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We theoretically investigate the problem of diffusive target search and mean first passage times (MFPTs)
of a tracer in a three-dimensional (3D) polymer network with a particular focus on the effects of combined
one-dimensional (1D) diffusion along the polymer chains and 3D diffusion within the network. For this, we
employ computer simulations as well as limiting theories of a single diffusive tracer searching for a spherical
target fixed at a cross-link of a homogeneous 3D cubic lattice network. The free parameters are the target size, the
ratio of the 1D and 3D friction constants, and the transition probabilities between bound and unbound states. For
a very strongly bound tracer on the chains, the expected predominant set of 1D lattice diffusion (LD) is found.
The MFPT in the LD process significantly depends on the target size, yielding two distinct scaling behaviors
for target sizes smaller and larger than the network mesh size, respectively. In the limit of a pointlike target, the
LD search becomes a random walk process on the lattice, which recovers the analytical solution for the MFPT
previously reported by S. Condamin, O. Bénichou, and M. Moreau [Phys. Rev. Lett. 95, 260601 (2005)]. For
the very weakly bound tracer, the expected 3D free diffusion (FD) dominates, extrapolating to the well-known
Smoluchowski limit. A critical target size is found above which the MFPT in the FD process is faster than in
the LD process. For intermediate binding, i.e., a combination of LD and FD processes, the target search time
can be minimized for an optimal range of target sizes and partitions between FD and LD, for which the MFPTs
are substantially faster when compared to the limiting FD or LD processes. Our study may provide a theoretical
basis to better understand and predict search and reaction processes in complex structured materials, thereby
contributing to practical applications such as designing nanoreactors where catalytic targets are immobilized in
polymer networks.
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I. INTRODUCTION

Target search in complex topologies is a wide and impor-
tant field of study [1–9]. For example, the target search by
biomolecules in cells is rapid and specific, being the basis
of many biological processes [10]. Most prominently, DNA-
binding proteins locate targets on DNA in a sequence-specific
manner, and transfer genetic information [1]. A specific target
search is similarly observed in coordinated chemical reactions
[2,3]. The target search problem is also found on the macro-
scopic level, such as animals chasing food [4–6] and castaway
rescue operations [7]. Such a multiscale nature of target search
processes makes the problem not only challenging but also
demands a better theoretical understanding.

Various target search strategies have been revealed and
confirmed theoretically to possess remarkable promptitude
and fidelity [4,8]. Fast localization rates generally require
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intermittent search strategies, which employ multiple phases
within the search process [9]. The most well-known ex-
ample is the protein search for small pieces of specific
DNA sequences, which is modeled by a combination of
three-dimensional (3D) diffusion in the bulk solution and
one-dimensional (1D) “sliding” along the DNA chain [11,12],
corresponding to the fast kinetics for protein translocation
and probing different DNA fragments, and the slower but
locally more efficient phase to detect the small target on the
1D chain, respectively. The resultant target search rate sub-
stantially exceeds the 3D limit [13], given by the well-known
Debye-Smoluchowski rate theory [14].

Many theoretical and numerical efforts have been made to
build up a qualitative and quantitative understanding of inter-
mittent search strategies [4,15,16]. The most widely known
and utilized example is the Berg-Winter-Hippel (BWH) model
[17] consisting of multiple 1D and 3D diffusion processes.
In the protein-DNA case mentioned above, according to this
model, the target search time can be minimized by a delicately
weighted partition of the 1D and 3D diffusion time [1,17]. If
the 3D diffusion time is above that partition, the search time
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is spent mostly in the bulk via 3D diffusion. Otherwise, the
protein diffuses mostly (typically slowly) on the DNA chain,
which ends up with a very local and repeated sampling of the
DNA sites [18]; thus both cases alone impede an efficient
search. To capture the optimal partition of the 1D and 3D
diffusion, one requires a specific knowledge of the target size
[19,20], chain configuration [9,21,22], protein flexibility [23],
sequence dependence [23,24], and hydrodynamic effects [25].

Understanding the target search problem in such confined
geometries is also important for the development of fast chem-
ical reactions using advanced polymeric materials. A practical
example related to reaction-diffusion processes operating in
different geometries is the case of responsive nanoreactors,
possessing great potential in nanocatalysis [26–35]. One of
the main characteristics of these systems is the presence
of a stimuli-responsive polymeric network (nano- or micro-
hydrogel), forming a permeable shell around catalytic targets,
e.g., nanoparticles or enzymes, where reactants can penetrate
through the shell from a bulk space. Other applications can
be seen in the metal-organic frameworks (MOFs) and porous
coordination polymers [29,36]. The catalytic activity thus can
be tuned in response to external stimuli such as temperature
and solvent quality [28,29,33]. The simplest theoretical de-
scription would be the diffusion-controlled picture [37–39],
e.g., where the intrinsic catalytic reaction (on the catalyst
surface) is instantaneous; therefore the total reaction rate is
governed only by the diffusive search time of the reactant to
the target nanoparticle in the polymer matrix. Inspired by the
protein-DNA target search problem, it would be natural to ask
if the polymer matrix can be engineered such that the catalytic
activity of the nanoreactor is enhanced by intermittent 1D and
3D excursions of the penetrating reactants.

