into its course (orange) and fine (blue) fraction by a second air
classification process.

SEM images (see figure 2) show that the spheroidization process for the green fraction was successful and
round-shaped particles have been gained with a d50 particle size of 15.3 µm (see particle size distribution,
figure 3). In contrast, the remaining fractions (red, orange and blue) consist of particles with platelet-like
shape and d50 ranging from 3.4 µm (blue) over 4.9 µm (red) to 6.5 µm (orange). This is in line with the
production route, designed to obtain the green fraction with the tailored particle size and the more spherical
morphology.

Elemental analyses show that the carbon content is above 98% for every fraction, proving that only
minor impurities are present. The amount of hydrogen shows a small increase with decreasing particle size,
indicating a slightly higher defect content for the smaller particles. The amount of nitrogen and sulfur was in
most of the measurements below the detection limit (see supporting information, table S1), evidencing the
high purity of all samples.

Results from the surface analysis (specific surface area calculated with BET method from N2

physisorption isotherms) are given in figure S1 (supporting information) and table 1. The BET specific
surface area increases with decreasing the particle size, as expected, resulting in the lowest surface area for the
green fraction (12 m2 g−1) and the highest for the blue fraction (24 m2 g−1).

Raman spectroscopy has been applied in order to study the properties of the graphite particles at the
surface-near region. The ratio between the intensity of the D and G band reveals information about the
amount of defects in the material. A typical example of measured Raman spectrum is shown in figure S2 for
each sample. The samples were studied using different measurement settings and several locations of the
samples were probed. Overall, no clear differences between the samples were found, indicating that the local
structure of the different fractions is quite similar. This is further supported by XRD measurements, see
figure S3. All samples are highly crystalline with defined peaks in the diffraction pattern. Asymmetric peaks
(better visible on the (002) peak in figure S3(b)) indicate that different carbon phases/substructures exist in
all different fractions [56]. However, no clear differences can be evidenced by XRD analysis between the
different fractions, showing that the spheroidization process applied influences their crystal structure
similarly.

Overall, the different fractions derived from the shaping process show very similar compositions (EA)
and microstructures (XRD, Raman spectroscopy). As expected, the spheroidization leads to fractions with
quite different particle sizes and, along with that, also slightly different specific surface areas. Key properties
of all graphite materials are summarized in table 1.

3.2. Electrochemical investigation
Figure 4 represents the cycling performance of the four different graphite samples. Figure 4(a) shows that all
graphite fractions, even the ‘waste fractions’, show a stable capacity of around 100–105 mAh g−1. Common
capacities gained in literature are in the range of 100–110 mAh g−1 [13, 16, 17, 19–22, 24, 25, 27, 29, 35,
41, 57], showing a sufficient intercalation of sodium ions into graphite for all fractions. This is close to the
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Figure 1. Overview of the production process of the different graphite fractions. The color code is used throughout the paper
and indicates the ‘target fraction’ (battery graphite for LIB) as well as various ‘waste fractions’ with different particle sizes.

Figure 2. Scanning electron microscopy (SEM) images of the different graphite fractions.

theoretical capacity of 112 mAh g−1 for the formation of Na+(2G)yC−
20, demonstrating that the particle

size, shape or surface area do not influence significantly the ability to completely fill the graphite structure.
This also proves the ruggedness of the co-intercalation reaction of sodium ions into graphite. However, it can
be seen that different discharge capacities are obtained during the first cycle, reaching up to 206 mAh g−1 for
the blue fraction. This is also displayed in figure 4(b) where a quite large irreversible capacity loss can be seen
for the ‘waste fractions’ (red: 38%, orange: 39%, blue: 49%) compared to the LIBs ‘target fraction’ (green:
18%). The blue fraction, with the smallest particle size and the largest specific surface area, shows the highest
irreversible capacity loss at the first cycle. In general, no or negligible SEI formation is assumed in the case of
sodium-solvent co-intercalation in graphite with the salt used in this study [25, 29, 43]. However, due to the
irreversible capacity losses observed, some side reactions may take place in this case at the electrode/
electrolyte interface. These are related likely to the relatively high surface area (larger number of surface
groups) of the carbon compared to the other fractions, and/or more pronounced side reactions with the
binder. The latter effect might relate to a higher amount of binder being in contact with the electrolyte [41].
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Figure 3. Volume based particle size distribution of the different graphite fractions derived from laser light scattering.

