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Fracton phases are a particularly exotic type of quantum spin liquids where the elementary quasi-
particles are intrinsically immobile. These phases may be described by unconventional gauge theories
known as tensor or multipolar gauge theories, characteristic for so-called type-I or type-II fracton
phases, respectively. Both variants have been associated with distinctive singular patterns in the
spin structure factor, such as multifold pinch points for type-I and quadratic pinch points for type-II
fracton phases. Here, we assess the impact of quantum fluctuations on these patterns by numerically
investigating the spin S = 1/2 quantum version of a classical spin model on the octahedral lattice
featuring exact realizations of multifold and quadratic pinch points, as well as an unusual pinch
line singularity. Based on large scale pseudo fermion and pseudo Majorana functional renormaliza-
tion group calculations, we take the intactness of these spectroscopic signatures as a measure for
the stability of the corresponding fracton phases. We find that in all three cases, quantum fluctua-
tions significantly modify the shape of pinch points or lines by smearing them out and shifting signal
away from the singularities in contrast to effects of pure thermal fluctuations. This indicates possible
fragility of these phases and allows us to identify characteristic fingerprints of their remnants.

Introduction.— A particularly fascinating physical sit-
uation arises when a system of interacting spins realizes
an emergent gauge theory, which is one of the defining
properties of a quantum spin liquid [1]. Various different
types of gauge theories may be realized in such phases.
For example, quantum spin ice represents a variant of
a quantum spin liquid, where an emergent U(1) gauge
theory on a pyrochlore lattice establishes an astonishing
analogy to three-dimensional electromagnetism including
emergent photons and an effective fine-structure constant
[2, 3]. The key ingredient enabling these non-trivial prop-
erties is the gauge constraint which, in the charge-free
sector of a U(1) gauge theory, takes the form of a Gauss
law ∇ ·E(r) = 0.

Meanwhile, generalizations of the standard U(1) gauge
theories have become a new focus of theoretical investiga-
tions where the vector form of the Gauss-law is replaced
by a tensor structure [4–7], e.g.

∑
µν ∂µ∂νEµν(r) = 0,

known as tensor gauge theories describing so-called frac-
ton spin liquids [8, 9]. The most remarkable consequence
of this generalization is that, besides the effective charge
of a quasiparticle, multipole moments of charges be-
come conserved quantities giving rise to excitations with
fractionalized mobility [10]. Two cases can be distin-
guished [11]: In type-I fracton phases [12–14], described
by symmetric tensor gauge theories, the quasiparticles
are either completely immobile or have a residual mobil-
ity along subdimensional manifolds. Otherwise, in type-
II fracton phases [15–17] all quasiparticles are completely
immobile. In the associated multipolar gauge theories the
Gauss law contains derivatives of different orders restrict-
ing charge configurations to certain fractal patterns [18–
21]. Remarkably, fracton phases also attract interest in

fields such as quantum information [22, 23] and high en-
ergy physics [24–27].

Recently, important steps have been undertaken to
bring the rather abstract theoretical research on fracton
phases closer to the established field of quantum mag-
netism and to experiments. For example, it has been
found that type-I fracton phases manifest themselves in
multifold pinch-points [6] in the spin structure factor
[Fig. 2(a)], generalizing the famous twofold pinch points
known from conventional U(1) spin liquids [Fig. 1(c)].
Likewise, type-II fracton phases have been argued to be
associated with quadratic pinch points [Fig. 3(d)] where
contour lines exhibit a characteristic parabolic shape [28].
On a different front, a class of simple classical spin mod-
els have been identified [29] which give straightforward
access to classical spin liquids described by tensor gauge
theories and to unconventional pinch points in the spin
structure factor. However, it is an open but experimen-
tally relevant question how stable these phases are under
modification from the ideal situations in which they are
defined, e.g., by allowing for quantum fluctuations.

In this letter, we study the effects of quantum fluctua-
tions on the ground state and finite-temperature phases
of the classical spin model in Ref. [29]– the so-called oc-
tochlore model – whose three dimensional octahedral lat-
tice is realized in rare-earth antiperovskites [30, 31]. This
model represents a showcase example for exotic classical
spin liquids: Apart from known twofold and multifold
pinch points we identify exact realizations of quadratic
pinch points [28] as well as unconventional pinch line
singularities [32]. We add quantum fluctuations to the
system by promoting it from a classical (S → ∞) to a
quantum S = 1/2 Heisenberg model which is then nu-
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FIG. 1. (a) Octochlore model: Differently weighted sites
in Eq. (2) are indicated by different colors. (b) Phase dia-
gram of the model from Ref. [29]. The labels A, B, C [with
parameters (α, β) given in the inset] indicate the locations of
multifold pinch points, quadratic pinch points and pinch lines
as shown in Figs. 2 to 4, respectively. (c) Spin structure fac-
tor of a twofold pinch point at α = β = 0 for the classical and
quantum model. (d) Spin structure factor S(q) along circular
paths indicated in (c) normalized to their maxima.