Regarding the reactant in the polymeric matrix as a point-
like diffusive tracer in a 3D network, the related target search
process can be considered for a start as a collection of discrete
and random jumps between the network cross-links. The mean
first passage time (MFPT) for such a random walker mov-
ing between two arbitrary sites was systematically studied in
random networks [40]. These studies were extended by intro-
ducing extra target sites on the lattice [41–43], and proposed
accurate estimations of the MFPT between the sites, as an ex-
act solution of the target search time of discrete random walks.
An extension of this method has been developed to describing
continuous Brownian motion [41], and is thus promising to
bring a quantitative understanding of the search mechanism
on lattice sites. However, a theoretical approach for the target
search problem in terms of stochastic processes inside poly-
mer networks is still lacking. In addition, to the best of our
knowledge, there is no study assessing the combined 1D-3D
search in the polymer chain lattice, despite that the full 1D and
3D search behaviors have been well understood individually.
More importantly, effects of the target size on the target search
time still remain unknown, particularly in polymer networks,
which we tackle to resolve in this work.

To better understand the target search process in polymer
networks, in this paper we consider a simple model, which
approximates a real polymer network by a simple cubic lat-
tice, comprising stiff and stretched chains [44,45]. Using the
model, we investigate the target search problem by perform-
ing stochastic numerical simulations and presenting limiting

analytical theories for the target search time. As shown in
Fig. 1, we focus on regular polymer networks (of idealized
stiff polymer chains) on the cubic lattice of mesh size lx that
we use as a unit length, where a spherical target of adjustable
radius lt is located at one of the lattice cross-links in the center
of the simulation box. Given a tracer performing lattice diffu-
sion (LD), the analytical expression of the target search time
is derived as a function of the target size lt . The intermittent
search as a combination of the LD and free diffusion (FD) is
then investigated by the simulations. We find that the search
time efficiency can be enhanced in the intermittent search, sig-
nificantly depending on the target size, and is markedly faster
in comparison with the limiting cases with LD or FD only.

II. MODEL AND METHODS

A. Model and length scales

As illustrated in Fig. 1, the simulation model consists of a
regular polymer network on a simple cubic lattice, consisting
of stiff polymers of monodisperse length. The simulation box
has the length 2L and is subject to the periodic boundary
condition in 3D. The cubic lattice has the mesh size lx, which
is treated as the unit length, and the number of unit cells is
Ncell = (2L)3. The tracer diffuses in the polymer network until
it contacts the target located at the cross-link position rS of
the simulation box center. The target is considered as a hard
sphere of radius lt , where the search process terminates when
the tracer reaches the target surface. The box size L = 10 is
fixed, and the target size lt is an adjustable parameter.

The tracer may stay bound on the polymers (in 1D) or
unbound (in 3D), corresponding to the target search as a
combination of lattice diffusion (LD) and free diffusion (FD).
The polymer thickness le determines the adsorption range
and thus the type of the search process, LD or FD. Namely,
the tracer is deemed bound (and thus under LD) when it is
within the lateral distance le from any polymer axes, whereas
the tracer in the remaining areas is considered as being in
the unbound phase and performing FD [see Figs. 1(b) and
1(d)]. In the simulation, we set le = 0.05 such that the polymer
adsorption thickness is sufficiently small to ensure the LD.
The bound-unbound switching between the LD and the FD, as
similarly found between DNA and proteins [46,47], is consid-
ered as a simple two-state Markovian chain. We thus consider
a transition probability pon of the tracer for moving from the
unbound state toward the bound state on the polymer chain of
diameter 2le, as illustrated in Figs. 1(d) and 1(e). Therefore,
a transition probability for remaining in the unbound state
is pUU = 1 − pon. We also consider a transition probability
poff for moving from the bound to unbound state, thereby
having a transition probability for staying in the bound state
as pBB = 1 − poff . In this sense, the two transitions (bound
to unbound and vice versa) are completely independent, thus
Markovian. In addition, our model ensures the detailed bal-
ance [48], which will be discussed later in more detail. We
vary the desorption transition probability poff from 0 to 1,
while the adsorption transition probability pon is fixed to unity,
as similarly used in protein-DNA models [46,47]. Namely,
the diffusion switches to the LD as soon as the free tracer in
the bulk phase enters the bound phase with the probability
pon = 1. Inversely but independently, the bound tracer may
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FIG. 1. Left: Illustration of the target search model. Right: Explanatory legend. (a) The cubic lattice network (displayed here are only the
8 cubic cells connecting with the target) with the mesh size lx = 1. Three representative trajectories of the multiple independent tracers (green
sphere) approaching the target (red sphere) are illustrated for the full lattice diffusion (LD), full free diffusion (FD), and combined LD-FD
search, respectively, colored in blue and yellow. (b) A unit cell of the chain lattice of the mesh size lx = 1, illustrating the unbound and bound
states. (c) The target has the radius lt and is fixed at the lattice cross-link located at the simulation box center. During the LD search, the
tracer reaches the target at the target-chain intersecting points. The target-chain intersection points and the target center position (lt < 1 in this
example) are denoted by rk and rS , respectively. (d) The tracer can bind on the chains in the coaxial cylindrical region of the radius le. The
bound area is highlighted in gray, while the bulk phase is sketched in blue. The trajectory switching the tracer from the FD search to the LD
search and finally back to the FD search is depicted. (e) Illustration of the underlying two-state Markov process of the search process. The gray
and blue circles denote the bound and unbound states of the tracer, respectively.

be released toward the bulk space with the probability poff

that we vary as a parameter. Note that the adsorption and
desorption events are considered only if the tracer is within
the polymer adsorption range le. The desorption probability
poff has two important search limits: the pure LD search
as poff → 0 and the FD search limit (not exactly full FD
search, but FD is dominant given the thin polymer chains)
as poff → 1.

