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Superconducting photoelectron injectors are promising for generating highly brilliant pulsed electron
beams with high repetition rates and low emittances. Experiments such as ultrafast electron diffraction,
experiments at the Terahertz scale, and energy recovery linac applications require such properties.
However, optimizing the beam properties is challenging due to the high number of possible machine
parameter combinations. This article shows the successful automated optimization of beam properties
utilizing an already existing simulation model. To reduce the required computation time, we replace the
costly simulation with a faster approximation with a neural network. For optimization, we propose a
reinforcement learning approach leveraging the simple computation of the derivative of the approximation.
We prove that our approach outperforms standard optimization methods for the required function
evaluations given a defined minimum accuracy.
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I. INTRODUCTION

A superconducting radiofrequency (SRF) photoelectron
injector is currently under construction as an electron
source for the upcoming SRF accelerator SeaLab (formerly
known as bERLinPro).
The SRF gun is a one-and-a-half cell SRF cavity with a

photocathode at the back wall of the cavity. A pulsed
extinction laser illuminates the photocathode and extracts
electrons from the material. The standing wave radio-
frequency field in the cavity accelerates the electrons to
relativistic energies that travel toward the subsequent
accelerator components, i.e., the focusing solenoid and
the further SRF cavities. Due to the continuous and high
repetition rate of the high brilliant electron beam, several
experiments are planned, e.g., ultrafast electron diffraction,
experiments employing Terahertz radiation, and energy
recovery linac (linear accelerator) applications. More
details on the SRF gun can be found in [1].
An accurate alignment of all components and optimal

SRF gun configuration parameter settings are essential to

achieve the necessary beam properties for the subsequent
experiments. Fourteen parameters describe the geometry
and radiofrequency parameters of the gun cavity, the
position of the cathode, the position of the drive laser spot
inside the cavity, and the alignment and magnetic param-
eters of the focusing solenoid. Unfortunately, only a few of
them are measurable, and not all of them are adjustable.
The correct alignment of these parameters significantly
influences the performance of the complete accelerator and
the operability of the downstream experiments.
In Fig. 1, we provide a schematic view of the compo-

nents of the electron gun and the locations of the input and
output parameters. With the first viewscreen approximately
1 m downstream of the SRF gun module, we can measure
four parameters that describe the behavior of the extracted
electron beam, such as the transverse position and the
transverse beam size. Because these properties determine
the quality of the resulting beam, we will minimize the
horizontal and vertical beam size as well as center the
horizontal and vertical beam position. We define this as our
optimization task, which is addressed in this article.
To tackle this optimization task, we will use a technique

from the area of machine learning called reinforcement
learning (RL) [2,3]. The basic idea is that we have an
algorithm, which we will call an agent, that influences an
environment by performing actions on it. The agent decides
to make an action a. We call the rule base used to make this
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decision the policy. In our case, an action changes solenoid
angles and positions, which impacts the electron beam.
This action leads to changes in the environment. The
environment is, in our case, a simulation approximation
of the electron gun because both measurements in the real
machine and the original simulation are too slow for
training our agent. We define a reward function Rl that
indicates how well action a is suited to achieve our
optimization goal, i.e., to optimize the quality of the beam.
To choose the following action, the agent gets a state
variable swhich provides information about the state of the
environment. Based on the state and reward, the agent
decides which, action to perform next [2]. We give a
schematic view of the RL cycle in Fig. 2.
The main advances provided by the method proposed in

this article are:
Fast inference requiring fewer reward evaluations. We

compare different strategies for optimizing the beam
properties to a particular level of accuracy. We expect
our approach with RL to outperform other local optimiza-
tion algorithms regarding the required reward evaluations,
which we can equalize with computational time. Once we
have trained our RL agent, we can change the parameters
and quickly execute the optimization. This procedure
differs from the previously used local optimization algo-
rithms, which require several hundred thousand simulation
evaluations.
Compound solution for the optimization task. In this