merically treated via two powerful quantum many-body
techniques, the pseudo fermion and the pseudo Majo-
rana functional renormalization group. Overall, we find
that exotic pinch point features are drastically affected
by quantum fluctuations and appear more fragile com-
pared to conventional twofold pinch points.

Unconventional gauge theories from an octochlore
model.— The octahedral lattice consists of corner-sharing
octahedra and is defined by simple cubic lattice vectors
am ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} together with a three
site basis bm = am/2. The Hamiltonian of the octochlore
model [29] is constructed as the sum of squared vectors
Moct,αβ over all elementary octahedra

H =
J

2

∑
oct

M2
oct,αβ , (1)

where Moct,αβ is the sum of spins in a cluster, weighted
by dimensionless parameters α, β,

Moct,αβ =
∑
i∈oct

Si + α
∑

i∈〈oct〉

Si + β
∑

i∈〈〈oct〉〉

Si. (2)

Here, a reference octahedron “oct” is given by the green
sites in Fig. 1(a), while its closest surrounding sites
“〈oct〉” and further distant sites “〈〈oct〉〉” are colored
blue and cyan, respectively. Henceforth, we set the en-
ergy scale such that the maximal Heisenberg coupling
between two spins is equal to one.

For classical spins Si, the system’s extensively degener-
ate ground states follow from the constraints Moct,αβ =
0 which constitute discrete versions of Gauss’s law.
These constraints can be expressed in reciprocal space

as
∑
m Lm(q)Sm(q) = 0 [29], where m = 1, 2, 3 label

the sublattices, Sm(q) is the Fourier-transformed spin
on sublattice m and Lm(q) is the m-th component of the
so-called constraint vector. Normalized constraint vec-
tors L̃m(q) = Lm(q)/

√∑
n(Ln(q))2 can be defined over

the entire q space except at singular points q? where
Lm(q?) = 0 for all m. For isolated points q? in momen-
tum space and with L̃m(q) defined on the unit sphere S2

one can assign a topological index to the defect configu-
ration L̃m(q) around q? defined by the second homotopy
group of S2, which is the Skyrmion number Q [33, 34]. As
demonstrated in Ref. [29] non-trivial Q 6= 0 give rise to
pinch points at q = q? in the equal-time spin structure
factor S(q) ≡ 〈S(−q) · S(q)〉, where |Q| = 1 is associ-
ated with twofold pinch points. Furthermore, expanding
Lm(q) in powers of q around q? reveals the underlying
continuum gauge theory.

The number of such defects and their arrangement in
the Brillouin zone yields a phase diagram spanned by
α and β featuring 10 distinct classical spin liquids, see
Fig. 1(b). In particular, at points along the boundary
[i.e., point A in Fig. 1(b)] multiple defects with Q = ±1
merge, leading to a higher |Q| > 1 associated with a ten-
sor gauge theory and multifold pinch points, see Ref. [29].
In addition, we have identified even richer phenomena at
crossing points of several phase boundaries: Point B in
Fig. 1(b) displays a pinch point with purely parabolic
contours, recently predicted to be a hallmark signature
of type-II fracton phases [28], while point C features
unusual, one-dimensional manifolds of pinch points, so-
called pinch-lines [32].

Methods— The classical model in Eq. (1) is treated
within a standard large-N approach [35], both at zero
and finite temperatures, previously found to correctly en-
capture the qualitative behaviour for this system [29].
To study the vastly more complicated quantum S =
1/2 version, we employ two functional renormalization
group (FRG) approaches that replace spin operators by
fermionic pseudo particles. An established approach at
zero temperature is the so-called pseudo fermion (PF-
) FRG [36–42], in which spin S = 1/2 operators are
mapped onto two flavors of complex fermions fi↑, fi↓
as Sµi = 1

2

∑
a,b∈{↑,↓} f

†
iaσ

µ
abfib. At finite temperatures,

we apply the pseudo Majorana (PM-) FRG, where we,
instead, represent spins by three flavors µ = x, y, z of
SO(3)-symmetric Majorana fermions {ηµi , ηνj } = δijδµν
as Sµi = − i

