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Reconstruction of incomplete 
X‑ray diffraction pole figures 
of oligocrystalline materials using 
deep learning
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Malte Vollmer 3, Thomas Niendorf 3 & Bernhard Sick 2*

X-ray diffraction crystallography allows non-destructive examination of crystal structures. 
Furthermore, it has low requirements regarding surface preparation, especially compared to 
electron backscatter diffraction. However, up to now, X-ray diffraction has been highly time-
consuming in standard laboratory conditions since intensities on multiple lattice planes have to be 
recorded by rotating and tilting. Furthermore, examining oligocrystalline materials is challenging 
due to the limited number of diffraction spots. Moreover, commonly used evaluation methods 
for crystallographic orientation analysis need multiple lattice planes for a reliable pole figure 
reconstruction. In this article, we propose a deep-learning-based method for oligocrystalline 
specimens, i.e., specimens with up to three grains of arbitrary crystal orientations. Our approach 
allows faster experimentation due to accurate reconstructions of pole figure regions, which we did not 
probe experimentally. In contrast to other methods, the pole figure is reconstructed based on only a 
single incomplete pole figure. To speed up the development of our proposed method and for usage 
in other machine learning algorithms, we introduce a GPU-based simulation for data generation. 
Furthermore, we present a pole widths standardization technique using a custom deep learning 
architecture that makes algorithms more robust against influences from the experiment setup and 
material.

The relevance of characterizing coarse-grained structures and their orientations has increased considerably in 
recent years since coarse-grained structures tend to have anisotropic, i.e., direction-dependent, properties. These 
properties are very interesting for many materials being promising for industrial applications. As an example, 
the orientation of grains has a strong influence on the behavior of shape memory alloys (SMAs), e.g., on the 
transformation strain of singlecrystalline SMAs1–4 or oligocrystalline SMAs5–9. Moreover, additive manufacturing 
often promotes the evolution of coarse-grained columnar microstructures with a strong texture due to the specific 
local temperature history at each spot of the specimen during processing. Such microstructures can significantly 
affect the properties. Therefore, the examination of the properties of these promising materials is essential.

Up to now, it has been difficult and time-consuming to examine such microstructures, since excellent surface 
qualities are required for techniques such as electron backscatter diffraction, where the size of the probed speci-
men is limited. In addition, it cannot be ruled out that the complex specimen preparation does not already have 
an effect on the area to be examined, e.g., by stress-induced solid state transformation. By using X-ray diffrac-
tion, large specimens can be investigated, and the requirements for the specimen surface are comparatively low.

If arranged in an atomic lattice, multiple atoms will scatter the X-rays. Even if most scattered radiation erases 
due to negative interference, some rays add constructively in only few directions. We can determine these direc-
tions by using Bragg’s law10:

(1)n� = 2d sin θ ,
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where n is the reflection order as an integer, � the wavelength of the X-ray radiation, θ the angle of incidence, 
and d the distance between hkl lattice planes, while h, k, and l represent the Miller indices.

The signal of the diffracted X-rays is measured by a detector, which is placed at a diffraction angle 2θ to the 
X-ray source. We tilt and rotate the specimen while recording consecutive intensities. Thereby, we can record 
characteristic diffraction patterns11. We will denote the tilt angle with ψ and the rotation angle with φ . Thus, 
it is possible to analyze the presence of various diffraction peaks to evaluate, for example, lattice parameters, 
prevailing phases, internal stresses, or present grain orientations. In the following, we will focus on the analysis 
of grain orientations, and we will name this resulting image a pole figure or pole plot. The pole plots are always 
stereographic projections of the distributed intensity of crystal orientations for crystallographic lattice planes. 
In Fig. 1 we show how these pole plots are generated from the measured diffracted intensities at the respective 
tilt and rotation angles. We will refer to the two-dimensional Gaussians visible in the pole plot as poles, their 
size in φ and ψ direction as pole widths.

Despite the above-mentioned advantages of X-ray diffraction, it is very time-consuming in the laboratory 
setup due to the low yield of photons in laboratory X-ray sources. Thus, high exposure times are required to get 
sufficient intensities. A complete measurement with the maximum possible tilt angle and measurement of three 
recorded hkl lattice planes requires about 10–30 h in a laboratory setup depending on optics, diffraction setup, 
and measurement strategies. This procedure includes the measurement outside of a diffraction peak, i.e., back-
ground intensity, for peak intensity correction amending the background and defocussing effect. Moreover, we 
must choose the size of the grid of the crystallographic hemisphere appropriately. In particular, for sharp crystal-
lographic textures or oligocrystalline specimens, a standard measurement grid with 5◦ or a continuous intensity 
detection is not sufficient. However, using a more detailed measurement grid increases the measurement time11.

A reduction of the measurement time is, therefore, highly desirable. This reduction can be achieved, for 
example, by decreasing the maximum recorded tilt angle, since pole figures contain redundant information. We 
will denote this maximum tilt angle with ψmax . However, up to now, it is unknown which pole figure coverage 
ranges provide which level of precision. Therefore, we want to identify quantitatively which maximum tilt angle 
is required for which level of reconstruction error in our proposed method.