article, we propose a compound pipeline for solving the

optimization task of an electron gun. This method includes
the solution of the offset finding task, which means find-
ing the difference between the simulation and the real world
of the input parameters and output screen variables. Our
proposed pipeline is a considerable step toward automated
self-optimizing the radiofrequency photoinjector.
Explainability of decisions. Furthermore, we will ana-

lyze the learned policy, which explains how the RL agent
makes choices. This explainability makes the decisions
more trustworthy. Moreover, the agent chooses actions
from a limited interval of parameter values, which ensures
the safe execution of these actions at all times.
In the next section, we will give an overview of the state-

of-art of RL. Furthermore, we will present already existing
approaches in applications of optimization tasks in electron
gun and accelerator settings. In Sec. III, we will describe
our proposed RL agent, which means we will define the
optimized reward function and how our policy is updated.
We will compare our approach with several local optimi-
zation algorithms in Sec. IV and give a conclusion and
outlook in Sec. V.

II. RELATED WORK

We first briefly introduce RL based on [3] and then show
several applications of machine learning and RL in a
synchrotron context. The interested reader can find further
details on RL in [2].
RL problems are modeled asMarkov decision processes.

That means we assume that the probability of a transition
from one state s to another state s0 depends only on s and
not the predecessors of s. One of the most basic variants of
RL is Q-Learning: It uses a table as a policy that contains
the states and their Q values, which are the expected
rewards for an action taken in a given state [2].
We calculate the expected discounted return to measure

the performance of a policy: Rt ¼
P

k¼0 γrtþkþ1. The value
γ ∈ ½0; 1Þ is a discount rate that weighs future rewards less
strongly due to higher uncertainty. The reward obtained
during the transition from st to stþ1 is denoted with rtþ1.
The policy table is updated according to the Bellman

equation:

qπðs; aÞ ¼ EπðRtjst ¼ s; at ¼ aÞ: ð1Þ

It uses a stochastic policy function π∶S × A → ½0; 1�
with πðs; aÞ ¼ PðajsÞ. Stochastic means here that it is
represented as a distribution of actions. In settings with a
discrete action space, we can estimate the Q-value for each
state-action pair. However, in continuous action space
settings, this is not possible. Policy gradient methods
learn the policy directly and thus can also map an input
to continuous action spaces. The target is to maximize the
objective function JðθÞ ¼ EπθðRtÞ. That means we search
for the parameters θ that maximize the expected discounted
reward. A neural network can represent J, and the

FIG. 2. Schematic representation of the RL cycle; The agent
illustrates our RL algorithm. It can apply an action a to the
environment. The environment depicts in our case, the simulation
approximation which can calculate its new state s and the reward
Rl. It gives this information to the RL agent to decide the next
action.

FIG. 1. Schematic view of the electron gun; the input variables
are the parameters of the cathode, solenoids, and gun cavity. The
output beam parameters can also be measured in the real device.
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parameters θ are the weights of this neural network.
Typically, we initialize the weights θ of neural networks
randomly. The stochastic policy gradient theorem provides
an estimate of the gradients the weights of the neural
networks need to get updated to improve the occurring
reward with the chosen actions. However, the stochastic
policy gradient theorem depends on the unknown Q-value
qπðs; aÞ. We can approximate it by using the actual
reward rt after that action. This approach is called the
REINFORCE learning rule [4]. Another way to solve
this problem is to train a second neural network to
approximate the Q value directly. This approach is called
actor-critic, that means that the actor learns a policy πθ only
based on the state, whereas the critic learns to evaluate the
Q value and gives this information to the actor again.
The deterministic policy gradient (DPG) method is actor-

critic and learns a deterministic policy μðstÞ [5]. Using a
deterministic policy is advantageous because it does not
have variability, and thus less training time is required. To
still allow exploration, DPG uses an off-policy strategy,
which means that a stochastic policy that differs from the
learned policy chooses the taken actions. In [6], the authors
developed an extension with deep neural networks and
called it deep deterministic policy gradient (DDPG). It is
model-free since it only depends on the gradient of the Q
values. Model-free means that the algorithm does not
depend on a function that predicts state transitions and
rewards of the environment. DDPG has been successfully
applied to many continuous control problems.
When an RL agent incorporates a neural network, the

