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Correlating atom probe tomography 
with x‑ray and electron spectroscopies 
to understand microstructure–activity 
relationships in electrocatalysts
Baptiste Gault,*   Kevin Schweinar, Siyuan Zhang, Leopold Lahn, 
Christina Scheu, Se‑Ho Kim, and Olga Kasian

The search for a new energy paradigm with net-zero carbon emissions requires new 
technologies for energy generation and storage that are at the crossroad between engineering, 
chemistry, physics, surface, and materials sciences. To keep pushing the inherent boundaries 
of device performance and lifetime, we need to step away from a cook-and-look approach 
and aim to establish the scientific ground to guide the design of new materials. This requires 
strong efforts in establishing bridges between microscopy and spectroscopy techniques, 
across multiple scales. Here, we discuss how the complementarities of x-ray- and electron-
based spectroscopies and atom probe tomography can be exploited in the study of surfaces 
and subsurfaces to understand structure–property relationships in electrocatalysts.

Introduction
The technologies necessary for the electrification of transpor-
tation, the generation of green hydrogen at scale1 for trans-
port and manufacturing,2 and the grid-scale energy storage 
to accommodate the intermittency of renewable electricity 
generation3,4 all require new materials solutions.5 The per-
formance and service lifetime of these materials are inher-
ently related to their microstructure, chemistry, physics, and 
interaction with their environment. Understanding the subtle 
processing–structure–property relationships is key to guide the 
design of future generations of materials. Yet, the variety of 
scales involved, from individual atoms to nano- to micro- to 
millimeter scales, and nature of the information—(i.e., surface 
atomic arrangements, crystalline structure, composition, and 
chemistry)—is simply too broad for a single technique to pro-
vide all the necessary insights. Hence, correlative approaches 
must be developed to build upon the strength of each indi-
vidual technique, as showcased in the case of microstructural 

features found in the bulk of materials,6 especially structural 
defects.7–9 Another challenge is that a material’s chemical (re)
activity can be underpinned by metastable species at the sur-
face of the electrodes and their analyses can only be performed 
by using in situ or in operando techniques.

Atom probe tomography (APT) provides three- 
dimensional compositional mapping of materials with 
subnanometer resolution10 and as such is poised to pro-
vide extremely valuable insights. APT has progressively 
increased in prominence in the battery of characteriza-
tion techniques for bulk metallic materials,11–13 ceram-
ics and semiconductors,14,15 phase-change materials,16 
and with recent forays into nanostructures,17,18 including 
nanoparticles19–23 and 2D materials.24,25 There are also 
numerous potential application in catalysis, as recently 
reviewed by Barroo et al.26 There is a compatibility in scales 
between specimens for APT, shaped as sharp needles with 
a near-spherical cap at their end, and nanoparticles used 
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across many catalysis applications (i.e., 10–200 nm in diam-
eter). Historically, this had enabled field-electron emission 
microscopy (FEEM/FEM) to be extensively used to study 
surfaces in reaction conditions.27 The reacted surfaces were 
then imagined by field-ion microscopy (FIM) in search for 
morphological or atomic-scale topographical modifications. 
Early implementation of atom probes were then sometimes 
used to measure changes in the surface chemistry; however, 
they were limited to one-dimensional depth-profiling of the 
composition or to study a single set of reacted planes.27

The analysis of catalysts and electrocatalysts is, however, 
an area in which deploying the full potential of APT could 
be transformational. However, despite outstanding works 
performed in a limited number of groups,28–31 APT has not 
seen a fast spread in surface sciences studies, in part because 
of difficulties in specimen preparation, but also a lack of 
direct structural information available along with the chemi-
cal and bonding state of surface species. These are accessible 
through x-ray photoelectron spectroscopy (XPS), one of the 
key techniques used in surface sciences. XPS allows access 
to the bonding state within the first few atomic layers of the 
surface. For its compatibility in scale, APT is more often 
correlated with (scanning) transmission electron microscopy, 
in which the bonding state can be obtained from electron 
energy-loss spectroscopy ((S)TEM–EELS).32,33 Energy-dis-
persive x-ray spectroscopy is also accessible in the (S)TEM 
(STEM–EDS) to assess the local composition; we, however, 
herein focus on techniques enabling to access the bonding 
state. The complementarity between STEM–EDS and APT 
had previously been discussed.34 Preliminary work on thin 
films35,36 demonstrated the importance of combining XPS, 
STEM–EELS, and APT to get a holistic understanding of 
the microstructural origin or the materials performance and 
degradation mechanisms.

In this article, following a brief overview of the working 
principles of these techniques to help the reader get to speed, 
we discuss the complementarities of these techniques and 
showcase examples from the recent literature to provide a 
perspective on the strength of the correlative approaches.