2

∑
ν,σ εµνση

ν
i η

σ
i , without introducing unphys-

ical states [43–45]. For both approaches, the resulting
interacting model is treated in the thermodynamic limit
[46] using one-loop FRG. Here, ∼ 108 first order ordinary
differential equations are solved numerically as a func-
tion of an artificial Matsubara frequency cutoff Λ. In the
physical limit Λ → 0, we obtain renormalized fermionic
vertex functions well beyond mean field, from which we
calculate the equal-time spin structure factor S(q). De-
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FIG. 2. (a-d): Spin structure factor S(q) in the hhl-plane for
a multifold Q = −7 pinch point found at location A (α =
− 11

10
, β = 9

5
) in the phase diagram of Fig. 1. (e): S(q) for

the two paths indicated in (a), normalized to its maximum
value along each path. (f): As in (e) but comparing classical
thermal and quantum fluctuations along the paths in (b) and
(c). The paths are counterclockwise and the start point ϕ = 0
is indicated by a marker.

spite the common FRG background, the approximations
associated with a one-loop scheme are different in both
approaches such that one can consider the PFFRG and
PMFRG as independent and complementary techniques.
Still, we observe excellent agreement between the equal-
time PMFRG structure factor for the lowest simulated
temperatures with the one obtained from PFFRG at
T = 0 [46].

Twofold pinch points.— Even though not the focus of
this work, we start with a brief discussion of more con-
ventional twofold pinch points with |Q| = 1, occurring in
the bulk of every phase of Fig. 1(b). At the pinch point
positions q = q?, the lowest non-vanishing term in an ex-
pansion of Lm(q) is the linear one, and hence, the emer-
gent continuum Gauss law has the linear form ∇·E(r) =
q ·E(q) = 0 where E(q) =

∑
m S

z
m(q)∂qLm(q) [47]. Un-

der the influence of quantum fluctuations at T = 0 in the
S = 1/2 case treated with PFFRG, twofold pinch points
show the typical broadening illustrated in Fig. 1(c) for
the case α = β = 0, while the overall pinch point shape
stays rather intact. In particular, we observe the effects
of quantum fluctuations to be analogous to those at a
finite temperature T ∼ 1.3. This broadening indicates
violations of the ice rule constraint, and is expected as
the absolute spin magnitudes M2

oct,αβ of neighboring oc-
tahedra do not mutually commute and thus fluctuate,
i.e., 〈M2

oct,αβ〉 6= 0. Importantly, the signal at q = q? re-
mains strong and no indications for magnetic long-range
order are observed in the full α-β plane [46, 48]. We
find these observations to be in direct analogy with past
studies of the closely related nearest neighbor pyrochlore
Heisenberg model [41, 44, 49–56].

Multifold pinch points.— A vanishing linear term in
an expansion of Lm(q) around q = q? is associated with

FIG. 3. Pinch point with parabolic contours in the hhl-plane
found at point B (α = 0, β = −1). (a): Classical large-N
result for temperatures T = 0 (left half) and T = 1.4 (right
half). (b) Quantum model at T = 1.4 and (c) at T = 0
obtained from PMFRG and PFFRG in the low cutoff limit,
respectively. (d-f): Magnifications of the regions indicated by
black squares in the upper panel together with black contour
lines.

multifold pinch points [6, 7, 29]. An instructive example
occurs at α = −11/10, β = 9/5 and q? = (π, π, π), with a
topological index Q = −7 and six lobes of large intensity
in the hhl plane, see Fig. 2(a) and Ref. [29]. We identify a
gauge constraint of third rank

∑
µνσ qµqνqσEµνσ(q) = 0

where Eµνρ(q) =
∑
m S

z
m(q)∂qµ∂qν∂qρLm(q), implying

conserved scalar charge, dipole and quadrupole moments.
Figure 2 shows the impact of both quantum and thermal
fluctuations on this multifold pinch point.

The value of S(q) along circular paths around the
pinch point illustrates the presence of the singularity: For
the exact gauge theory in the classical T = 0 model, it
retains the same strong angular dependence for arbitrar-
ily small radii, see Fig. 2(e). Thermal fluctuations induce
a rather featureless broadening and the angular depen-
dence of the signal vanishes at small distances from the
pinch point, see full red line in Fig. 2(f). Interestingly,
the effects of quantum fluctuations are very different. In
addition to a broadening, quantum fluctuations add a
shift of spectral weight away from the pinch point ori-
gin in favor of soft maxima at incommensurate positions,
effectively tearing apart the pinch point. We note that
this observation stands in stark contrast to the case of
twofold pinch points shown in Fig. 1(c), for which quan-
tum fluctuations appear to act similarly to thermal ones.