method is called Deep RL [7]. Similar applications of Deep
RL approaches that we used in this study have already been
successfully applied to different application scenarios in
BESSY II [8], e.g., booster current, injection efficiency, and
orbit correction. The method used in these scenarios
uses DDPG.
Various methods have been proposed for local optimi-

zation and will serve as a reference in this study. We will
compare the Nelder-Mead simplex algorithm [9], Powell’s
[10], and gradient descent [11] with our proposed RL
approach.
Other approaches exist for optimizing an rf photoinjector

with similar objective functions to the one used in this
article. As a first step, [12] shows the use of a convolutional
autoencoder that can compress the data in images. These
images show the longitudinal phase space, which is the first
step toward using images in a succeeding optimization
algorithm. Another analysis of optimizing an rf photo-
injector is using multiobjective Bayesian optimization [13].
The authors can tune an electron gun’s parameters effi-
ciently and show that they can find solutions sufficiently
near the Pareto front of the beam optimization problem. In
[14], the authors use also a surrogate model, i.e., a fast
replacement for the simulation, comparable to the approach
presented in this article. However, they use a genetic

algorithm for optimization, which thus requires multiple
hundreds of surrogate model evaluations. In [15], the
authors propose to initialize the genetic algorithm with
an invertible neural network that reduces the required
amount to about ten surrogate model evaluations.

III. METHOD

We depict the general approach in Fig. 3. We first
simulate the electron gun with randomly chosen parameters
and create a data set of the outcomes. The next step is to
learn a surrogate model as a faster replacement for the
simulation. We use this model for the following offset
finding and optimization steps. The focus of this study is
the optimization part.
Surrogate model. We used the ASTRA (a space charge

tracking algorithm) simulation for physical modeling [16].
It is physically precise but computationally intense. The
assessment of one combination of parameters requires, on
average, about 5 min of calculation time per core on a
current CPU.
To overcome this issue, we trained a surrogate model, a

neural network that replaces the simulation. The evaluation
time of this surrogate model is on a scale of several hundred
milliseconds. We generated the training data for this neural
network with randomly chosen, uniformly distributed input
parameters in ranges as defined in Table I. For this
surrogate model, we used 546,689 samples created with
ASTRA. We used min-max normalization as described in
Eq. (2) for parameters and simulation output, where x is the
input to normalize, and x0 is the normalized output. The
neural network consists of five layers (input layer
excluded). The number of neurons increases to 2002 in
the first layer, after that decreasing logarithmically to 447,
100, and 20 neurons, and finally returning five outputs.
Experiments have shown that this architecture provides the
smallest error. The overall mean squared error between
the simulation and the trained surrogate model is about
1.13 × 10−5 [17]. It is important to note that one should
only use the surrogate model within the ranges specified in
Table I. The error can be substantial for parameters outside
this range since neural networks cannot extrapolate their
trained parameter range.

x0 ¼ x −minðxÞ
maxðxÞ −minðxÞ : ð2Þ

Offset finding. Finding the offset means determining the
difference between the parameters in the simulation and the

FIG. 3. Basic processing pipeline; this article focuses on the
optimization part.
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real device. Our method finds the offsets of the input
parameters and output screen variables.
For solving the offset optimization problem, we used a

local optimization method as proposed in [17]. However,
local optimization algorithms rely on thousands of simu-
lation evaluations to solve the optimization problem. That
makes optimization computationally infeasible.
To find the offsets, we used the basinhopping algorithm