Working principles and techniques’ 
complementarity
Working principles
We briefly introduce the working principles of the tech-
niques discussed next for nonexperts. This should in any 
case not be seen as an exhaustive overview of these tech-
niques, merely a segue enabling to position the perspec-
tive on the correlative approaches. It should be stressed 
that these techniques cannot be deployed on the exact same 
specimen, in the same instrument, and simultaneously, but 
must be used successively.

APT
In APT, as schematically depicted in Figure 1a, the atoms 
leave the surface of a needle-shaped specimen succes-
sively in the form of ions under the influence of an intense 
electric field. Following field evaporation, these ions fly 
along well-defined trajectories37,38 and are collected by a 
single-particle detector that records the impact position.39 
The field evaporation is time-controlled by using either 
fast voltage40 or laser pulses41,42 superimposed to a DC 
high-voltage, thereby enabling the identification of the 
elemental nature of each ion by time-of-flight mass spec-
trometry.43 The results from an APT experiment take the 
form of a mass spectrum (i.e., a histogram of the number of 
ions detected at a certain mass-to-charge ratio), and a point 
cloud, built from the detector impact positions, providing 
the atomic distribution in three-dimensions,44 as summa-
rized in Figure 1b.

X‑ray photoelectron and electron energy‑loss 
spectroscopies
In XPS, a micron-to-millimeter-sized beam of x-rays is 
focused onto the sample’s surface. Upon penetration, some 
electrons from the material itself absorb photons from the 
incoming beam and get ejected from the material  (i.e., 
the photoelectric effect). By measuring the kinetic energy 
of the emitted electron, and knowing the energy of the 
incoming photon, the bonding energy can be readily deter-
mined.46 This is schematically summarized in Figure 1c. 
XPS hence provides a precise account of the chemistry of 
the first few atomic layers at the specimen’s surface, aver-
aged over microns to millimeters of the surface depending 
on the setup that is used.46 There are ongoing efforts to 
perform spatially resolved XPS experiments with a lateral 
resolution in the range of tens to hundreds of nanometers.47 
A clear strength of XPS is the possibility to be used in 
operando (i.e., at temperatures and gas pressures that can 
mimic service conditions) to provide a precise account of 
the evolution of the surface chemistry over the course of 
reactions.48

STEM–EELS can provide similar information: as the 
incoming electrons travel through the thin specimen, inelastic 
scattering causes the loss of amounts of energy that can be 
related to plasmons or to the ionization energy of specific spe-
cies. Analyzing the spectrum of the kinetic energy of the elec-
trons coming out of the specimen allows for determining the 
specimen’s composition and bonding state of the different spe-
cies present. As the electron beam in STEM is tightly focused 
and scanned across the specimen’s surface, STEM–EELS  
enables mapping of the species potentially within each  
individual atomic column along the pathway of the electron 
beam,49,50 as schematically shown in Figure 1d. There are also 
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ongoing efforts to enable in situ or quasi in operando observa-
tions by STEM–EELS51 to help better understand materials 
processes in conditions mimicking service.

Complementarities and challenges
First, there is a complementarity in the scale of the features 
that can be analyzed by the different techniques and a com-
patibility in the spatial resolutions. The spatial resolution of 
each of these techniques is anisotropic and depends on an 
array of parameters. What matters more is not the absolute 
value of the spatial resolution but the size of the smaller 
resolvable feature both laterally and in-depth. For both XPS 
and STEM–EELS, the spatial resolution not only depends 
on intrinsic instrumental parameters—the spot size of the 
illuminating beam, but also depends on extrinsic factors—for 
instance, the nature of the specimen itself. Indeed, in XPS, 
the penetration depth is dependent on the composition itself, 
typically below 10 nm, whereas the lateral extent depends 
on the size of the focused x-ray beam. In STEM–EELS, the 
signal collected is integrated through the thickness of the thin 
specimen (20–100 nm) and depends on the lateral extent of 
the focused electron beam, and its potential spread from scat-
tering going through the specimen.52 The actual spatial extent 

of the probed volume of the material can hence be difficult to 
ascertain. This is where the inherent strength of APT can be 
best used. In APT, the spatial resolution or size of the smaller 
resolvable microstructural feature of interest depends on its 
composition,53,54 and it can be assumed to be below 1 nm in 
all three dimensions55 but is typically an order of magnitude 
better in depth,53,56 as summarized in Figure 2a.

Now, let us consider common microstructural features, for 
instance, stacking faults, dislocations, grain boundaries, and 
secondary phases, along with their respective dimensions, as 
shown in Figure 2b. The signal in the recorded spectra from 
XPS or STEM–EELS can be extremely complex as it is a com-
bination of the signals originating from the features within the 
probed volume. Fitting approaches are hence used to decom-
pose the signals originating from the different bulk or surface 
features averaged over the volume probed by the electron or 
x-ray beam.33,50,57 This can lead to components and phases with 
a low volume fraction to be missed or overlooked, yet their 
influence on the materials properties may remain substantial.