There is even a maximum physically reasonable tilt angle due to the diffraction setup and incidence angle, 
resulting in reduced intensity related to the increased attenuation in the elongated irradiation path and the defo-
cussing effect11,12. This measurement limitation requires accurate pole plot reconstruction algorithms, the calcula-
tion of orientation distributions, or measurement adaptations to provide consistent and complete pole plots13,14.

An additional advantage of reconstructions of unmeasured pole plot regions is that they can provide the 
experimenter with decision-making support whether a running measurement should be continued. For example, 
the experimenter can check if a predicted pole spot was hit or if the measurement should be continued.

A challenge that arises is pole broadening induced by microstructure variations or thermal and experimental 
setup changes. Only the positions are relevant for the analysis of crystal orientations, and different pole sizes 
complicate further processing by algorithms. Thus, a solution for standardizing pole widths is desirable to make 
subsequent processing algorithms more robust against disturbances.

For the crystal orientation analysis, the Laue method is usually applied for singlecrystalline specimens to 
detect a high number of poles of a single grain by using polychromatic radiation and an area detector with a 
fixed diffraction setup. By this, the diffracted X-Rays can be recorded for various lattice planes without a speci-
men movement according to the wide range of wavelengths and results in characteristic patterns. However, for 
imperfect crystals or different grains, an analysis of the overlapping high number of diffraction spots is not 
feasible11,15. For a polycrystalline, textured specimen incompletely measured pole figures can usually be completed 
mathematically on the basis of orientation density functions (ODF)13. The idea of this approach is to determine 
the ODF as precisely as possible based on the available data. Missing information for determining an ODF 

Figure 1.   Schematic highlighting the link between rotation angles in the X-ray diffraction setup and pole plots. 
The surface of the sphere on the left can be imagined as spanned by a vector from the center of the sphere, tilted 
by all possible angles ψ and rotated by all possible angles φ . Any measured point with tilt ψ and rotation φ is on 
this surface, we show an exemplary point labeled with surface pole. To generate a pole plot from this sphere, we 
draw a vector from the surface pole to the south pole. The intersection of this vector with the projection plane is 
the stereographic point, labeled with P′ . The projection plane is the plane dividing the upper and lower halves of 
the sphere. We plot the intensity of the measured point at the intersection point P′ , denoted with stereographic 
point. In the center plot, we show the projection of all accessible stereographic points of the lattice plane 211 
for a single crystal. On the right is an example of a pole plot for this lattice plane. The intensity in the plot is the 
min-max normalized intensity of diffraction measured by the detector.
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can be supplemented by measurements on further hkl lattice planes in the same measurement range and same 
specimen volume. The reconstruction error thus can be decreased by high data quality and a higher number of 
different hkl lattice planes, which also result in additional measurement effort. Pole figure inversion is essential 
for determining the ODF. It can be solved, for example, by the so-called component method16,17, direct methods 
like the WIMV algorithm (named after its authors Williams, Imhof, Matthies and Vinel)18–20, or a series expan-
sion method11,13,21,22. Fourier transformation methods are commonly used to solve a series expansion. We can use 
special evaluation programs for this approach, such as the MATLAB-based program MTEX23. Using the ODF, 
the reconstruction of a pole figure of a specimen volume with a low number of grains with highly differing ori-
entations is error-prone because the harmonic method requires smooth functions. Thus, it cannot avoid artifacts 
like ghost peaks or negative values due to the complexity of the algorithms13. Especially sharp crystallographic 
textures or a few different grains in the specimen volume create physically incorrect poles or oscillations in the 
calculated pole figure. Although extensions and adaptions for the harmonic method overcome some of these 
issues24–28, a correct determination of the ODF for oligocrystalline material remains challenging. By applying 
the direct method WIMV on data with the normalized intensity of incomplete pole figures, the mentioned 
issues are solved with the method itself. However, direct methods have a higher susceptibility to data noise and 
disturbed data13, which is very likely in a laboratory setup due to the low primary intensity. With lower grain 
counts, though, the results are more reliable also with the direct methods because of decreased ambiguity of the 
pole plots. Furthermore, pole figure data of at least three hkl lattice planes are needed to achieve good results. 
Both increase the experiment time and measurement effort. Therefore, we introduce a method that only needs 
partly measured data of only one pole figure of material with a few differently oriented grains. Our presented 
approach works reliably and extremely fast to reconstruct the complete pole figure, even during the measure-
ment process. By this, we reduce the data preprocessing steps and make our method robust against instrumental 
influences on the data.

The main advances provided by the method proposed in the present study are:

Fast pole plot simulation.  Since we use machine learning for subsequent processing, we need a high num-
ber of data samples for training. To provide the required data amount, we used a simulation that maps one or 
multiple grain orientations to a resulting pole plot. The presented Graphics Processing Unit (GPU) based imple-
mentation enables parallel and online creation of pole plots. It is usable in diverse optimization scenarios or for 
creating huge machine learning datasets. It even allows infinite online creation of training data. Furthermore, it 
can be used in brute-force or other global optimization algorithms for applications in unsolved problems, e.g., 
grain orientation determination from pole plots.