[18]. Basinhopping works by walking a step randomly.
After that step, it runs a local minimization algorithm. If the
accuracy increases, it gets accepted and executes a new
step. If the accuracy decreases, the algorithm discards the
current step and randomly chooses another step [18].
For testing purposes, we assumed random offsets, which

our algorithm needs to approximate. We add randomly
generated offsets to the parameters as well as to the
simulated output of these deviated parameters. These
offsets are chosen from a uniform distribution with up to
20% deviation from the parameters’ possible ranges as
listed in Table I. By doing so, we receive a sample that
imitates real device data with offsets. We also save the
added random offsets since those serve as a reference for
assessing the precision of the determined offset. We applied
basinhopping with 200,000 iterations, a starting point
x0 ¼ 0, stepsize 0.001, and a temperature for the accep-
tance criterion of 1.0. With a maximum deviation of 0.1, the
basinhopping algorithm found the offsets with a sum-of-
squares error of 8.25 × 10−5. We assume that this level of

accuracy is sufficient for the subsequent optimization steps.
This assumption is based on the fact that the offsets could
be checked independently from the input parameters via the
output screen variables, as shown in [17].
Optimization. We will now take a closer look at the beam

optimization task. We give a brief overview of the inter-
action of all parameters and optimization targets in Fig. 4.
The parameters of the electron gun (Table I) are divided

into three groups: (i) State parameters s: We can only
observe but not change these parameters. That includes the
laser pulse length, the cathode’s spot size, and the hori-
zontal and vertical laser position. There are additional state
parameters that describe the gun peak and bias field. The
gun peak field is the maximal amplitude of the accelerating
electrical field. Since the photocathode is electrically
isolated from the rest of the gun cavity, an additional
voltage can be applied, as described by the gun bias field.
The field flatness characterizes the planarity of the cavity
field, and another state parameter specifies the longitudinal
cathode position. (ii) Action parameters a: Our agent can
change these parameters. These are the solenoid horizontal
and vertical positions and the angles with respect to the x
and y axis. (iii) Integral parameters t: These parameters are
like state parameters not modifiable by the agent but
scanned over multiple equally distanced constant positions.
An automated software procedure can easily change them
in the real device. However, to limit our action space, we
assume our agent cannot modify those, but the machine
scans over them in a defined set of parameters. The two
parameters in this group are the solenoid’s focal strength

TABLE I. Parameters and their ranges for the ASTRA simu-
lations. All values are chosen randomly from a uniform distri-
bution of the specified interval. Fixed values: Bunch charge scale:
0.1 pC, solenoid position in respect to the cavity in z axis:
0.4625 m, stop position of tracking: 1.737 m longitudinal offset
of the input distribution like gun peak field but multiplied with
10−4. The state parameters are s ≔ ½s1;…; s8�, the action param-
eters a ≔ ½a1;…; a4� and the integral parameters t ≔ ½t1; t2�.
Label Parameter Interval Unit

s1 Laser pulse length ½0.6; 4� × 10−3 ns

s2 Laser spot size on cathode [0.2, 0.8] mm
s3 Gun peak field [9, 18] MV=m
s4 Gun dc bias field [3, 5] kV
s5 Cathode position ½−20;−5� 0.1 mm
s6 Field flatness ½−0.5; 0.5�
s7 Laser horizontal position ½−1.5; 1.5� mm
s8 Laser vertical position ½−1.5; 1.5� mm
a1 Solenoid horizontal position ½−4; 4� × 10−3 mm

a2 Solenoid vertical position ½−4; 4� × 10−3 mm

a3 Solenoid angle y axis ½−30; 30� × 10−3 rad

a4 Solenoid angle x axis ½−30; 30� × 10−3 rad

t1 Emission phase ½−10; 70� deg
t2 Solenoid strength ½−0.1; 0.1� T

FIG. 4. Schema of the parameters’ role within the learning loop.
The blue arrows indicate the transitions within the pretrained
surrogate model. The green elements indicate the training and
decision-making by the RL agent. First, the RL agent determines
how to choose the action variables using his policy. The state and
integration variables are chosen randomly, but we can later
measure them in the real experiment. Together with the state
and integration variables, these actions get evaluated by the
pretrained surrogate model. It returns the optimization targets,
which serve as a reward for the policy, from which the RL agent
can then improve its policy. Now the learning cycle repeats.
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and the electron gun’s emission phase. The emission phase
is the arrival time of the laser pulse relative to the sine wave
of the high-frequency field of the electron gun.
The action parameters modified here are all enclosed in