Table 1. Summary of the characteristics for the different graphite fractions.

Sample name
Particle size
(d50) (µm) Morphology

Specific surface area
(BET) (m2 g−1)

Amount of carbon
(EA) (wt%)

Amount of
hydrogen
(EA) (wt%)

Green 15.3 Round
shaped

12 98.6 0.02

Red 4.9 Platelets 19 98.9 0.04
Orange 6.5 Platelets 17 98.9 0.04
Blue 3.4 Platelets 24 98.7 0.05

The origin of the irreversible capacity losses and its correlation with the surface area of the graphite used
deserves deeper investigation and will be the subject of further studies.

In the following cycles (see figure 4(c) for the 100th cycle) the voltage curves are similar for the discharge
process, leading to the expected voltage plateau at around 0.6 V and a sloping region afterwards [13, 15]. The
typical voltage profile also confirms that a co-intercalation reaction is taking place for all graphite samples.
However, the charging process for the different fractions shows some surprising differences according to the
voltage profiles. No clear voltage plateau is visible for any of the different types of graphite, suggesting a
slightly different de-intercalation process compared to the intercalation, as already proposed in literature
[26]. This can be also seen from the derivative plots (dQ/dV) for which clear peaks are seen during sodiation
and broad signals during de-sodiation, see figure S4. For the galvanostatic measurement, a more sloping
behavior can be seen in following order: green< orange/red< blue, which is in line with a decreasing
particle size and a higher BET specific surface area. In addition, the voltage gap between the charge and
discharge processes increases in the same order. A similar behavior has been already observed and reported in
literature for two different commercial graphite samples: the sample with higher surface area and lower
crystallinity shows a more sloping charging profile and a higher overpotential, whereas no difference was
visible in the discharge curves of the two graphite samples. However, no further explanation was given [13].
A linear correlation between the charge/discharge voltage gap, measured at the beginning of the 0.6 V plateau
(corresponding to a specific capacity of 50 mAh g−1, 100th cycle) and the BET surface value has been found,
see supporting information figure S5. This suggests that the surface, and perhaps the ratio of surface to bulk
of the particle has an influence on the voltage difference. While this is the only correlation we could identify,
it also needs to be kept in mind that the particle morphology for the different fractions is not the same, see
figure 2. It has to be pointed out that no differences can be seen in the voltage sloping region at lower
potential values (0.6–0.01 V) between the four types of graphite for both discharge and charge. In this region,
the graphite structure is already fully expanded and the storage mechanism appears more
(pseudo)capacitive-like [25]. According to the systematic measurements shown here, this storage mechanism
is identical for all samples, i.e. independent from the particle size and morphology.

GITT experiments were performed to identify more detailed differences between the samples and to
study the degree of voltage relaxation. Figure 5(a) shows the comparison of the results obtained with the
different samples. During discharge, the voltage values are all very close to each other, in good agreement

6



J. Phys. Energy 5 (2023) 014011 I Escher et al

Figure 4. Galvanostatic cycling of sodium-ion cells with different graphite fractions as the working electrode and sodium as the
counter electrode in a two-electrode set-up. Conducted with 11 mA g−1 using 1 M NaOTf in 2G as electrolyte. Different graphite
fractions are abbreviated with their first letter. (a) Discharge and charge capacity over 100 cycles, (b) voltage profile of the first
cycle and (c) voltage profile of the 100th cycle.

with galvanostatic measurement results. During charging, the differences are larger as can be better seen
from the enlarged image in figure 5(b). For the green fraction (lowest voltage), the measured voltage decrease
is 19.7 mV while for the blue fraction, the sample with the highest charging voltage, this value is 24.7 mV.
The data indicate that the fraction with the highest surface area shows the largest polarization during
charging, i.e. the asymmetric behavior might be a kinetic effect. On the other hand, the applied equilibration
time does not lead to the same voltage value for all samples. Even after equilibration of over 1.5 h, there is still
a difference of 12 mV between the green and the blue fraction. The small difference after relaxation might be
due to instrumental limitations or the limited relaxation time of 1.5 h (even after several tens of hours no
complete relaxation has been shown for other battery materials [58]). Despite those differences, the
asymmetric behavior is quite evident. Currently we cannot fully explain this phenomenon. However, the
results indicate that the solvent co-intercalation storage mechanism is a very complex involving processe that
is so far not well understood. To further elucidate the diffusion processes in the different graphite fractions,
the apparent (also called effective) diffusion coefficient Deff is calculated out of the GITT data (see figures 5(c)
and (d) with the equation given in the experimental part. The exact values have to be taken with precautions
as the values for the surface area and the molar volume depend on the state of charge and are therefore not
constant. A further discussion on the requirements is given in the experimental part. Two aspects appear
relevant from the GITT measurements, which are in line with the findings from the galvanostatic
measurements.