In order to physically interpret the data in Fig. 2, two
types of quantum effects need to be distinguished. First,
the aforementioned broadening of pinch points rather in-
dicates the destruction of the underlying gauge theory.
However, a second well-known quantum effect consistent
with a gauge theory is the formation of gapless photon
modes with dispersion ω(q), resulting from an emergent
conjugate vector potential A(r). These photon modes
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give rise to an extra factor ω(q) in the spin structure fac-
tor (i.e., S(q)→ ω(q)S(q)) suppressing the signal at the
singularity due to ω(q?) = 0 [6, 28, 57]. To test whether
the weight distribution in Fig. 2(c) contains possible sig-
natures of such a modulation, we note that the mere
multiplication of an exact pinch point with an isotropic
factor ω(q) ∼ |q − q?|γ (or, for that matter, any func-
tion ω(|q − q?|)) [58] leaves the singularity intact such
that S(q) along rings around the pinch point, normalized
to its maximum on each path, would remain unchanged
upon decreasing the radius of the rings. However, the
dashed red and blue graphs in Fig. 2(f) illustrating the
normalized signal along the ring-like paths in Fig. 2(c) are
qualitatively very different and, hence, our results seem
incompatible with an emergent photon mode. While it
is possible that the ground state is described by a dif-
ferent gauge theory (i.e., with an emergent electric field
given by a more complex function of spin operators), we
deem it questionable whether fractonic phenomena that
have been associated with these spectroscopic features
still occur in the S = 1/2 limit of the Heisenberg model.

Quadratic pinch points.— A further generalization oc-
curs if the gauge constraint contains derivatives of differ-
ent orders as is characteristic for multipolar gauge theo-
ries describing type-II fracton phases. This gives rise to
quadratic pinch points in the spin structure factor where
lobes of strong intensity follow contour lines of the form
q‖ ∝ aq2⊥ with q‖ and q⊥ being two perpendicular mo-
mentum space directions and a is the lattice constant
(which is set to one here). The mixing of derivatives
causes the lattice constant to explicitly appear in these
spectroscopic patterns which is a direct manifestation of
the ultraviolet-infrared mixing described in recent litera-
ture [28].

Strikingly, we have identified such quadratic pinch
points in the classical octochlore model at α = 0, β = −1
and q? = (0, 0, π). The effective gauge theory in this
case contains first derivatives along the z-direction, as
∂qzL3(q) 6= 0, while for the perpendicular x, y direc-
tions ∂qxLm(q) = ∂qyLm(q) = 0 for m = 1, 2, 3 and
the lowest non-vanishing contribution comes from sec-
ond derivatives. The resulting quadratic pinch point in
classical large-N [Fig. 3(d)] has a shape which is similar
to predictions from the U(1) Haah code [28]. The ef-
fect of finite temperatures in large-N only amounts to a
broadening near q? while retaining the quadratic shape
and the strong signal around q?. This is to be contrasted
with PMFRG at the same temperature where the signal
is reduced near q? and quadratic contours are no longer
discernible. This trend continues down to T = 0 where
the spin-structure factor appears even more strongly re-
duced around q?. Again however, this result seems in-
compatible with emergent photons, see Ref. [46].

As a side remark, the model with α = 0, β = −1
also hosts a fourfold pinch point [7], see Fig. 3(a) at
q? = 0, associated with a trace-full rank-2 tensor gauge

FIG. 4. (a-c): Temperature dependent spin structure factor
for a pinch line at α = − 1

2
, β = 1 [C in Fig. 1(b)] in the [111]

direction. Panels (d-f) show a cut through the pinch line, here
given by qz = 0.5π as indicated by the solid dark red line in
panels (a-c).

constraint. With the observed reduction of S(q) and the
formation of a local minimum at q? = 0 in the quantum
model as T → 0, this is another example reflecting the
strong impact of quantum fluctuations on exotic pinch
points.

Pinch-lines.— Points q? of vanishing constraint vector
are not necessarily isolated in momentum space but can
form one-dimensional manifolds. This situation has pre-
viously been studied in Ref. [32] where the phenomenon
has been dubbed a pinch line. Such patterns exhibit con-
ventional twofold pinch points in all planar cuts through
the pinch line. For the classical pyrochlore model inves-
tigated in Ref. [32] an underlying gauge constraint linear
in the derivatives but with a tensor structure has been
identified and a possible relevance for the pyrochlore ma-
terial Tb2Ti2O7 [59] has been pointed out.