Pole widths standardization.  To make our method applicable to data stemming from specific micro-
structures and measurement facilities, we propose a custom deep learning architecture, that standardizes pole 
widths. It provides fast standardization of pole plots on GPU and can standardize many pole plots in parallel. 
Furthermore, it is robust against noisy inputs, i.e., errors of the pole widths standardization do not increase sig-
nificantly by adding high levels of Gaussian noise to the input pole plots.

Faster experimentation due to accurate reconstructions.  With our proposed deep learning 
method, we can reconstruct pole figure regions, which we did not probe experimentally. Our approach works 
also on oligocrystalline specimens with only few grains in the probed area. By comparing the complete data 
with reconstructed data, we can determine the error of the prediction for specific sizes of missing parts of the 
pole plot. Thus, we can give the experimenter decision-making support on how much measurement time can be 
saved without severe information loss. We also present an extension of our approach, which allows providing the 
algorithm’s uncertainty of the reconstructions in a spatial resolution.

Results and discussion
This section shows the results of our proposed method and discusses its accuracy and applicability.

Pole Widths Standardization.  We developed the evaluation strategy presented here to be used more 
extensively in future applications. As a metric of the error of pole plot standardization, we use the mean squared 
error (MSE) over the standardized intensity values of 100,000 randomly generated pole plots with ψmax . We 
consistently average the deviation per intensity value on normalized pole plots. Thus the MSE can be viewed 
as a quadratic relative deviation. We used one to three-grain pole plots for evaluation. For training and evalua-
tion, the pole widths are chosen randomly, with the pole width of the rotation angle σφ ∈ [0.5, 2.5] and tilt angle 
σψ ∈ [0.5, 5] . We chose these intervals to cover the most common experiment setups and materials. In Table 1 
we present the MSE with increasing ψmax values. Experiments of ψmax = 70◦ have a higher MSE compared to 
ψmax = 60◦ . The reason for this increase might be that the pole widths in outer regions are harder to standardize 
since correlations between the shapes of poles are more complex there. Since we only take the mean over the 
predicted intensities, they significantly impact the MSE. For reference, we calculated the MSE of 100,000 blank 
pole plots compared to simulated pole figures of equally distributed grain orientations. This procedure simulates 
an empty output of the standardization network and can be used to assess the applicability of the MSE as a met-
ric. The MSE of the reconstructions is smaller than the MSE of the corresponding references. We show a sample 
evaluation in Fig. 2. For the three-grain pole plots, there is no difference perceivable between the standardized 
output and the label, except for a slightly brighter background. By label, we mean the pole plot with the same 
grain orientations but simulated with the targeted normalized pole widths.
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We applied noise to the generated pole plots to show that our approach is robust against disturbances. The 
noisy data are not drawn from the same distribution as the training data, since we did the training without noise. 
We generated noisy test data like shown in the following equation:

We denote the resulting intensity, including noise with Inoise and the initial intensity from the simulation, with 
I. We draw ǫ from a normal distribution with mean 0 and standard deviation p · σ(I) , where p denotes the level 
of noise and σ(I) the standard deviation of the intensities. The results are shown in Table 2. Despite the added 
noise, the MSE of the standardization does not increase considerably. That proves that our standardization model 
still works with normally distributed noise.

Reconstruction.  We also use the MSE as metric for comparing the predicted intensities with the real inten-
sity values from the complete pole plot of the reconstruction. We generated plots of 100,000 equally distributed 
grain orientations with the simulation containing one to three grains. Higher grain counts are possible but 
increase training time and require adaptations in the network architecture. Thus, they are not examined in this 
article. The randomly generated samples for testing the reconstruction were not used for training the neural net-
work. We show the achieved MSE values in Table 3. As expected, reconstruction error increases with the number 
of grains since the algorithm needs to reconstruct more poles with a higher discrepancy in their intensity. It is 
challenging for the network to reconstruct poles with low intensities since errors and thus gradients are low. 
Neural networks are trained by updating their weights according to the gradients of the errors. Thus, training is 
hard if low gradients are occurring. In Table 4 we list the relative improvements of MSEs that the algorithm can 
achieve by increasing ψmax by 10◦ . In other words, we determine the error difference for measuring an additional 
tilt angle range of 10◦ . It is noticeable that on the one hand, the error decreases most for the step from ψmax of 
40◦ to 50◦ , i.e., by 46.81% . On the other hand, the error seems to even increase for the step from ψmax of 60◦ to 
70◦ . This behavior is induced by the same reason as in the seemingly worse pole standardization, because outer 
regions contain more complex structures. Thus, the MSE increases despite better reconstruction since only these 
regions are considered for calculating the calculation of the error. Furthermore, a smaller number of grains gen-
erally profits more in terms of the achieved approximation error. One conclusion we can draw is that measuring 
up to an angle of ψmax = 60◦ still notably decreases the MSE of the reconstruction. For higher values, the gain is 
less considerable. We depict these results in Fig. 3. Despite some slightly noticeable artifacts, the overall recon-

(2)Inoise = I + ǫ, with ǫ ∼ N
(

0, p · σ(I)
)

Figure 2.   Exemplary result of standardization for a 211 lattice plane pole plot with three visible grains. On 
the left, we show an input plot with σφ = 1 and σψ = 2 . In the middle, we plot the standardized output with 
normalized pole widths of σφ = σψ = 2 . There is no noticeable visual difference between the standardized 
output and the label, except for a slightly brighter background. All pole plots are min-max normalized.