B. Simulations and methods

The tracer diffusion dynamics illustrated in Fig. 1 is simu-
lated by overdamped Langevin dynamics for the bound tracer
position XLD in the LD, or the unbound tracer position XFD in
the FD, via

dXLD(t )

dt
= RLD(t ), (1a)

dXFD(t )

dt
= RFD(t ), (1b)

where the choice of bound and unbound positions depends on
the lateral distance of the tracer from the closest polymer axis,
rc, and the transition probabilities pon and poff. Equation (1a)
describes the LD on the polymers (0 < rc � le), which is
essentially a collection of 1D diffusion on the polymers in
3D space, while Eq. (1b) is for the FD in the bulk. At ev-
ery time step, the lateral distance rc is calculated. When the
tracer previously in the bulk (rc > le) binds to the polymer
(rc � le), the dynamics is switched to the LD with the proba-
bility pon and follows Eq. (1a). During the LD search along
the polymers, the tracer can move to another neighboring
polymer by passing through cross-links in a random fashion,

until it is unbound with the probability poff , which switches
the dynamics from the LD to the FD that follows Eq. (1b).
Thus, in fact, the latter is used always when rc > le, or if
rc � le and after being transforming from LD to FD with
probability poff. The above computational scheme is in the
spirit of the kinetic Monte Carlo simulation, which serves as
a simple and robust approach for studying systems evolving
through random walks and state transformations [49–53]. The
random forces RLD(t ) and RFD(t ) in Eq. (1) have zero means
and correlations satisfying the fluctuation-dissipation theorem
[54],〈

Ri
LD(t )R j

LD(t ′)
〉 = 2kBT δ(t − t ′)δi j/γ1, i = x, y, z,〈

Ri
FD(t )R j

FD(t ′)
〉 = 2kBT δ(t − t ′)δi j/γ3, i = x, y, z, (2)

where kBT ≡ 1/β is the thermal energy, and γ1 and γ3 are the
respective friction coefficients for the LD and the FD. Recent
studies revealed that the 1D diffusion of a protein (such as
the transcription factor [55]) on a DNA chain appears to be
much slower than in the bulk solutions [1,56,57]. Therefore,
defining the friction ratio as q ≡ γ3/γ1, we focus on the range
0 < q � 1.

The tracer is initially located randomly at one of six centers
of the box boundary surfaces. The characteristic timescale is
set as τx = βγ1/2, corresponding to the mean number of the
time steps to diffuse over two adjacent cross-links via the
LD search, namely, the average time for the tracer diffusing
along a polymer between two adjacent cross-links. For our
case, τx = 400 in units of the simulation time step is set
throughout the study. The simulations generate many target
search processes with numerous mixture of the FD and LD, by
tuning the desorption transition probability poff , the friction
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ratio q, and the target size lt . For each set of parameters, at
least 103 independent runs are carried out for better statistics.

The central quantity of this numerical study is the mean
first passage time τ for the tracer to find the target particle,
starting from the initial position. The total target search pro-
cess minimizing the time τ , tuned by the above parameters, is
of particular interest.

C. Analytical results

Before showing our numerical results, we introduce cor-
responding analytical results to some limiting cases that we
consider. For simplicity, now we use the subscript index “1”
for the LD and “3” for the FD.

1. Full FD process, pon = 0, poff = 1

In this simplest regime, our model reduces to the target
search problem in the bulk solution. An approximate solution
of the tracer MFPT with the periodic boundary condition
yields [42]

τ3 = V βγ3

4π

(
1

lt
− 1

L

)
, (3)

where V = (2L)3 is the box volume, and L corresponds to the
initial tracer-target distance. An exact but lengthy expression
of τ3 can be found in Ref. [58], yet we only adopt Eq. (3)
here to keep the discussions concise. Given the timescale τx,
Eq. (3) is rewritten as

τ3

τx
= qV

2π

(
1

lt
− 1

L

)
. (4)

For an infinitely large system with L → ∞, Eq. (4) reduces to
the Smoluchowski search time [14]

τSmo

τx
= qV

2π lt
. (5)

2. Full LD process with a pointlike target,
pon = 1, poff = 0, lt → 0

The condition pon = 1 and poff = 0 gives rise to a
persistent LD mode, diffusing over N = (2L + 1)3 lattice
cross-links with one of them being the pointlike target. The
corresponding MFPT τ1|lt =0 can be derived from a random
walk process from an initial position at rT to the target po-
sition at rS (see also in Fig. 1), which is a series of random
jumps between adjacent lattice cross-links. In this case, the
MFPT solution τ1|lt =0 is given by Condamin [41,42] as

τ1|lt =0 = τxN[H (rS|rS ) − H (rS|rT )], (6)

where H (ri|r j ) is the pseudo Green’s function (see Appendix)
between cross-link positions ri and r j . It should be mentioned
that the theory originally considered a lattice with reflecting
boundary conditions, which also applies to our simulation
given that the target is placed at the lattice point right in the
center of the periodic cubic box. In case of rT sufficiently far
from rS , τ1|lt =0 approaches its upper limit τxNH (rS|rS ), which
is found finite for the cubic lattice [59]. This brings out a
stark contrast with Eq. (4), where τ3 for the full FD search
is proportional to l−1

t and thus diverges in the limit of the
pointlike target size lt → 0.