We have found an analogous feature in the octochlore
model at α = − 1

2 and β = 1 where pinch lines run along
[111] and symmetry related directions in momentum
space. The lowest non-vanishing derivatives of Lm(q) at
q? are first order derivatives perpendicular to the pinch
lines, in agreement with the pyrochlore model of Ref. [32].
Since the topological defect is now line-like and observing
that the normalized constraint vector L̃m(q) avoids two
opposite points on the unit sphere S2 [46], the topological
index is given by the integer vortex winding number w.
We find |w| = 1 and consequently, twofold pinch points
in planar cuts through the line defect, see bottom panel
of Fig. 4 depicting cuts at qz = 0.5π. Thermal fluctua-
tions in the classical model [Fig. 4(a), right] shift spectral
weight towards the pinch lines such that they become vis-
ible in the hhl plane as well defined, broadened lines of
constant strong signal.

For the corresponding quantum model, similar obser-
vations to the previous cases can be made, such as a re-



5

distribution of spectral weight away from the pinch line
when temperature is lowered, as shown in the bottom
panel of Fig. 4. It is again worth contrasting this behav-
ior with conventional twofold pinch points representing
isolated point defects where quantum fluctuations are not
seen to significantly reduce the signal at q = q?, see the
example in Fig. 1(c).

Discussion.— We have identified the classical oc-
tochlore model as an exquisite physical platform for
studying exotic spectroscopic features, such as multifold
and quadratic pinch points as well as pinch lines, all as-
sociated with unconventional gauge theories. Numeri-
cal studies which systematically investigate the impact of
quantum fluctuations on the corresponding classical spin
liquids are, however, lacking so far. In our endeavor to
fill this gap, we treat the quantum spin S = 1/2 model
employing state-of-the-art PFFRG and PMFRG meth-
ods. We find a recurring theme in our results: Multifold
pinch points, quadratic pinch points and pinch lines all
undergo a significantly different modification under quan-
tum fluctuations than conventional twofold pinch points,
showing a reduction of S(q) at q? that is also at variance
compared to the effects of pure thermal fluctuations in
the classical case. This also implies that the absence of
unconventional pinch points in an experimentally mea-
sured spin structure factor does not necessarily exclude
the realization of a higher-rank U(1) gauge theory in the
corresponding classical system.

From a methodological perspective, here, we benefit
from the fact that our octochlore model has SU(2) spin
symmetry which simplifies the application of PFFRG
and PMFRG enormously. A (numerically more chal-
lenging) continuation of our present work could be to
lift the SU(2) symmetry by considering an Ising version
of the octochlore model supplemented with small trans-
verse couplings, thus realizing an analogous situation as
in quantum spin ice models. This will help identifying
the fate of exotic pinch point singularities along a con-
tinuous classical-to-quantum interpolation. Thus, our re-
sults strongly motivate new avenues in the investigations
of these exotic pinch points under quantum fluctuations,
which appear to have a more significant impact compared
to twofold-pinch points. Furthermore, our work sets the
stage for determining the microscopic wave functions de-
scribing these resulting quantum phases, and whose cor-
relation functions give rise to the static structure factors
obtained here [60].
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[34] M. Kléman, ed., Points, lines and walls in liquid crystals,
magnetic systems and various ordered media (John Wiley
& Sons Inc, 1983).

[35] S. V. Isakov, K. Gregor, R. Moessner, and S. L. Sondhi,
Dipolar Spin Correlations in Classical Pyrochlore Mag-
nets, Phys. Rev. Lett. 93, 167204 (2004).
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—Supplemental Material—

EMERGENT GAUGE THEORIES

The purpose of this suppelementary section is to pro-
vide a more in-depth introduction to the construction of
emergent gauge theories on the octochlore model. As dis-
cussed in Ref. [S29], the classical ground state constraint
of the octochlore model can be written as∑

i∈c
ηiSi = 0 ∀c, (S1)

ηi =


1, i ∈ oct

α, i ∈ 〈oct〉
β, i ∈ 〈〈oct〉〉

, (S2)

where c is the cluster of octahedra shown in Fig. 1 of
the main text. In reciprocal space, the constraint can be
expressed using a constraint vector Lm(q)