Table 1.   MSEs of the pole widths standardization approximation for ψmax of 40◦ , 50◦ , 60◦ , 70◦ . Pole plots 
contain grains with equally distributed grain numbers in the range of 1–3 grains. Lower values of MSE 
indicate better approximation. The reference values constitute the MSE when the samples are compared with 
a completely black pole plot, i.e., when all intensity values are 0. We calculated the MSE for 100,000 simulated 
pole plots of equally distributed grain orientations per ψmax . This reference pretends that the standardization 
was a blank pole plot to judge the shown MSE values. The MSE of the reconstructions is far smaller than the 
MSE of the corresponding references.

ψmax (
◦) MSE Reference

40 0.0011 0.0162

50 0.0007 0.0155

60 0.0003 0.0149

70 0.0006 0.0143
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struction appears visibly accurate. These artifacts could be induced by the imprecision of the average pooling 
layer that is required to keep the MLP-Decoder computationally feasible. Since these artifacts could be mistaken 
for additional grains in subsequent algorithms, they should be removed by choosing an appropriate threshold. 
In Fig. 4 we compare reconstructions with different maximum tilt angles. While the reconstruction quality from 
ψmax = 40◦ to 50◦ increases remarkably, the further steps to 60◦ and 70◦ increase the reconstruction quality only 
slightly.

Uncertainty determination of reconstruction.  To extend our approach, we want to measure the 
reconstruction error and know at which measurement orientations the resulting algorithm is uncertain of the 
approximation of the intensity. We do this by using Monte Carlo dropout. We show the results of the uncertainty 
determination in Fig. 5. Obviously, the model is especially uncertain in the regions where the reconstruction 
error is high, i.e., the pole intensity is not entirely correct, or a non-existing pole was reconstructed. The MSE is 
0.0043 per predicted intensity value for ψmax = 60◦ . Please note that the reconstruction quality is decreased due 
to the use of dropout in comparison with the model used in Fig. 3.

Real‑world sample.  To verify the applicability of our method in real-world settings, we reconstruct the 
data of a real-world sample. To properly evaluate our method, we use a real specimen that we measured up to 
ψmax = 76◦ . For a pole figure of the 211 lattice plane with the density of measuring points shown in Fig. 6 a time 
of 228 min was needed without specimen mounting. With the before mentioned methods, at least three lattice 
planes are required for a reliable reconstruction of grain orientations. We simulate a smaller measured pole plot 
by omitting the intensities after ψ = 60◦ , and, thus, only needed 180 min measuring time. In comparison to the 
direct methods, we are able to save 504 min (~74%) test time for reconstruction due to the smaller number of 
required lattice planes to be measured and the shorter measuring time per pole plot. By reconstructing and com-
paring the missing poles, we can see if the poles get reconstructed properly. The results are shown in Fig. 6. The 
figure shows that the reconstruction network can restore all positions correctly, even poles with low intensity. 
The effect that outer intensities are less distinct because of the varying radiation path of the real sample and in 

Table 2.   MSEs of the pole widths standardization approximation for ψmax of 50◦ and 60◦ and different 
amounts of noise (without, 10% , and 20% noise). The simulated pole plots contained 1, 2, or 3 grains 
equally distributed. Lower values of MSE indicate better approximation. As to be expected, the pole widths 
standardization approximation is less accurate in case of a higher level of noise. The references were calculated 
the same way as in Table 1.

ψmax (
◦) p MSE Reference

50 0 0.0007 0.0155

50 0.1 0.0007 0.0156

50 0.2 0.0007 0.0156

60 0 0.0003 0.0149

60 0.1 0.0003 0.0149

60 0.2 0.0003 0.0149

Table 3.   MSEs for reconstruction with ψmax from 40◦ to 70◦ and different numbers of grains. Lower values of 
MSE indicate better approximation. As to be expected, the error of reconstruction increases with the number 
of grains and decreases with higher ψmax.

ψmax[
◦] 1 Grain 2 Grains 3 Grains Mean

40 0.0036 0.0047 0.0058 0.0047

50 0.0013 0.0026 0.0036 0.0025

60 0.0008 0.0018 0.0026 0.0017

70 0.0012 0.0019 0.0026 0.0019

Table 4.   Relative difference of MSEs for reconstructions when adding 10◦ for ψmax of 40◦ , 50◦ and 60◦ for pole 
plots with different numbers of grains.