3. Full LD process, pon = 1, poff = 0 with lt � 1

Now we extend the previous case where the spherical target
on a cross-link has a finite size. In this case, as opposed to
the FD search, the LD search process involves a finite set
of multiple intersecting points on the target surface, which
coincide with the lattice chains. To understand such a com-
plex situation, we consider a limiting case: For a target of
radius sufficiently larger than the lattice mesh size, lt � 1,
the intersecting surface points becomes continuous, making
the dynamic behavior of the LD search converging to the
FD search. Recalling that the LD search performs a combi-
nation of 1D diffusion and is randomly redirected at each
cross-linker, in the long time limit, the diffusion time along
an arbitrary direction i tends to be ti = t/3 on average. Conse-
quently, the limiting LD diffusivity DLD = kBT/(3γ1) yields
the target search time

τ1|lt �1 = τx
3N

2π lt
, (7)

by rewriting Eq. (5) in this limiting case. Therefore, we find
from this analysis in the large-target approximation how a full
LD search incorporates the dependency on the target size.

4. Full LD process, pon = 1, poff = 0 with 0 � lt � 1

To take the target size in a continuous range 0 � lt � 1 into
account, we consider j = Ssec(r)∇ρ(r)/(βγ1) as the net den-
sity current of the tracer at the radial distance r away from the
target center. Here, Ssec(r) denotes the total distance-resolved
cross-sectional area that the tracer can pass through, and ρ(r)
refers to the tracer concentration distribution function. Note
that in the steady state, in general the current j is independent
of the radial distance r.

For the LD tracer and the target with size lt � 1, the cross-
section area for the tracer is indeed a constant, say S0. To
ensure a constant j, the concentration function should be a
linear function of r, expressed as

ρ(r) = ρ1(lt )

(
r

1 − lt
− lt

1 − lt

)
, lt � r � 1. (8)

The proposed ρ(r) complies with two boundary conditions:
ρ(r = lt ) = 0 at the target surface, and ρ(r = 1) = ρ1, de-
noting the tracer density at the distance r = 1. ρ1 is affected
by the target size, thus a function of lt . The MFPT is then
calculated via τ1|0�lt �1 = 1/ j as

τ1|0�lt �1 = τx
2

S0

(1 − lt )

ρ1(lt )
, 0 � lt � 1. (9)

For the limiting case of lt = 0, Eq. (9) converges to
2τx/[S0ρ1(0)], which recovers the search time τ1|lt =0 for an
infinitely small target indicated by Eq. (6), following

τ1|lt →0 = τ1|lt =0 × (1 − lt ). (10)

Thus, a linear dependence of the search time with the target ra-
dius lt is found in the limit of lt → 0. We note here that in the
limit of the small target, the target is essentially represented
by a set of six points, which converges to a single point in the
limit of lt = 0, accompanied by a saturated target search time
τ1|lt =0.
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FIG. 2. The time fraction f3 for the tracer for FD as a function
of the desorption probability poff for the friction ratio parameter
values of q = 1 and q = 1/2. The open symbols and the dashed line
depict the results from the computer simulation and the theory given
in Eq. (12), respectively. In the simulation, we use the target size
lt = 0.02 and the absorption probability pon = 1.

5. Mixed LD and FD, pon = 1, 0 < poff < 1

Now we focus on the case where the tracer can carry out
the search in the combination of the LD and the FD, i.e., 0 <

poff < 1. This mimics the search process in the presence of
an effective adsorption energy βεb between the tracer and the
polymer. The partition function of the tracer in the unit cubic
cell [see Fig. 1(b)] is then written as [48]

Zt =
∫

cell/polymer
dV +

∫
polymer

e−βεbdV

= V3 + exp(−βεb)V1. (11)

Here, exp(−βεb) = pon/poff is the Boltzmann factor. V1 =
3π l2

e comprises three cylindrical volumes with radius le per

cubic cell, while the rest space of volume V3 = 1 − 3π l2
e is

left for the FD tracer. The time fraction of the tracer executing
the FD or the LD search should be proportional to the effective
volume of the respective regime, which leads to the expression
for the time fraction of the FD as

f3 = V3

V3 + V1 pon/poff
. (12)

Here, the unit cell is composed of two subregions with the
effective volume V3 and V1 pon/poff , respectively.