(a) Deff is largest for the green fraction (largest particle size) and smallest for the blue fraction (smallest
particle size). This is somewhat counter intuitive as one would expect an overall faster diffusion for
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Figure 5. Galvanostatic intermittent titration technique (GITT) measurements of sodium-ion cells with different graphite
fractions as the working electrode and sodium as the counter electrode in a two-electrode set-up. Conducted with 11 mA g−1

using 1 M NaOTf in 2G as electrolyte. (a) Voltage profile. The rectangle gives information about the part being enlarged in (b),
(b) one relaxation step during charge with∆V being the differences of the voltage before and after the relaxation time of 1.5 h,
(c) apparent diffusion coefficient (Deff) during discharge/sodiation, (d) apparent diffusion coefficient (Deff) during
charge/de-sodiation.

decreasing particle sizes. This is because the slowest process in many electrode reactions is the diffusion
of ions in the crystal lattice. The diffusion of solvated ions in graphite is, however, very fast (even slightly
faster than diffusion of lithium ions in graphite) [49]. This indicates that another factor is limiting the
reaction kinetics. As the differences in electrode porosities (typically between 39% and 45%) and
loadings (between 6 and 8 mg cm–2 for the GITT measurements) are relatively small, a possible cause
might relate to the different particle morphologies, see SEM images in figure 2. Further information
might be obtainable from in situ or operando studies such as dilatometry [59] or impedance
spectroscopy which are sensitive to the dynamic behavior during cycling. These measurements, however,
are outside the scope of the present study.

(b) Comparing the sodiation and de-sodiation process, it can be seen for all electrodes that the apparent
diffusion coefficient sharply drops during co-intercalation/sodiation in the plateau region while a
comparable behavior during de-intercalation/de-sodiation is not observed. This indicates further that
the intercalation and the de-intercalation process differ from each other. Such an asymmetric behavior
has been already observed during the co-intercalation of sodium and potassium ions in graphite [40, 60].

The asymmetric behavior between charging and discharging is not observed in case of lithium
intercalation using a conventional standard electrolyte (1 M LiPF6 in EC/DMC), see figure 6. In this case, the
solvation shell is stripped during charge transfer and the naked lithium ions are intercalated to reach a
graphite intercalation compound (GIC) with the final stoichiometry of LiC6.

In lithium-ion cells, the ‘waste fractions’ show a higher irreversible capacity loss in the first cycle
(red/orange: 22%, blue: 25%) compared to the green fraction (14%), which is expected due to the differences

8
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Figure 6. Galvanostatic cycling of lithium-ion cells with different graphite fractions as the working electrode and lithium as the
counter electrode in a two-electrode set-up. Conducted with 37.2 mA g−1 using 1 M LiPF6 in EC/DMC (v/v, 1/1) as electrolyte.
Different graphite fractions are abbreviated with their first letter. (a) Voltage profile of the 1st cycle and (b) voltage profile of the
2nd cycle.

in specific surface areas and particle sizes. These results are in line with those obtained from sodium-solvent
co-intercalation measurements. However, the voltage profiles for the lithium-ion cells show the expected
behavior, i.e. they do not show the peculiar asymmetry between charge and discharge. No differences in
overpotentials can be found for the different types of graphite during cycling, see figure 6(b) (2nd cycle). The
voltage plateaus, indicating the staging mechanism during the intercalation of lithium ions [45], appear at
very similar voltage values for all fractions during both charging and discharging. The asymmetric behavior
described above (see figure 4) is therefore characteristic for the co-intercalation of sodium ions and
solvent.