1 Grain (%) 2 Grains (%) 3 Grains (%) Mean (%)

ǫ40◦→50◦ − 63.89 − 44.68 − 37.93 − 46.81

ǫ50◦→60◦ − 38.46 − 30.77 − 27.78 − 32.00

ǫ60◦→70◦ + 50.00 + 5.56 ±  0.00 + 11.76
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Figure 3.   Reconstruction of missing tilt angle intensities for a 211 lattice plane pole plot with three visible 
grains. On the left, the simulated cropped input with ψmax = 60◦ is shown. The plot in the middle is the output 
of the reconstruction network. On the right is the entire label as output by the simulation. In the reconstruction 
plot, it is visible in the rectangle denoted with 1 that the reconstruction network overdraws a pole. In the area 
labeled with 2, the reconstruction slightly indicates some poles that do not exist in the label. Despite these 
artifacts, the overall reconstruction appears accurate. Furthermore, the background of the reconstruction 
appears to be slightly brighter compared to the label. All pole plots are min-max normalized.

Figure 4.   Comparison of reconstructions with different maximum tilt angles for the same 211 lattice plane pole 
plot as in Fig. 3. We plot the input sample inside of the gray circular boundary line. Outside this gray boundary, 
we plot the reconstruction by the corresponding reconstruction network. It is visible that given an input pole 
plot with ψmax = 40◦ , many artifacts and false poles are reconstructed. The reconstruction with ψmax = 50◦ 
shows considerably less background noise. The further steps are without noticeable differences compared to the 
label. For the label, please refer to Fig. 3. All pole plots are min-max normalized.

Figure 5.   Uncertainty of reconstruction for a 211 lattice plane pole plot with ψmax = 60◦ and three visible 
grains. The left plot shows the standard deviation of outputs of the Monte Carlo dropout network, which we 
denote with the uncertainty of the model. We used 1000 repetitions of the same input to get sufficient coverage 
of the output distribution of the dropout network. The input is similar to Fig. 3. The left colormap describes the 
uncertainty. The right colormap describes the reconstruction and label. All pole plots are min-max normalized, 
except for the uncertainty plot, which is the standard deviation of min-max normalized pole plots. The area 
labeled with 1 contains a pole visible in the reconstruction but no pole in the label. Thus, a higher value in the 
uncertainty plot is visible. The rectangle denoted with 2 contains a higher value for uncertainty. However, there 
is no pole neither on the reconstruction nor on the label. That means that in some reconstructions a false pole is 
drawn at this point.
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the standardized pole plot. The reconstruction network abstracts from this phenomenon since the training data 
did not contain this effect and shows all poles in full intensity. The pole widths standardization does not abstract 
from this phenomenon because it only learns to standardize pole widths and does not modify the intensities of 
the poles. To statistically prove that our proposed method works in different real-world scenarios, we require 
evaluation with more specimens and materials in follow-up studies.

Our approach allows faster experimentation with accurate approximations. The entire pipeline is evaluated 
in less than 90 ms on an Intel i5-7200U CPU. We have verified that our approach works using simulation with 
entire labels and real-world plots using limited but meaningful labels. The differences between simulation and 
reality are minor and do not affect the applicability of our method since our approach is robust against minor 
disturbances. To conclude, we provide a compound solution that allows fast pole width standardization and 
reconstruction of missing tilt angles in coarse-grained materials.

Conclusion and outlook
Our method provides fast and efficient standardization of pole widths enabling various algorithms to oper-
ate even though trained or tested considering only a single constant pole width. Thereby, the development and 
training of machine learning methods can be supported, and broader applicability for different microstructures, 
materials, and measurement facilities, which might result in changed pole widths, can be reached. Furthermore, 
we provide an algorithm for reconstructions of incomplete pole plots with limited tilt angles for multiple grains. 
By examining the error differences, we can determine which pole figure coverage the algorithm can achieve at 
a selected maximum tilt angle. Thus, we give the experimenter decision-making support in measurement time 
versus reconstruction error reduction considerations. Furthermore, the experimenter gets an approximated 
preview of the entire plot and can decide very early if the examined spot is interesting, and thus the measurement 
should be continued. Due to the lack of a sufficient amount of real material samples, all our proposed machine 
learning algorithms would be insolvable without leveraging knowledge from the presented simulation.

However, many modifications of our approach are possible. For example, we could examine differences in 
achievable reconstruction error with maximum rotation angles or both tilt and rotation angles to find optimal 
measurement conditions for specific microstructures, specimen geometries, and measurement setups. Another 
interesting question is whether the combination of different lattice planes is beneficial in a measurement time 
versus reconstruction error consideration. This point of view can be highly advantageous for energy-dispersive 
measurements as in that case all lattice planes are measured and, thus, containing redundant information. A lot 
of measurement time could be saved by requiring smaller maximum tilt angles. A promising possibility for faster 
training and more accurate algorithms would be investigating a different error measure than the MSE. The MSE 
is not optimal since it does not correctly reproduce the actual error distance between two solutions since a pole 
plot is a stereographic projection. That means all boundaries of the pole plot are connected with the opposite side 
of the projection. The MSE does not map this relation since it does not recognize if a pole is near the boundary. 
Thus, the resulting pole plot with a pole on the opposite boundary is a similar solution. Furthermore, we cannot 
distinguish between low background noise in the reconstruction and incorrectly predicted poles. For example, 
we could use the Wasserstein metric, also known as Earth Movers’ distance, which matches the perceptual simi-
larity better than other metrics29. However, this metric has the disadvantages of being harder to interpret and 
having higher computational times.