Note that the above theory aims at establishing the equi-
librium distribution of the tracer in the absence of the target.
Thus, a meaningful comparison between the theory and the
simulation should be made only for small targets. In Fig. 2,
we present the simulation result of f3 with the target size
lt = 0.02 as a function of the desorption probability poff . As
expected, f3 depicting the time fraction of the tracer in the
unbound state is found almost independent of the friction ratio
q. Moreover, a good agreement between the simulation result
and the theory is seen, which demonstrates that our compu-
tational scenario can properly sample the tracer distribution
during the combined LD–FD searches.

III. RESULTS

A. Dynamic behavior of full FD versus full LD search

In this section, we show first our results for the limiting
full FD and full LD searches. The MFPT computed from
the simulations is presented in Fig. 3(a). The circular and
square open symbols depict τ3 for the full FD MFPT and
τ1 for the full LD MFPT, respectively, both as a function of
the inverse of the target size l−1

t . The friction ratio here is set
to q = 1, expecting in general that the LD search would be
slower due to the confined geometry than the FD search in the
free space (discussed also in Sec. II C). However, this applies
only to the larger targets, while for the smaller targets we

FIG. 3. (a) Simulation results for the target search time τ as a function of the inverse of the target size l−1
t , normalized by τx . The y axis

is plotted in log scale. All the results are for the friction ratio q = 1. The red squares and blue circles depict the results for τ1 in the full LD
and τ3 in the full FD search, respectively. The blue dashed line denotes the Smoluchowski search time τSmo calculated from Eq. (5). In the
inset, the search time τ3 is shown in the range of 0.2 < 1/lt < 1. The theoretical prediction τSmo deviates from the simulation results, which
is corrected (brown dashed line) by incorporating the finite system size L = 10 into Eq. (4). (b) The tracer concentration distribution function
ρ3(r) in the full FD search, where r refers to the dimensionless tracer-target radial distance. The y and x axes are normalized by the tracer bulk
concentration ρ∞ and the target size lt , respectively. The different colors depict the corresponding target size ranging from lt = 0.5 to lt = 5.0.
The black dashed line denotes the concentration profile predicted by the Smoluchowski theory. In the inset, ρ3(r) is alternatively normalized
by the rescaled bulk density ρ0 = ρ∞[L/(L − lt )], which properly addresses the finite-size effect.
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observe smaller τ1 than τ3; i.e., a set of 1D diffusion search is
faster than continuous 3D search. This result indeed suggests
that the target search time correlates not only with the type
of diffusion, but also with the target size, as we will discuss
further in the next section, particularly for τ1.

The theoretical prediction for τ3 from the Smoluchowski
law, Eq. (5), is shown by the dashed blue line in Fig. 3(a),
in a good agreement with the simulation result depicted by
the blue circles. In the regime of the large target size, 0.2 <

1/lt < 1, as shown in the inset, the simulation result under-
estimates the prediction. This discrepancy is due to the finite
size of the system, and is fully resolved after inclusion of a
correction term 1/L in Eq. (4), as shown by the brown dashed
line in the inset of Fig. 3(a).

In addition, the tracer concentration distribution ρ3(r) for
the full FD (pon = 0 and poff = 1) as a function of the
tracer-target radial distance r is computed. The computed
distribution ρ3 is subject to boundary conditions of a con-
stant tracer concentration ρ3(r = L) = ρ0 at the simulation
box margin (r = L) and vanishing ρ3(r = lt ) = 0 at the target
surface (r = lt ). To this end, in the beginning of the simu-
lation, we put N independent and pointlike tracer particles
randomly at the box boundary (r = L). We then updated the
simulation by adding a new tracer to the system analogously at
the box boundary whenever an existing tracer adsorbs to the
target. To ensure stationarity, we considered the production
run simulation data only, in which the measured ρ3 does
not change with respect to the simulation time. According
to the Smoluchowski theory, the stationary solution of ρ3

should follow ρ3(r) = ρ∞(1 − lt/r), given an infinitely large
system, which defines a time-independent steady-state current
pointing to the target. Here, ρ∞ = N/V refers to the reference
number density of the tracer, corresponding to the bulk density
of an infinitely large system. In Fig. 3(b), the normalized
distribution ρ3(r)/ρ∞ is plotted for the Smoluchowski theory
(dashed line) and the simulation (circles), where the distance
r on the x axis is rescaled by the target size lt . The simulation
results with small target sizes lt = 0.5 and 1.0 accordingly
exhibit the Smoluchowski tendency y = 1 − 1/x. However,
finite size-effects emerge as lt increases further, marked by
a notable deviation between the simulation and the theory, in
particular close to the lattice boundary for large targets with
lt � 2.

Now we want to formulate the tracer concentration distri-
bution ρ3(r) applied to the finite-size system characterized by
the lattice size L and the target size lt . Recalling the related tar-
get search time τ3 [Eq. (4)], one can incorporate the finite-size
effect in terms of a rescaled bulk density ρ0 = ρ∞L/(L − lt )
and write the distribution function as ρ3 = ρ0(1 − lt/r) sim-
ilarly to the Smoluchowski theory. In the inset of Fig. 3(b),
the same simulation data are shown, now normalized by the
rescaled density ρ0. The data for all different target sizes
roughly collapse into a universal line y = 1 − 1/x, which
validates our proposed concentration function ρ3(r) suitable
for a finite-size system.