This is where the correlation with APT can become a game 
changer: APT provides compositional mapping in three dimen-
sions within the reconstructed volume, with a compositional 
sensitivity that can be in the range of parts-per-million,58 and 
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Figure 1.   (a) Cartoon view of the specimen in an atom probe, (b) main results from atom probe tomography (APT),  
(c) schematic view of x-ray photoelectron spectroscopy performed on a similar sample, and (d) projected view of the APT 
specimen as obtained from (scanning) transmission electron microscopy with an electron energy-loss spectroscopy (EELS) 
spectrometer and possible high-resolution images and chemical maps (modified from Reference 45).
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individual features can be interrogated separately after data 
reconstruction and segmentation. This information can then 
be used to better understand the origins of the signal in the 
XPS or EELS spectrum. In turn, the bonding state remains 
inaccessible to APT. This is a first critical aspect of the com-
plementarity with XPS and STEM–EELS, as the bonding state 
is required to understand the chemical activity or reactivity of 
a compound.

APT has a higher chemical sensitivity58 than these spectro-
scopic techniques, especially for light elements (e.g., H,59,60 C, 
and N).61 Yet the compositional accuracy strongly depends on 
the local intensity of the electric field62–64 during the analysis. 
These issues can make the analysis of certain materials or fea-
tures challenging, and the complementary insights into the com-
position of some interfaces, for instance, that can be gleaned 
from STEM–EELS, can help support65,66 the validity of some 
measurements.

Finally, the analysis of a sample’s outermost surface requires 
dedicated strategies to avoid damage and contamination during 
specimen preparation and transport. For APT and STEM–EELS, 
specimens are typically prepared using a focused ion beam 
(FIB),67,68 in which the energetic incoming ions get implanted, 
can cause amorphization, and can push surface atoms to pen-
etrate inside the subsurface region.69–71 The use of cryogenic 
temperatures during the preparation can help alleviate some 

issues,72,73 but not all. A thin 
metallic coating can be used to 
protect the very surface, yet it 
often involves transporting the 
sample through ambient air, 
which can have an influence on 
the surface species themselves. 
There are efforts to develop 
approaches to transport sam-
ples under protective environ-
ments or (ultra-) high vacuum 
conditions and possibly under 
cryogenic conditions.74–77 The 
use of transport suitcases has 
been more common in surface 
sciences, and most XPS instru-
ments are equipped with an ion-
gun to clean the specimen’s sur-
face by sputtering and remove 
the first few atomic layers.

Workflows 
and applications
Challenges arise in the devel-
opment of appropriate work-
flows enabling analysis of the 
same sample to correlate the 
signals from the same micro-
structural features. Schweinar 

et al. proposed to use thin films deposited on the commercial 
flat-top coupons78 used as support for APT specimen prepa-
ration,79,80 as shown in Figure 3a. They performed spatially 
resolved XPS directly onto the film before and after thermal 
oxidation (Figure 3b–c), revealing the change in the oxidation 
state of Ir and Ru atoms. The compositional maps appear homo-
geneous across the 3-µm-wide disc at the top of the microtip. 
Following this analysis, the sample’s surface was protected by 
a thin layer of sputter-deposited Cr and subsequently sharp-
ened into an APT specimen by FIB81 and analyzed by APT. 
The corresponding APT reconstruction is shown in Figure 3d. 
The analysis starts from the Cr capping layer, goes through 
the oxide layer, and terminates into the metallic film. Interest-
ingly, by looking at a region of interest across the x–y section 
of the data set in the oxidized region, Ru is not spread across 
the material but rather agglomerated along grain boundaries 
within the thin film, as readily visible in Figure 3e. APT allows 
for quantification of the Ru segregation, determined as up to 
nearly 10 at.% (Figure 3f), accompanied by a depletion of Ir. 
This observation is likely related to the reduction in the free 
energy of the grain boundary associated with the segregation 
of Ru prior to oxidation.