Lm(q) =
∑
i∈m∈c

ηie
ıq(rc−ri) (S3)

nu∑
m=1

L∗m(q)Sm(q) = 0 ∀q, (S4)

where nu = 3 is the number of sites per unit cell, rc in-
dicates the position of the center of the cluster c and ri
the position of site i. As all spin components are equiv-
alent, henceforth, we only consider the z-component.
Even though the dimension of Lm is given by the num-
ber of sublattices and can in principle be of arbitrary

dimension, here we shall label its three components as
Lx, Ly, Lz for notational convenience. Equation (S4)
implies that the vector Szm is orthogonal to the con-
straint vector Lm(q). Hence, the spin structure factor
S(q) ≡ 1

nu

∑
m,n〈Szm(−q)Szn(q)〉 can be approximated

at zero temperature by summing over all elements of the
matrix projecting out L̃m(q) [S29, S48]. This explains
the appearance of pinch points whenever Lm(q) = 0 and
the projector becomes singular. The effective gauge the-
ory is then given by expanding Lm(q) to leading order
around the location of a pinch point q?, corresponding
to a coarse graining of the system. If the lowest non-
vanishing contribution is of first order, we obtain

∑
m

∑
µ

∂L∗m
∂q̃µ

∣∣∣∣
q̃=0

q̃µS
z
m(q̃) ≡

∑
µ

q̃µEµ(q̃) = 0, (S5)

where q̃ = q−q?. This is a simple Gauss’ law ∇ ·E = 0
in reciprocal space. The emergent gauge field Eµ(q̃) =∑
m
∂L∗

m

∂q̃µ
|q̃=0S

z
m(q̃) in this example is of rank-1 U(1)

type. An interesting special case emerges when the gra-
dient of the constraint vector also vanishes. In this case,
the effective gauge field becomes a higher rank tensor

which may depend on terms such as
∂2L∗

m

∂qµ∂qν
. We now

consider more explicit examples found on the octochlore
model, for which the constraint vector can be written as

L(q) =

2 cos
(
qx
2

)
[2α(cos(qy) + cos(qz)) + 2β cos(qx) + 1− β]

2 cos
( qy

2

)
[2α(cos(qx) + cos(qz)) + 2β cos(qy) + 1− β]

2 cos
(
qz
2

)
[2α(cos(qx) + cos(qy)) + 2β cos(qz) + 1− β]

 . (S6)

Twofold pinch point.— First, consider the simple spe-
cial case α = β = 0. In this case we have L =
2 (cos(qx/2), cos(qy/2), cos(qz/2)) which vanishes only at
the pinch point q? = (π, π, π) (and equivalent positions).
Here, we find ∂qµLm(q?) = −δµm, i.e., the underlying
gauge structure can be described by an emergent rank-1
gauge field, as expected.

As argued in the main text, the impact of quantum
fluctuations on the unconventional pinch point features
differs significantly from conventional ones, such as in the
pyrochlore lattice. Here, we demonstrate that we find
the same for the octochlore lattice by choosing α = β =
0. Figs. Fig. S1 and Fig. 1(c,d) of the main text show
that for the octochlore model quantum fluctuations only
lead to a broadening of the pinch points, while crucially,
no relative reduction of spectral weight at the original
pinch point location is observed. In particular, it can be
seen that the peak at the former pinch point becomes

narrower as temperature is lowered, in agreement with
classical expectations, analogous to previous findings on
the pyrochlore lattice [S44]. As argued in the main text,
this observation of broadening is analogous to the effect
of thermal fluctuations
Fourfold pinch point.— For α = 0, β = −1, L(q) sim-

plifies to

L(q) =

4 cos
(
qx
2

)
(1− cos(qx))

4 cos
( qy

2

)
(1− cos(qy))

4 cos
(
qz
2

)
(1− cos(qz))

 . (S7)

We find that all components of L(q) and its first deriva-
tives vanish at q? = (0, 0, 0). The first nonzero contribu-
tions are all of second order

∂qµ∂qνLm
∣∣
q=q?

= 4δµνδµm (S8)

As the underlying gauge field is a rank-2 tensor

1
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FIG. S1. Conventional twofold pinch point at α = β =
0. The arrangement and description of the individual panels
corresponds to that in Fig. 3 of the main text.

Eµν(q) = 4δµνS
z
µ(q), the structure factor displays a four-

fold pinch point. A gauge theory of this form ∂µ∂νEµν =
0 implies the existence of quasiparticle excitations with
conserved dipole moment [S5]. These so-called fractons
are thus immobile unless grouped together to form pairs
or larger clusters.

Quadratic pinch point.— At the same location in the
phase diagram (α = 0, β = −1), we also find a pinch
point with purely parabolic contours at q? = (0, 0, π).
As pointed out by Hart et. al. in Ref. [S28], such a pinch
point arises from the presence of mixed derivatives in the
Gauss law constraint and is a signature of a type-II frac-
tonic phase. Indeed, we verify that for the present case,
L has a nonzero first derivative only in the qz direction:

∂qµLm(q)
∣∣
q=q?