B. Dynamical features of the full LD search

As opposed to the full FD search, where τ3 depends only
linearly on l−1

t , we have seen that the dynamic behavior of
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FIG. 4. (a) The MFPT of the full LD search τ1 versus the inverse
target size l−1

t , normalized by τx , respectively. The red squares depict
the simulation results. The horizontal brown line, the blue line, and
the vertical red line denote the theoretical values of τ3 [Eq. (4)],
τ1|lt =0 [Eq. (6)], and l∗

t2 via Eq. (13), respectively. The areas colored
with light gray, yellow, and white highlight the regions of target size
1 < lt , l∗

t2 < lt < 1, and lt < l∗
t2, respectively. The blue dashed line

refers to the full FD search time τ3 calculated by Eq. (4). Panels
(b) and (c) depict the comparison of the simulation and theory in
the range of lt > 1 and in the range of lt < 1, respectively. The black
dashed lines correspond to the theoretical curve of τ1|lt �1 via Eq. (7)
in (b), and τ1|lt →0 via Eq. (10) in (c).

the LD search is more complicated. Figure 4(a) presents the
simulation results for τ1 versus the inverse target size l−1

t in
more detail. For small values of l−1

t , as shown in Fig. 4(b), τ1

increases with l−1
t in a linear fashion, similarly to the full FD

search. Yet, the increase becomes suppressed as l−1
t further

increases beyond l−1
t ≈ 1, and finally saturates as l−1

t � 10.
This behavior of τ1 is quite distinct from τ3, which diverges as
l−1
t increases.

As lt decreases to zero, the target reduces to a lattice point
with the corresponding search time expressed in Eq. (6). We
depict τ1|lt =0 by the horizontal dashed brown line in Fig. 4(a),
showing a good agreement with the simulation result, which
asymptotically converges to the theoretical prediction. We
also depict the full FD search time τ3 by the blue dashed line
in Fig. 4(a). A crossing point between τ1|lt =0 and τ3 found
around l−1

t 	 10 indicates a characteristic target size defined
by l∗

t2, under which τ1 is smaller than τ3. After equalizing
τ3 = τ1|lt =0, the corresponding target size is determined as

l∗
t2 = q

2πH (rS|rS )
. (13)

For a cubic lattice with the periodic boundary conditions
in all directions, one has H (rS|rS ) 	 1.516 [42,59], leading
to 1/l∗

t2 = 9.53 in the case of q = 1, which is close to our
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findings. In fact, Eq. (13) is obtained by neglecting the
finite-size term 1/L in Eq. (4) and the pseudo–Green’s func-
tion H (rS|rT ) in Eq. (6); thus the finite-size effect is not
considered. Nevertheless, l∗

t2 still agrees very well with the
simulation results, as we depict l∗

t2 by the vertical red dashed
line in Fig. 4(a).

Recalling Eqs. (7) and (10) which provide distinct expres-
sions for the LD search time τ1 as lt > 1 and lt < 1, the
marginal length scale l∗

t1 ≡ 1 is defined as it plays a decisive
role in characterizing the dynamical behavior of the full LD
search. In the range of lt > l∗

t1, as also depicted by the gray
area in Fig. 4(a), the target search time τ1 is plotted versus
the inverse target size l−1

t in Fig. 4(b). Interestingly, the sim-
ulation result for τ1 is found increasing almost linearly with
respect to l−1

t , similarly to the Smoluchowski theory for the
full FD search. A quantitative agreement is revealed between
the simulated τ1 and the theoretical prediction Eq. (7) [dashed
line in Fig. 4(b)], while the latter is derived for a sufficiently
large target traced under random walks. Given the similar
functional form for the full LD and full FD searches, a closer
inspection is made of the respective slope d (τ1/τx )/d[(lt )−1].
On the basis of the theoretical expression Eq. (7) and Eq. (4),
using q = 1, one can find the slope 3N/(2π ) and N/(2π )
for LD and FD, respectively. In other words, in the range of
lt > l∗

t1 and with the same friction coefficient, the LD search
is three times slower than FD, but its dependency on the target
size is similar to FD.

Now we focus on τ1 for the target size below the critical
target size, lt < l∗

t1 = 1. In Fig. 4(c), the simulation result for
search time τ1/τx is plotted as a function of the target size lt . A
linear dependence of τ1 versus lt is revealed, which is in sharp
contrast to the above linear relation of τ1 with lt

−1 separated
by the marginal scale l∗

t1. In Eq. (10), we derive the asymptotic
expression of τ1 in the limit of lt → 0. Again, this solution
is found in a good agreement with the simulation results, as
depicted by the black dashed line in Fig. 4(c).

The critical length scale l∗
t1 = 1 in the full LD signifies a

subtle balance between the target radius and the network mesh
size. Compared to the full FD search, where the entire surface
area of the target is accessible for the tracer, the tracer in the
full LD regime essentially searches for discrete target-chain
intersection areas of total number Nisec [cf. Fig. 1(c)]. For lt >

l∗
t1, the expanding target leads to a roughly quadratic growth

of Nisec in terms of the target size lt , approaching a similar
tendency than in the full FD search. However, for lt < l∗

t1,
the target surface is within the six nearest cross-links next
to the center vertex of the lattice (see Fig. 1), which gives rise
to the fixed number Nisec = 6. This is probably responsible
for the distinct dynamic dependence on lt between the search
times τ1|lt →0 and τ1|lt �1, which turns out to be a unique
feature for the full LD search.