We will extend all experiments to higher grain counts and use the results of the uncertainty determination 
for an active experimentation approach where the X-ray diffraction device could actively examine regions with 
high uncertainty, as proposed in30. Please note that this measure for uncertainty does not cover ambiguity of the 

Figure 6.   Reconstruction of a 211 lattice plane pole figure of a Fe–Mn–Al–Ni–Ti specimen. The label from 
the real pole plot was recorded up to ψmax = 76◦ . However, we input only the part of the real pole figure up to 
ψmax = 60◦ , so we can use the residual measurement as verification of our reconstruction. In the real sample 
plot, we plot the input sample inside of the gray circular boundary line and outside of the gray line we plot the 
rest of the real sample that was still recorded but not shown to the neural network. In standardized we also plot 
the real sample but after pole plot standardization. In reconstruction, we plot the standardized version of the real 
data within the gray boundary which is the input for the reconstruction network. Outside of the boundary line, 
we plot the complete recorded data in the input with ψmax = 60◦ . The reconstruction network can restore the 
position of all poles, even the poles with low intensity. All pole plots are min–max normalized.
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dataset mappings, e.g., if there are multiple possible mappings of the outer approximated area of the pole plot 
fitting to one input. We require methods to learn probability distributions of possible outputs like variational 
autoencoders or invertible neural networks. We could use the gained knowledge to actively examine regions of 
pole plots with high ambiguity to reduce approximation reconstruction error significantly at a low increase of 
measurement time.

We are developing a brute-force method for grain orientation determination which depend on our proposed 
fast simulation and pole widths standardization. However, a method for determining the number of grains and 
standardizing the intensities of different grains on one pole plot is required for universal applicability in pole 
figures.

Method
Simulation.  For training the machine learning methods we developed a simulation that creates a pole figure 
plot as output for a given orientation. As input parameters, the grain orientation, the hkl lattice values, the mini-
mum and maximum desired tilt angle, and the pole widths σφ and σψ can be specified. We chose quaternions 
which are vectors consisting of four values as input format since they are not ambiguous31, unlike the representa-
tion in three Euler angles. The direct translation from a quaternion to an Euler angle representation is trivial. The 
source code is publicly available (https://​git.​ies.​uni-​kassel.​de/​digiw​erk/​pole-​plots/​pole-​plot-​simul​ation). It runs 
entirely on GPU and thus enables a considerable performance boost for the presented pole widths standardiza-
tion and reconstruction methods.

To simulate oligocrystalline structures with up to thousands of grains, we generate multiple grains randomly 
and calculate a weighted sum of these grains. We draw the weights from a Dirichlet distribution with α = 1 , 
i.e., the weights sum up to 1, and we distribute them uniformly random. We chose a uniform distribution of the 
weights to make as least assumptions as possible about the distribution of occurring weights.

All simulations used for training and the measurements for evaluation were made for 211 lattice planes due to 
the high number of poles for the low number of grains and their good peak quality in the performed laboratory 
experiments. The measurement grid size of the pole figures was 2◦ for tilting and rotation axes, with a counting 
time for each specimen orientation of 0.5 s. Moreover, we always use one to three grains to simulate structures, 
which is common for X-ray diffraction measurements of oligocrystalline specimens.

For a single lattice plane and a single grain, with our simulation on an Nvidia Tesla A100 GPU, we can calcu-
late about 100,000 pole plots per second. Because of the data generation during training, the simulation enables 
us to use more than 250 million samples for training since we neither store them on a hard drive nor need to 
transfer them to video memory.

There are some simplifications and limitations of the simulation. We do not consider the intensity decrease 
caused by the varying radiation path in the specimen material and the defocussing for different inclination angles 
in all generated plots. We could diminish this issue by correcting the data by subtracting a background noise 
plot and defocussing pole plot as preprocessing steps. These plots are generated by a further measurement of 
the background intensity outside an interference position on the same material specimen. Thus, it contains the 
static noise and background intensity variation induced by the experimental measurement setup and material. 
In addition to measurement-based corrections, there are approaches to calculating correction factors32. Subse-
quently, it is possible to calculate intensity values as multiples of a random distribution (MRD) of the measured 
intensities to enhance the comparability and interpretation of various pole plots11. This procedure is of particular 
interest for quantitative texture analysis but does not highly affect the data of oligocrystalline structures since we 
usually have high pole intensities compared to the background noise, and thus the absolute intensities are not 
that important. For this reason, we omit these corrections to save measurement time and preprocessing steps.

Moreover, compared to the simulation, there might be a lack of measured poles in real data related to the 
gauge volume variation by specimen rotation and tilting. Depending on the grain locations and their dimensions 
regarding the irradiated specimen volume, this effect can be relevant. This issue is more pronounced for small 
diffraction angles with an elliptic gauge volume and grain sizes in the order of the used gauge volume. However, 
this is not relevant for the present study since we only consider grain counts of up to three huge grains, which are 
constantly covered by the gauge volume. Furthermore, our used lattice plane 211 has relatively high incidence 
angles, and thus this issue is further reduced. Thus, the simulation includes all accessible poles, and we ignore 
the effect of lacking poles due to the gauge volume.