=

{
−4 µ = m = z

0 else
(S9)

∂qµ∂qνLm(q)
∣∣
q=q?

=

{
4 µ = ν = m and m = x, y

0 else
.

(S10)

Figure S2 shows a comparison between thermal and
quantum fluctuations on a quadratic pinch point. In con-
trast to the twofold pinch point shown in Fig. 1(c,d) of
the main text, the effects of quantum and thermal fluctu-
ations are quite distinct, leading to a suppression of the
structure factor around the pinch point. As discussed
in the main text, for systems with emergent photon ex-
citations, a similar suppression is also observed [S57].
Here, the structure factor simply acquires a prefactor
from the dispersion of a photon with the speed of light

c. ω(q̃) = c
√
q̃2z +

(
q̃2x + q̃2y

)2
, where [S57]

S(q̃)→ ω(q̃) coth

(
ω(q̃)

2T

)
S(q̃). (S11)

FIG. S2. Difference between thermal and quantum
fluctuations for quadratic pinch point at α = 0, β = −1.

FIG. S3. Quadratic pinch point at T = 0 and T =
0.8. Dispersion-corrected structure factor S(q) obtained from
large N and Eq. (S11) in (a) and (c) in comparison of to
PFFRG (b) and PMFRG (d).

In Fig. S3, the effect of such a modification is consid-
ered in comparison to the findings from PFFRG. The re-
sulting structure factors are clearly qualitatively distinct.
While PFFRG is formally employed at zero temperature,
the influence of its finite cutoff is often similar to a finite
temperature. To investigate this possibility, a rough es-
timate of the structure factor can be obtained from large
N at finite temperature by applying the correction from
the photon dispersion in Eq. (S11). Assuming that c = 1
(in units of the normalized lattice constant and energy
scale), the result is shown in panel (c) of Fig. S3. As in
the case of quantum spin ice, this returns some spectral
weight back to the pinch point. Although the intensity
at the pinch point depends on microscopic details such as
the value of c, we notice that the position of the maxima
remains indifferent, following the original parabolic con-
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FIG. S4. Vortex winding number for pinch line. Left:
Spin structure factor from large-N at T = 0 in a cut through
the pinch line, with loops of different radius. Right: For
each loop, the normalized constraint vector describes a path
winding once around the same axis. Sufficiently close to the
pinch point, this path is of circular shape.

tour. This contrasts our numerical observations so that
the presence of emergent photons remains unlikely.

Multifold pinch point.— At α = −11/10, β = 9/5, an
even higher rank gauge theory of the form ∂µ∂ν∂ρEµνρ =
0 emerges, since both the first and the second order
derivatives of the constraint vector vanish at the pinch
point q? = (π, π, π). Explicitly, we find for the first com-
ponent of the constraint vector

∂3qxLx(q?) = −54/5,

∂qx∂
2
qyLx(q?) = ∂qx∂

2
qzLx(q?) = 11/5, (S12)

while other derivatives such as ∂2qx∂qyLx(q?) are zero.
Consequently, not only monopole and dipole moments,
but also the quadrupole moment are conserved. This
feature is characterized by a skyrmion winding number
of Q = −7 and displays a sixfold pinch point when cut
through the hhl plane.

Pinch line.— As mentioned before, singularities in the
structure factor are present at points q? where Lm(q?) =
0. Inspecting Eq. (S6), we immediately observe that a
pinch point can always be found at (π, π, π), where the
prefactors cos(qµ/2) vanish. Other pinch points emerge
at more complicated positions determined by a delicate
balance between the parameters α, β and the wavevec-
tor q. In the generic case, for a fixed set of α, β, the
requirement that all three components of L have to van-
ish leads to three equations, determining the positions of
the pinch points q? uniquely (up to point group symme-
tries). However, for appropriate α and β, one or more
components can become equivalent, leading to a line-like
manifold of singularities.