cryogenic encapsulation, which means they all have to be
controlled by motors in the real device [19]. However, the
electron gun of SeaLab is still not in commissioning yet.
Therefore, we can only use simulated data for testing in
this study.
Our optimization function is composed of four optimi-

zation criteria that will be named f1 for the average
horizontal beam size, f2 for the average vertical beam
size, and f3 and f4 for the horizontal and vertical beam
position. The desired beam characteristics are a round and
centered beam. In the ideal case, we reach f1 ¼ f2 (round
beam), f3 ¼ 0, and f4 ¼ 0 (centered beam). The param-
eters are denoted as state parameters s ∈ S ¼ ½0; 1�8, action
parameters a ∈ A ¼ ½0; 1�4, and integral parameters
t ∈ T ¼ ½0; 0.9� × ½0.6; 0.9�. We pick the state and action
parameters randomly from their corresponding state space T
and action space A. The integral parameters t are chosen
evenly spaced from T, and we sample 20 data points per
dimension. A detailed list of all parameters and their ranges
is given in Table I. The optimization criteria are all functions
fi∶S × A × T → R for i ∈ f1; 2; 3; 4g and can be approxi-
mated using the proposed surrogate model from [17].
We define the optimization function, in the RL context

often called the reward function, as follows:

R1ðs; aÞ ≔
X
t∈T

l½f1ðs; a; tÞ − f2ðs; a; tÞ�

R2ðs; aÞ ≔
X
t∈T

l½f3ðs; a; tÞ�

R3ðs; aÞ ≔
X
t∈T

l½f4ðs; a; tÞ�

Rlðs; aÞ ≔ min

0
B@

2
64
R1ðs; aÞ
R2ðs; aÞ
R3ðs; aÞ

3
75

1
CA ð3Þ

The function lðxÞ ≔ min ð−jxj;−ϵÞ limits the optimiza-
tion of the components R1, R2, R3 to a defined maximum
accuracy level ϵ > 0. That limitation leads to smoother
convergence and avoids overfocusing on one component of
the reward function. In the term of Rl, we choose the
minimum function of the stacked component vector instead
of the sum since it leads to faster convergence due to higher
gradients. Please note that according to this definition, our
reward is always nonpositive and values closer to zero are
better.
Typically in RL problems, we would define a feedback

loop considering step-based operations. However, in this
case, this is not necessary because our environment does
not require step-based actions and does not have delayed
rewards. Furthermore, the states do not get modified during

a learning cycle. Despite these specifications, we solve this
problem with an RL model because the RL loop enables us
to examine better why the agent chooses a particular action
in a specific situation. Moreover, we can later easily replace
the simulation with the real environment and perform
further optimization after the initial learning phase with
the simulated environment.
Since we consider the one-step case, we define the

optimal policy we are looking for as

μ� ≔ arg max
μ

JðμÞ ð4Þ

with

JðμÞ ≔ Es∼p0
½Rlðs; μðsÞÞ�: ð5Þ

A policy μ is a function that maps a state to action. The
states s are chosen from some state distribution p0.
According to the deterministic policy gradient theorem

[20], we can assume

∇θJðμθÞ ≈ Es∼p0
½∇θμθðsÞ∇aRlðs; aÞja¼μθðsÞ�: ð6Þ

We denote the policy with μθ since we will use a neural
network as a policy that has parameters θ (weights
of the connections between neurons) that we can learn
through a training process. In our case, we can calculate
∇aRlðs; aÞ because our surrogate model is a neural
network that we can differentiate (because a neural net-
work is a composition of linearly combined nonlinear
activation functions, which are differentiable, at least
almost everywhere).
Our configuration for the maximum accuracy level is

chosen as ϵ ¼ 5 × 10−5. We chose this value because this
level of accuracy is adequate for the application. The state
distribution p0 is chosen from an eight-dimensional normal
distribution:

p0 ∼N ð½0.5�8; ½0.04�8Þ: ð7Þ
The superscripted eight indicates the eight dimensions of
the mean and variance. We chose the mean value ½0.5�8 to
get centered samples since our data are normalized in the
range [0, 1]. We do this cropping so that the agent cannot
choose actions out of the allowed safe operation range. The
variance is chosen as ½0.04�8 so that the resulting numbers
are large enough to produce relevant states but not too large
and thus rarely out of range. The values get truncated so
that they stay within a range of [0, 1]. We do not require a
Q-function because we only consider the one-timestep RL
cycle, and the used surrogate model is differentiable. That
allows us to determine the policy μθ with a policy gradient
approach. We use a multilayer perceptron neural network
with three hidden layers: 1000, 400, and 200 nodes, as
depicted in Fig. 5. It uses four output nodes for the four
action parameters. It is activated with the ReLU function
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except for the output layer, which uses Tanh for activation.
We use the optimizer Adam (adaptive moment estimation)
[21] with a learning rate η ¼ 10−4. The learning rate
specifies how much the error of new batches is weighted
when updating the neural networkweights. The trainingwas
batched, so the weights need to be updated less frequently.
The chosen batch size was 32 samples per batch. We chose
parameters similar to a comparable settingwhere the booster
current parameters were optimized, as described in [8]. For
better training stability, we use min-max normalization for
the inputs and outputs of the surrogate model when training
the policy.We performed a brief hyperparameter searchwith
different amounts of layers and nodes. However, the hyper-
parameters similar to [8] achieved the largest rewards. We

train our agent for more than 21,875 epochs. One epoch
consists of training one batch, i.e., 32 samples, which means
we perform the RL cycle and thus reward evaluations
700,000 times. This amount of repetitions is possiblewithout
escalating in time because we have a fast surrogate model.
The calculation of the policy takes about 35 min on an Intel
Xeon Gold 6252 processor. We depict the training process in
Fig. 11. It is worth noting that the learning process saturates
after about 20,000 epochs,whichmeans that it improves only
slightly after that. After this initial training phase, we freeze
the policy. We can determine the chosen actions to arbitrary
state and integrationvariables and calculate their rewardwith
only a single surrogate model evaluation.

IV. RESULTS AND DISCUSSION

In this section, we present the results of our method and
discuss them in regard to the research questions proposed
in Sec. I.

A. Fast inference requiring fewer
reward evaluations

We compare the optimization performance of the trained
policy with four different optimization algorithms as base-
lines. The optimizers try to solve the following optimiza-
tion problem:

argmin
a

Rlðs; aÞ: ð8Þ

The state s is sampled from p0 as defined in Sec. III. We
will compare the optimal value Rlðs; aÞ after 1000 function
evaluations with our RL approach Rl½s; μðsÞ�. We assume

FIG. 5. Schematic plot of the neural network we use for
learning the policy. We scaled the heights of the layers logarith-
mically for visualization purposes. The numbers indicate the
layer sizes, input and output dimensions.

FIG. 6. Comparison of the evaluated RL policy μðsÞ with the best reward achieved by the different optimization methods after 1000
reward function evaluations; Because the local optimization algorithms are stochastic, i.e., depend on random variables, we run the
optimization algorithms 800 times to get a reliable amount of statistics. We plot the histograms with respect to the optimal rewards of our
RL agent. The intensity shows how many runs of the stochastic optimizations have achieved a particular optimal reward. In case one
method is performing equally as RL, only the bisecting line (highlighted in red) will be visible. If there is intensity below this line, the
optimization method could not achieve a similar or better reward than the RL policy μðsÞwithin the allowed reward function evaluations.
Note the logarithmic scale on both axes.
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that the policy of our RL approach has been fully trained.
The local optimization algorithms are stochastic, which
means they use random variables for optimization.
Therefore, we repeat the experiments 800 times to
eliminate the possibility that the results are just coinci-
dental. This approach allows us to calculate a mean value
and avoids getting particularly good or bad results only
due to coincidence. For Powell’s and Nelder-Mead, we
choose the default settings, which means that we set the
absolute error in inputs and outputs between iterations
that is acceptable for convergence to 0.0001. As a
gradient descent algorithm, we use stochastic gradient
descent with a learning rate ν ¼ 0.1. The histograms
in the comparison plots in Fig. 6 have a higher value in
the color scale below the red line. This shows that all
other compared optimization methods reach a smaller
reward given the same number of reward function
evaluations. The results shown in Table II confirm these
findings. All compared optimizers averagely fail to
achieve equal or higher rewards than the RL approach.
Only Nelder-Mead and gradient descent can achieve
similar or better rewards than the RL policy in about
half of the repetitions after 1000 reward evaluations.
Powell’s can even match only in 57 repetitions with the
reward achieved by the RL agent. The best stochastic