This exemplifies the kind of insights that APT can bring—
XPS could only detect a single oxide phase, whereas a richer 
microstructure is resolved by APT. The local changes in 

mµ1 

m

m

m

pm

µ

µ

µ

µ

APT

1 mm

1 nm

R
es

ol
va

bl
e 

Fe
at

ur
e 

Si
ze

 L
at

er
al

ly

XPS

(S)TEM–EELS

typical
feature size

solute

solute

crystal lattice

dislocation

interstitial

substitutional

vacancy

100

100

100

10

10

10

1

1

1

nm

nm

nm

nm nm

Resolvable Feature 
Size In-depth

Environment
surface

cracks

phase

precipitates

voids
grain-boundary
segregation

grains orientation
grain boundaries

stacking faults
& twins

crystal grain

a b

Figure 2.   (a) Summary view of the resolvable feature size for atom probe tomography (APT), 
scanning transmission electron microscopy–electron energy-loss spectroscopy (STEM–EELS), and 
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composition at grain boundaries, combined with a different 
local atomic organization, will change the catalytic activity 
of the grain boundaries, as other studies have also shown 
with the aid of STEM–EELS.35 If APT can be performed 
on a thin film suitable for XPS, the opposite was also pro-
posed by Balakrishnan et al.,82 in Figure 4a. They performed 
XPS first on APT specimens of Ir, which had been used as 

an electrocatalyst for 
the oxygen evolution 
reaction. Following 
XPS, the specimens 
were then analyzed by 
APT to reveal the local 
compositional evolu-
tion of the different 
sets of atomic planes 
that form the end sur-
face of the needle.

Bo th  o f  t he se 
approaches have advan-
tages and drawbacks. 
For instance, the APT 
specimen’s shape and 
size can make direct 
electrochemical or 
XPS measurements not 
necessarily straightfor-
ward, making the latter 
approach not always 
suitable, particularly 
when site-specific analy-
sis is necessary. Yet the 
need to shape the speci-
men with a FIB after 
the reaction typically 
requires transporting 
the specimen through 
air, and the energetic 
ion beam can induce 
damage to the reacted 
sample’s surface. Trans-
port under protective 
atmospheres can be 
possible by using dedi-
cated infrastructure74 
but it is not yet routinely 
available.

In any case, these 
studies showcased the 
spatial sensitivity of 
APT and the importance 
of the precise assessment 
of the species on the sur-
face and in the near-sur-
face regions. The depth 

probed by XPS is often not known precisely, as the penetration 
of the x-rays depends on the local composition and structure. 
In contrast, APT provides direct compositional measurement of 
the features on the surface, provided that appropriate protection 
is used prior to specimen preparation and analysis, and the spa-
tial resolution of APT in the depth is extremely high.54,56 There 
remains some uncertainties estimated to be 10% or more84 in the 
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Figure 3.   Composite image of the workflows introduced by Schweinar et al.79,80 (reproduced and  
modified under a CC-BY license). (a) Schematic of the analysis by spatially resolved x-ray photoelectron 
spectroscopy of a thin Ir–Ru film deposited on flat-top commercial microtip coupons, normally used as 
support for lift-out specimen preparation for atom probe tomography (APT). (b) Photoelectron (PE) map and 
seemingly homogeneous compositional map obtained from the film after thermal oxidation at 600°C for 5 h 
in air. (c) Comparison of spectra before and after oxidation showing the metallic state and oxidized state, 
respectively. (d) Reconstructed APT data set following deposition of a Cr capping layer and sharpening.  
(e) Cross section through the APT reconstruction showing segregation of Ru to grain boundaries within the 
oxidized film. (f) Composition profile calculated in a region of interest positioned across the grain boundary 
enabling quantification of the Ru (blue) segregation.
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depth dimension of the APT reconstruction.85 However, calibra-
tion of the spatial reconstruction parameters is possible either by 
using the partial structural information86 from within the data or 
through the use of TEM.6 This leads to an extreme spatial resolv-
ing power of APT that was, for instance, combined with isotope 
labeling to investigate the exchange of oxygen between the solu-
tion and the lattice of iridium oxide during the oxygen evolution 
reaction,83 as summarized in Figure 4b.

Most showcase studies so far have focused on the analyses 
of electrocatalysts and electro-photo-catalysts that find appli-
cation in the hydrogen energy cycle, especially the analy-
sis of Ir metal in the form of thin films,35 metal wire,82 and 
mixed Ir–Ru alloys,79 but also an array of oxides,17,36,87–89 in 
particular to better understand the microstructural origins of 
their activity36 or degradation in service.88 In principle, similar 
approaches could be deployed in the future to a broad range of 
electro(photo)catalysts.

Conclusions
APT arises from FIM, and both were originally surface sci-
ence techniques, yet progress in APT made the community 
progressively turn its attention toward bulk analyses. How-
ever, APT with its intrinsic capacity to map the composition 

or a material with a resolution better than a nanometer in 
three dimensions has great potential for complementing XPS 
that can probe the chemistry of a surface, and STEM–EELS, 
which provides compositional and chemical mapping through 
the thickness of a thin sample. Information from APT can 
guide the fitting of the electron energy spectra and facilitate 
data interpretation, as well as support investigation into pro-
cessing–microstructure–property relationships that are neces-
sary to design new electrocatalysts and electro-photo-cata-
lysts. The difference in scale can be difficult to reconcile but 
the development of dedicated workflows has already enabled 
progress that will continue in the decade to come.
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