C. Dynamical features of the combined LD–FD searches

Finally, we focus on the case with the nonzero desorption
probability poff ; namely, the tracer is able to switch between
the bound and unbound state with the lattice.

In Fig. 5, the simulated target search time τ with the fixed
friction ratio q = 1 is shown as a function of the desorption
probability poff and of various target sizes. For the small

0.4

0.7

1

1.3

1.6

0.002 0.02 0.2

q = 1

τ
/τ

1

poff

lt = 0.02
lt = 0.05
lt = 0.10
lt = 0.20

FIG. 5. Simulation results for the target search time τ versus
the desorption probability poff with a fixed friction ratio q = 1. τ

is normalized with the full LD search time τ1 with the desorption
probability poff = 0. The data points are computed from simulations
with the rescaled target size ranging from lt = 0.02 to 0.2. The x axis
is shown in log scale for better visualization.

target of the radius lt < 0.1, the target search time exhibits
a marked nonmonotonic nature in the range of 0 < poff < 1,
implying the potential to optimize the search process after a
proper mixing of the FD and LD searches. In the case of the
target size lt = 0.02, the minimum search time is achieved
with the probability p∗

off 	 0.02. The resultant search time
τ is found shorter by 28% and 72% of that for the full LD
and the full FD searches, respectively. On the contrary, for
larger target sizes above 0.1, the search time τ is found to only
monotonically decrease as poff increases and converges to full
FD search time. In the case of lt = 0.1, the nonmonotonic
behavior is not so strong, implying that a marginal target size
around lm ≡ 0.1 plays the role of a characteristic length that
determines whether the combined LD-FD search becomes
favorable or not.

Apparently, the above marginal target size lm = 0.1 is not
a universal value but depends on other system parameters. We
already know that the critical target size l∗

t2 plays an analogous
role to lm in assessing the relative efficiency of the FD and
LD search. Specific to the above case, l∗

t2 = 0.105 is found
with the same value as lm. Thus, we propose a genetic relation
lm = l∗

t2, which further follows the critical friction ratio q∗:

q∗ = 2πH (rS|rS )lt . (14)

In analogy to lm, q∗ serves as an indicator to the efficiency of
the combined LD-FD search. Given the relation H (rS|rS ) 	
1.516 for the cubic lattice and the target radius lt = 0.02, the
combined LD-FD search becomes feasible under the condi-
tion q > q∗ = 0.0145. The above discussion is relevant also
for cases of a biomolecule sliding on 1D chains, for instance,
protein sliding on the DNA, where the related friction coeffi-
cient for LD is known to be orders of magnitude larger than
those for the FD [1]. The related friction ratio q is surprisingly
in a similar order of magnitude to the q∗ derived for the cubic
lattice.
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FIG. 6. Simulation results for the target search time τ as a func-
tion of the FD search time fraction f3 for the combined LD-FD
search. τ is normalized with the full LD search time τ1. The open
symbols correspond to the simulation results with the friction ratios
q = 1 and q = 1/2, respectively. The results for even smaller q are
obtained via the FD search time rescaling from τ |q=1, according to
Eq. (15) (see the text for details), as displayed with filled symbols
until q = 1/10 in the plot. The target size is fixed to lt = 0.02 here.

We should stress that although the adjustment of the tar-
get size and the friction ratio both result in a nonmonotonic
dependence of the search time with poff , they signify com-
pletely different processes. The target radius lt determines the
accessible area to the tracer and thus alters the search process.
Yet, tuning the friction ratio q essentially alters the dynamic
performance of the LD and FD searches. In the case of our
model, where we fix the LD friction coefficient γ1 and leave
γ3 free, varying the friction ratio from q = 1 to q′ essentially
rescales the average FD search time included in one search
course from ω3|q=1 to q′ω3|q=1, while the LD search time
remains intact. And importantly, the resultant desorption prob-
ability should effectively change to q′ poff |q=1 due to the time
step change. The summation of the FD and LD search time
yields the overall search time τ |q′ = ω1|q=1 + q′ω3|q=1, and
equivalently,

τ |q′ = τ |q=1{ f3|q=1 · q′ + (1 − f3|q=1)}, (15)

which is expressed as a function of the time fraction f3 for the
FD search previously defined in Eq. (12).