A simple example is found by setting qz = π, such that
Lz = 0. One can see that whenever qx = qy, the first two

FIG. S5. Difference between thermal and quantum
fluctuations for pinch-line at α = −β = 1 .

components of Lm become equivalent:

L =

2 cos
(
qx
2

)
[cos (qx) (2α+ 2β) + 1− 2α− β]

2 cos
(
qx
2

)
[cos (qx) (2α+ 2β) + 1− 2α− β]

0


(S13)

These two components vanish for all qx = qy for α =
−β = 1, resulting in a line of pinch points, or pinch-line.
This pinch line can be characterized by a topological,
winding number. Here, L̃m(q) = Lm(q)/

√∑
n L

2
n(q) is

traced on the unit sphere as one moves along a closed loop
around the pinch line. Since the corresponding paths on
the unit sphere avoid two opposite poles (see Fig. S4),
the topological index can be defined as the correspond-
ing winding number. For each point on the pinch line,
the winding number takes the same integer value as long
as the loop does not contain or intersect any other pinch
point (where L̃(q) is singular). Figure S5 shows that the
effects of quantum and thermal fluctuations for one of
the pinch points within the manifold. Being of twofold
nature, the effects of quantum fluctuations are again, rel-
atively similar to thermal ones, although a shift of spec-
tral weight away from the pinch point center is again
observed.

Finally, we note that it is also possible for all three
components of Lm(q) to become equivalent, leading to
a surface in reciprocal space for which Lm(q) = 0. One
such example is found at α = β = 2. The resulting
surface of vanishing Lm(q) is displayed in Fig. S6. Al-
though this surface can be found spectroscopically as a
narrow local maximum of the structure factor at finite
temperature or under the inclusion of quantum fluctua-
tions, becoming infinitely thin as fluctuations decrease,
no pinch points are visible since any cut always contains
a one-dimensional sub-manifold of this surface.
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FIG. S6. Surface with vanishing constraint vector for
α = β = 2.
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FIG. S7. Selected PFFRG flows: Flows of the maximal
zero-frequency Matsubara susceptibility obtained from PF-
FRG for an exemplary selection of points along boundaries
and the bulk of phases in the phase diagram. No feature or
flow breakdown is observed, indicating absence of magnetic
ordering.

METHODOLOGICAL DETAILS

For this work, standard PFFRG and PMFRG imple-
mentations were used, further methodological details are
found in [S36, S43, S44]. In both cases, a large set of ordi-
nary differential equations are computed for vertices with
up to N = 64 positive Matsubara frequencies (well be-
yond convergence) and correlations up to L = 10 nearest
neighbor bonds using an adaptive Runge-Kutta scheme.
For the largest temperatures T > 1, a smaller number
of N = 40 was used instead, as convergence is reached
even more rapidly. We note that while the FRG’s maxi-
mal length of spin correlations L is a numerical require-
ment, the shape of the structure factor converges already
before L = 10. As a result, the finite width of pinch
points, (and, accordingly, the deviation from dipolar cor-
relations) is not a numerical artifact but due to a phys-
ically finite correlation length. In such cases, where the

physical correlation length is smaller than the numeri-
cal length L, results obtained via FRG correspond to
the thermodynamic limit. The standard output of these
calculations is the magnetic susceptibility in Matsubara
frequency space

χij(ıνn) =

∫ β

0

dτ〈Szi (τ)Szj (0)〉eıνnτ . (S14)

In PFFRG, magnetic order is indicated by a sharp fea-
ture in the Fourier transform of the ν = 0 component
of Eq. (S14) for the flow of the order-defining momen-
tum q. The absence of such order for a variety of points
in the phase diagram is demonstrated in Fig. S7. In
all other results discussed in this work, we instead con-
sider the equal time structure factor which is obtained as
S(q) ≡ 〈Sz(−q)Sz(q)〉 = T

Nsites

∑
n

∑
ij χij(iνn)eıqRij ,

where Rij is the displacement vector between two sites
for better comparison with the large-N approximation.
Despite the methodological differences, we observe good
qualitative agreement between the structure factor from
PMFRG at very low temperature and PFFRG as demon-
strated in Fig. S8 for the Q = −7 multifold pinch point.

In the PMFRG’s underlying SO(3) Majorana rep-
resentation, a local constant of motion θi =
−2iηxi η

y
i η
z
i , θ2i = 1/2 can be used to derive an ex-

act Ward identity relating the two-point Green’s func-
tion to the local four-point vertex as 〈ηzi (τ)ηzi (0)〉 =
2〈ηxi (τ)ηyi (τ)ηxi (0)ηyi (0)〉. In a finite truncation of the
flow equations, this identity is only fulfilled approxi-
mately and can therefore be used as a rigourous accuracy
check. In this work, the relative violation of this Ward
identity is remains below ∼ 10% for all temperatures
down to T = 0.2.

FIG. S8. Spin structure factor from PMFRG at T = 0.2
(a) and PFFRG at T = 0 (b) for the multifold pinch point
at α = − 11

10
, β = 9

5
. The color scale is normalized to the

extrema of the susceptibility and the relative location of the
contours is indicated.
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