Error measure.  We use the MSE per intensity value for all evaluations in this article as a measure of error. 
The MSE fulfills precisely the desired properties: It puts less weight on minor differences in the background 
intensity and weights errors in the relevant areas, the poles with high intensity, very high. This approach can 
cause a bias for polycrystalline materials because the MSE underrates errors in low-intensity regions, but we do 
not survey these in this article. Other error measures, like the mean absolute error (MAE), turned out to be rela-
tively poor since our visibly well-approximated pole figures had similar errors to completely black (background 
intensity) images. This phenomenon occurs because minor deviations in the dark areas with no or less intensity 
accumulate. In contrast to the analysis of polycrystalline materials, these dark areas contain only background 
noise and are thus not of interest in our present study.

Pole widths standardization.  For standardizing pole widths, we train a neural network that gets a pole 
plot as input and outputs a pole plot with poles of similar widths. The input of the network is statistically stand-
ardized, i.e., the input intensities per image have a mean of 1 and a variance of 0. We use a neural network 
architecture similar to the U-Net autoencoder proposed by33 trained with randomly generated pole plots by the 
simulation.

https://git.ies.uni-kassel.de/digiwerk/pole-plots/pole-plot-simulation
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An autoencoder is a neural network consisting of two parts: The encoder is composed of several layers with 
decreasing size. The last layer of this encoder is called bottleneck, and its neuron count is called bottleneck size. 
The second part, the decoder, typically has the same amount of layers but with symmetrically increasing layer 
sizes. Usually, one trains an autoencoder to reconstruct the input data precisely. This procedure allows us to learn 
a compressed representation of the input data using the encoder and enables the decoder to unfold the data. In 
our case, we use the autoencoder to standardize the pole width. We train this behavior by generating samples 
consisting of two parts: 

1.	 The input part is a simulated pole plot with a random number of grains, orientations, and pole widths.
2.	 The label part is a pole plot generated with the same number of grains and the same orientations as their cor-

responding input, i.e., the poles are at the same positions. Only the pole widths differ; they are not randomly 
chosen but use the standardized σφ = 2 and σψ = 2.

By training the network to return the corresponding standardized label output to an input with random pole 
widths, we enforce it to learn how to standardize pole plots.

The U-Net architecture is an autoencoder using convolution layers, but it can pass some compressed infor-
mation from the encoder to the decoder on the same level and thus often provides more accurate predictions. 
We depicted our U-Net-like architecture in Fig. 7, where the information propagation process is pictured with 
gray arrows. In our case, the U-Net-like architecture also outperformed conventional autoencoders in terms of 
standardization error.

The encoder of our U-Net-like architecture consists of four convolution layers. We assume basic knowledge 
of convolutional neural networks; for more information, consider34. We chose this architecture by evaluating 
many architectures and parameters and selected those with the least standardization error. The used filter size 
is 4× 4 . We set the padding to 1 and stride to 2. The padding is the number of values added at the boundary of 
the input tensor. By this extension, the values close to the boundary of the tensor are weighted similarly to inner 
values in the resulting output. The stride defines how many steps the filter is shifted when it slides across the input 
tensor. The decoder uses four transposed convolution layers. A transposed convolution layer is an upsampling 
convolution, i.e., the output dimension is higher than the input dimension. After every convolution or transposed 
convolution layer, we apply the Mish activation function proposed in35. To give information from the encoder 
to the decoder, we concatenate every layer’s output with the corresponding layer’s input on the same level. Since 
the layer sizes do not fit due to odd and even numbers, we use bilinear interpolation to fit the layer sizes of the 
outputs of the transposed convolution layers to the corresponding encoder output tensors. Bilinear interpolation 
is an interpolation method that applies repeated interpolation to reduce dimensionality while sustaining the 
proportions of the tensor entries. We trained the U-Net-like neural network for 50,000 epochs with batch size 
500. A batch is the number of samples trained simultaneously before the neural network weights get adapted. 
Per epoch, two batches are shown to the network. That means during training, we generated in total 50 million 
training samples. For training, we used the Adam optimization algorithm with learning rate η = 10

−6 and MSE 
as loss function. We selected the model with the least validation error for evaluation.

Reconstruction.  For reconstructing the unmeasured parts of a pole plot, we use a custom deep learning 
architecture that we will refer to as reconstruction network. It is designed to work with per image standardized 
input with ψmax ∈ {40◦, 50◦, 60◦, 70◦} . Furthermore, the input data have to be peak width standardized. This 
preprocessing is done to ensure the applicability to measured data of different materials and different instru-

Figure 7.   Basic U-Net-like architecture of the pole widths standardization algorithm. The numbers in the figure 
describe the dimensionality of the resulting tensors ( depth× height × width ) after applying the corresponding 
layer. The heights of the rectangles are arbitrary. The gray arrows depict the information propagation to a 
subsequent layer.
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ment broadening without a more extensive model training covering all possible peak widths. This circumstance 
would increase the required training data and training time by magnitudes. The authors also performed experi-
ments focusing on learning peak position coordinates, but this led to convergence issues of the reconstruction 
networks.