optimization method is Nelder-Mead, which can compete
with the RL approach after 230.53 reward and thus
surrogate model evaluations.
We will now compare the achieved rewards at different

evaluation counts of the local optimization algorithms and
our RL agent policy. With evaluation counts, we mean the
number of evaluations of the reward function and, thus, the
number of simulation approximations. We can equalize this
amount as computational costs since evaluating the surro-
gate model takes the most time in the learning cycle of both
the RL approach and the local optimization algorithms. We
expect our RL policy to outperform the local optimization
algorithms regarding the required evaluation counts for an
adequate reward. In Fig. 7, we can see that even after 1000
evaluations, the RL policy has, on average, a larger reward
than all compared local optimization algorithms. The reward
of Powell’s increases a lot slower and converges at a lower
level than the RL policy. Both Nelder-Mead and gradient
descent perform almost equally. However, even after 200
evaluations, the RL policy achieves a larger reward.
To summarize, we can conclude that our RL agent

requires only one surrogate model evaluation compared
to the local optimizers. This result means that our RL agent,
once trained, provides considerably faster inference. The
RL agent requires about 2.71 ms for choosing an action to a
given parameter input combination on an Intel i5-7200U.
We determined this value by averaging over 100,000
evaluations. This is also true for the approach shown in
[15], which requires approximately ten surrogate model
evaluations for the genetic algorithm. However, we would
require an evaluation using the same surrogate model and
optimization targets for a quantitative comparison of the
prediction accuracy.

B. Compound solution for the optimization task

Together with the offset finding algorithm, we are now
able to fully solve the beam optimization task. That means

TABLE II. The second column shows the number of runs that
achieved similar or better rewards than our RL approach with the
corresponding method. The third column provides the number of
reward function evaluations that were required until our RL
approach was matched.

Method
Runs μðsÞ

was matched
Reward evaluations
for matching μðsÞ

Nelder-Mead 457=800 230.53� 132.60
Powell’s 57=800 499.26� 214.43
Gradient descent 396=800 586.44� 233.87

FIG. 7. Comparison of the evaluated RL policy μðsÞ with local optimization algorithms with respect to achieved reward at different
evaluation counts. A larger reward is better. We show the mean of 800 repetitions over 1000 evaluation steps. The standard deviation is
plotted semitransparent. The RL policy is plotted as a dashed line to highlight that it is only a fixed value since, after completing training,
it only requires one evaluation of the reward function.
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we need first to determine the offsets of the parameters and
then apply the RL agent.
Our simulation method makes some assumptions, espe-

cially in the area of the electron source itself. We assume an
exactly round beam at the beginning of the simulations and
that the laser spot is homogeneous and stable in time.

In reality, it can happen that the laser spot on the
cathode is not homogeneously round. Additionally, there
are field errors in the electron gun, which we cannot
estimate in all details yet. We cover these mainly in the
variable of the field flatness. However, we do not consider
higher asymmetries of the resonator (e.g., inner cell

FIG. 8. Average of the Jacobian matrix of 100,000 state values and their chosen actions; A high value in the color scale means the
average of the partial derivatives is high. It turns out that great changes in the laser horizontal position and vertical position lead to great
changes in the respective solenoid position in the policy of our RL agent.