Figure 7 shows the results obtained from a symmetric rate test (sodium co-intercalation) for the different
graphite fractions conducted at charging/discharging rates ranging between C/3 and 60 C. In agreement with
the results discussed above, side reactions lead to a higher capacity in the first cycle, but values then quickly
stabilize. During cycling at C/3 (∼37 mA g−1) values of around 105–110 mAh g−1 for all types of graphite
(similar to cycling at C/10) are reached. Cycling at higher C-rates results to a slight drop in capacity, still
resulting in 83–90 mAh g−1 at 10 C (1100 mA g−1). The behavior is comparable for all graphite fractions up
to a C-rate of 10 C. At higher current densities, the discharge capacity drops strongly for the green fraction,
whereas higher values are obtained for the other graphite samples, especially for the blue and orange
fraction. Cycling performance at very high C-rates strongly depend not only on the active material itself but
also on other parameters at the electrode level, such as loading and porosity. Even though similar electrodes
have been tested in this study for all graphite samples, deviations in these parameters do not allow conclusive
data interpretation. Nevertheless, we can clearly observe that all fractions (not only the battery grade green
fraction) show very good rate performance reaching 80% of their capacity (compared to the 5th cycle at C/3)
at a C-rate of 10 C, which translates to discharging the cell in around 4.5–4.9 min. A generally good high
C-rate behavior is visible in other studies on the co-intercalation of sodium ions in graphite as well
[15, 17, 24, 35, 42]. Exceptionally high currents can be applied to some graphite material, enabling charge
and discharge in 9 or 12 s [18, 35]. Voltage curves at different C-rates (see figures 7(b) and (c) reveal that,
even though at low C-rates the main difference between the types of graphite is observed during the charging
process, at high C-rates the voltage hysteresis is similar for all samples and the plateau at 0.6 V is not visible
anymore due to polarization. In general, no significant differences can be seen between the different fractions
in terms of high-rate performance in the sodium-ion cells. These results open the possibility of using ‘waste
graphite fractions’, generated during the spheroidization process, in SIBs with high rate cycling performance.
The results also suggest that, due to the different storage mechanism (and possibly different impact of the
particle surface properties on the electrochemical behavior), the requirements—and thus the production
cost—of graphite as active material in SIB applications are less demanding compared to the LIBs
applications.
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Figure 7. Rate capability test of sodium-ion cells with different graphite fractions as the working electrode and sodium as the
counter electrode in a two-electrode set-up. 1 M NaOTf in 2G as electrolyte. (a) Overview of the specific discharge capacities for
different C-rates (1 C corresponds to 110 mA g−1), (b) voltage profile of the 2nd cycle with a C-rate of C/3, (c) voltage profile of
the 2nd cycle with a C-rate of 30 C.

4. Conclusion and outlook

Four different graphite samples obtained from a lab-scale spheroidization process of natural graphite, were
tested as anode material for SIBs. The process leads to a battery grade fraction (green) that is used for LIBs.
The left-over ‘waste fractions’ (blue, red, orange) represent a potentially low-cost graphite source to be used
for SIBs that aim a lower cost compared to LIBs. It was found that the fractions are quite similar with respect
to their microstructure and composition but show, as expected, different particle size distributions and
particle morphology. The particle sizes of the ‘waste fractions’ are smaller compared to the battery grade
fraction and the morphology is more platelet-like. As expected, the smaller the particle size, the larger is the
BET specific surface area. The larger values of BET specific surface area are likely a major cause for the lower
initial Coulomb efficiencies of the ‘waste fractions’ when being used as anode in SIBs. However, the ‘waste
fractions’ show stable cycling behavior at full capacity (∼110 mAh g–1) and exhibit good rate performance,
e.g. 80% of the capacity is retained at a C-rate of 10 C. It can be concluded that those ‘waste fractions’ may be
potential materials to be used in SIBs although the low initial Coulomb efficiency needs to be tackled before a
practical use could be envisioned. Possible ways to overcome this problem would be surface modifications,
the addition of electrolyte additives or a pre-cycling step. Even though the capacity gained is smaller for
graphite compared to e.g. hard carbon it shows a very good high current behavior as well as a stable cycling
and might find its application in this field.

A peculiar difference between the different fractions is found for the voltage profiles, which show an
asymmetric behavior that is specific to the co-intercalation of sodium ions. While the discharge voltages are
nearly identical for all fractions, clear differences up to about 200 mV are observed during charging. This
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hints on a complex storage mechanism in case of sodium (with solvent co-intercalation) as this behavior is
not observed for lithium ion intercalation in the same materials.

The present work demonstrates that by-product graphite produced during spheroidization can be
successfully used as active material in SIBs and hence could be a potential low-cost source for their
production.
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