The basic architecture is shown in Fig. 8. It consists of three components: a convolutional encoder (Con-
vEncoder), transposed convolutional decoder (T-ConvDecoder), and a multilayer perceptron decoder (MLP-
Decoder). We use convolutional layers since they reduce the training time and memory consumption in 
comparison with fully connected MLPs. We utilize the ConvEncoder to bring the input pole plot to a low-
dimensional representation. It comprises five convolution layers and calculates a bottleneck tensor size of 
512× 5× 1 ( depth× height × width ). After that, the T-ConvDecoder increases the dimensionality of the output 
to 1× 320× 64 . An average pooling layer that calculates the means of a 2× 2 filter is subsequent. This average 
pooling layer reduces the dimension of the input for the subsequent MLP decoder. Thus, the input dimension 
for the MLP-Decoder is 1× 160× 32 . The MLP-Decoder consists of a five-layer fully connected perceptron 
that reconstructs the output intensities. We set up the transposed convolution layers similar to the encoder con-
volution layers. That means we set the filter to size 4× 4 , padding to 1, and stride to 2. We provide the output 
tensor sizes and an overview of the architecture in Fig. 8. Except for the output layer, all layers use the Expo-
nential Linear Unit (ELU) activation function. The output layer does not use any activation function. We apply 
a supervised learning strategy by the provision of simulation data with the plot cropped up to a defined ψmax as 
input and give it the unknown remaining plot as a label. We trained the reconstruction network for ψmax = 60◦ 
using the Adam optimization algorithm with learning rate η = 10

−5 and MSE loss function. The network was 
trained for 50,000 epochs with batch sizes of 500, 1000, 1000, 1500 samples for the reconstruction networks with 
ψmax = 40◦, 50◦, 60◦, 70◦ . Per epoch, two batches are shown to the network, i.e., for the model with ψmax = 70◦ , 
150 million artificial training samples were generated, and we chose the model with the least validation error for 
evaluation. We trained the networks for the other ψmax values with the same hyperparameters. The only excep-
tion is the network for ψmax = 40◦ where we adapted the learning rate to η = 10

−4 since the resulting MSE on 
testing data was slightly smaller.

We determine the uncertainty by using Monte Carlo dropout with a dropout probability of p = 0.2 in every 
layer except for the output layer. A dropout probability of p = 0.2 means that in training and testing on average 
variable 20% of the nodes are disabled. Nodes in subsequent layers connected to currently disabled nodes do not 
receive any signal from disabled nodes. This way, we can calculate the uncertainty per intensity by feeding the 
same input pole plot multiple times during testing and determining the different outputs’ mean.

We disabled the dropout in all other experiments to avoid a decrease in reconstruction quality. Please note 
that you can not infer the determined uncertainties to the reconstruction network without dropout, but we can 
use it for further applications, for example, for reducing the measurement time further at high reconstruction 
quality with active experimentation.

Evaluation of real data.  An evaluation of the proposed method is done on real data gained by pole figure 
measurements on a 300 mm long Fe-Mn-Al-Ni-Ti bar with a diameter of 6.3 mm consisting of two abnormally 
grown grains. The shape memory alloy is a promising candidate for large-scale applications due to the low costs 
of alloying elements and the potential use of established processing routes from the steel industry. Moreover, the 
cyclic heat treatment can lead to the formation of subgrain structures and, therefore, to broad peak intensities, 
which is an additional challenge for the approach. Therefore, it is well suited as a real-world example. Such coarse 
grain structure was obtained by a cyclic heat treatment, which leads to abnormal grain growth and grain size 
of several millimeters36–39. These two grains have been examined at the grain boundary of the Fe-Mn-Al-Ni-Ti 
bar for this evaluation. The investigated lattice plane 211 of the present body-centered cubic (BCC) phase was 
measured using a cobalt anode at 2θ = 98◦ on the diffractometer Seifert XRD 3003 Micro operated at 40 kV and 

Figure 8.   The basic reconstruction network architecture. It consists of three components: a convolutional 
encoder (ConvEncoder), transposed convolutional decoder (T-ConvDecoder), and a multilayer perceptron 
decoder (MLP-Decoder). The numbers show the dimension of output values per layer. We reshape the output of 
the MLP-Decoder to get the reconstructed unknown part of the pole plot for ψmax = 60◦.
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30 mA, equipped with a monochromator in the secondary beam paths and a polycapillary with a beam size of 
3 mm in diameter in the primary beam path.

Data availability
All simulated data can be generated with the presented simulation. The real data sample is available in the data 
repository of University of Kassel: https://​doi.​org/​10.​48662/​daks-​14.

Code availability
The code for the simulation and evaluation is available at Gitlab of University of Kassel: https://​git.​ies.​uni-​kassel.​
de/​digiw​erk/​pole-​plots.
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