FIG. 9. Standard deviations of the Jacobian matrix of 100,000 state values and their chosen actions; A high value in the color scale
means the standard deviation of the partial derivatives is high. It shows that the derivatives of the solenoid position have high fluctuations
both vertically and horizontally with respect to the cathode position.
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misalignment, coupler kicks, and higher rf modes). But
these are higher-order effects and, therefore, should not
significantly impact the applicability of our method in the
real world.
The differences between the simulation and surrogate

model are negligible within the trained parameter ranges.
This premise allows us to safely use the surrogate model to
replace the simulation in offset finding and beam optimi-
zation. In summary, based on our reasoning, our method
solves the optimization task and is transferable to the real-
world application.

C. Explainability of decisions

In the following, we will elaborate on how our RL agent
chooses the actions according to a given state. We utilize
the fact that we have trained a deterministic policy with a
neural network. Since our neural network is differentiable
(almost everywhere), we can extract the Jacobian matrix
with the help of automatic differentiation methods.
Because the Jacobian matrix shows the actions’ deriva-
tives concerning the different state values, we can see
which action has a high impact on the respective state
value. We depict the mean and standard deviation of the
policy Jacobian matrices evaluated at 100,000 states
sampled from a normal distribution in Figs. 8 and 9.
Figure 8 shows that the average change of the action
solenoid horizontal position is high when the horizontal
laser position changes. This relation can be seen explicitly
in Fig. 10, where we applied varied inputs to the policy of
our RL approach. There is also a high correlation between
the vertical laser position and the action parameter vertical
solenoid position. Figure 9 indicates that there are high
fluctuations in the derivatives of solenoid horizontal and
vertical position concerning the cathode position. Since

the mean of the Jacobian matrix is low at this point, the
impact of the solenoid positions for aligning the cathode
position is minimal. This examination of the policy
visualizes the way the RL agent chooses its actions and
makes the decisions of the RL algorithm more transparent
and, thus, more trustworthy. We stress that our RL agent
can, by design, only choose actions in allowed and safe
operation ranges because of the tanh output layer in
combination with normalized outputs.

V. CONCLUSION

As shown in this article, we have successfully applied
RL to optimize an SRF cavity module in the simulation
environment. The used surrogate model as a fast approxi-
mation for the simulation is accurate and can safely replace
the simulation within the defined parameter ranges. We
have shown that the optimization accuracy of a pretrained
RL agent is comparable with several local optimization
algorithms but achieves this performance by direct evalu-
ation instead of several hundred iteration steps. After train-
ing the RL agent, the inference times are much lower since
the optimization problem only needs to be evaluated once
instead of many times as with the local optimizers. This
result is a considerable step toward fast and automated
commissioning and optimization of an SRFgun. Potentially,
this procedure will replace the time-consuming manual
alignment in the future. This approach allows a quicker
and easier setup of energy recovery linacs and other high-
current and high-repetition electron beam applications.
The next step will be to verify our results on the actual

device when it is ready for commissioning. Our approach
should be directly applicable since the simulation already
models inaccuracies of the device as discussed in Sec. IV.
Probably, we can transfer this approach to other problems.
For example, we could use it for optimizing beamlines of
synchrotron radiation facilities. Another idea is to use real
feedback loops during operation for applying RL. This
should be done after initial training and optimization with
the simulation approximation. That means that instead of
relying only on our simulation approximation, we could
also measure the state and integration variables in the actual
device and then perform further policy optimization. To
realize this idea, we needed to extend our approach by step-
based actions due to hardware constraints, e.g., the motors
performing the actions require some time for movement.

Dataset generation and program scripts to this article can
be found at a repository hosted at Gitlab of Helmholtz-
Zentrum Berlin [22].
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FIG. 10. Random action values ordered by laser horizontal
positions; The standard deviation of the input values is σ ¼ 0.2.
This plot shows the mean of 500 laser horizontal positions and
1000 repetitions. The variance is plotted semitransparent. The
plot shows that with increasing laser horizontal position, also the
solenoid horizontal position is increased. The solenoid angle in
the y axis is also moved slightly. However, the solenoid vertical
position and solenoid angle x axis are almost not altered.
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APPENDIX: POLICY TRAINING

We show the process of training the reinforcement
agent’s policy in Fig. 11. Please note that we need to train
the policy only once, and then we can apply it to any input
with a single surrogate evaluation.
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