In Fig. 6, we present the simulation results for the target
search time τ as a function of the fraction f3, after normal-
ized by τ1 of the full LD search. The target size is fixed
to lt = 0.02. The red open squares depict the simulation
results of τ with q = 1, clearly showing the nonmonotonic-
ity where the optimal time fraction is f ∗

3 	 0.3. The pink
open squares depict the simulation result τ with q = 1/2,
whereas the gray solid squares refer to τ |q′=1/2 after a time
rescaling from τ |q=1 as shown in Eq. (15). The revealed good
agreement at q = 1/2 validates the derived rescaling scheme.
We further generate the search time below q = 1/2, as de-
picted by the filled squares in Fig. 6. The nonmonotonicity
of τ becomes profound for intermediate q, indicating the
possible optimization of the LD-FD search. To compare the
LD-FD search with the full LD and full FD searches, we

0

0.2

0.4

0.6
lt = 0.02

0.3

0.4

0.5

0.1 0.4 0.7 1

κ
∗

f
∗ 3

q

FIG. 7. Upper panel: The time reduction ratio κ∗ as a function of
the friction ratio q. Lower panel: The time occupation ratio f ∗

3 for
the FD search extracted from the search time minimum exhibited in
Fig. 6, as a function of the friction ratio q. The area colored in blue
(for very low q) highlights the regime of q < q∗, where the critical
ratio q∗ is calculated via Eq. (14).

first determine the optimal search time τmono = Min{τ1, τ3}
via a single search mode, then κ∗ = 1 − τ ∗/τmono reads the
fraction of the time reduced by the combined LD-FD ap-
proach, where τ ∗ is the minimal search time τ revealed as
a function of the probability poff . Consequently, κ∗ is read
off as κ∗ 	 35% with q = 1/2, which increases to κ∗ 	 50%
with q = 1/3.

The time reduction ratio κ∗ and the corresponding time
fraction f ∗

3 for lt = 0.02 are presented as a function of q in
Fig. 7. It appears that κ∗, which signifies the efficiency of
the combined LD-FD search, first increases with decreasing q
from 1 but then drops down below q 	 0.24. At the transition
point q 	 0.24, the combined LD-FD search becomes the
most efficient with κ∗ 	 58%, implying that the combined
LD-FD search can save at most more than half of the search
time than that from a single search mode. The vertical dashed
line depicts the critical q∗ derived from Eq. (14), which nicely
agrees with the simulation results suggesting the efficiency
of the combined LD-FD search should decrease as q < q∗.
Interestingly, the ratio f ∗

3 is found close to 0.5 as q∗ < q <

0.55, suggesting that the target search process is optimized
at the point where involved LD and FD search times become
comparable.

IV. DISCUSSION

By means of theory and numerical simulations, we have
studied the target search process of a diffusing pointlike tracer
in a 3D lattice, modeling a polymer network. To illustrate
the underlying physics, our findings are now discussed in a
more qualitative manner. First, we should recall the fact that
the 1D diffusion is recurrent, which may repeatedly visit the
same point, whereas the 3D diffusion is not. Therefore, the 3D
diffusion could be more suitable for a long-range search. On
the other hand, the trapping of the tracer to the chain lattice de-
creases the search space for the LD search. Therefore, the 1D
diffusion could be more beneficial for a detailed local search.
The interplay of these two effects motivates applications of
the combined 1D-3D search, which turned out to be optimal in
many circumstances, for instance, in surface-mediated diffu-
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FIG. 8. Diagram of regimes indicating the favorable search strat-
egy. The x and y axes denote the fraction coefficient ratio q ranging
from 0 to 1 and the target radius lt , respectively. The FD search
is optimal in regime I, whereas in regime II the combined LD-FD
search becomes favorable driven by the optimal tracer desorption
probability poff . The boundary of these two regimes is depicted by
the black dashed oblique line according to Eq. (13). The horizontal
dashed line depicts the critical target size l∗

t1 = 1 for the LD search,
crossing which the expression of full LD search time τ1 holds a
different scaling law with the target size.

sion [60–62]. Our work extends previous studies on pointlike
targets by introducing a target of adjustable size placed on
the lattice cross-linker. In the limit of a pointlike target, i.e.,
lt = 0, the LD search reduces to a random search process on a
pure cross-linked lattice, enabling us to analytically solve the
target search time that is finite in contrast with the diverging
search time for the FD search. Therefore, it is plausible to ex-
pect that the LD search is more efficient in certain small length
scales of lt than the FD search, particularly for targets with the
finite size 0 < lt < 1 where the target remains 6 intersection
points with the lattice. For the larger target size lt > 1, where
the number of chain-target intersection points increase with
the expanding target, one can infer that the LD search behaves
similarly to the FD, as confirmed by our results.

The quantitative assessment of the target search time relies
on the friction coefficient and thus the diffusion coefficient
of the tracer. We formulate the search time as a function
of the friction coefficient and the target size between the
FD and the LD search. We obtained a critical target size sig-
nifying the length scale below which the LD search becomes
more favorable, which is exemplified by the simulations as
well. In this study, we focus on systems with a large fric-
tion in the LD and a small friction in the FD. Thus, the
LD search is likely to be optimized under certain condi-
tions with the combination of the FD search. We found
that the combined LD-FD search becomes optimal in the
regime characterized via an upper bound of the target size
l∗
t2 and a lower bound of the friction coefficient ratio q.

That is highlighted thorough the triangular regime in the
(q, lt ) phase space as indicated in Fig. 8. The red point on
the right denotes the critical target size l∗

t2 = 1/[2πH (r|r)]
at the ratio q = 1, derived from Eq. (13). We attribute
this optimization mechanism to the situation where the fast
FD search may quickly deliver the tracer close to the tar-
get before performing the slow but detailed LD search

that turns out to be more efficient for small targets. We have
found that a maximum of 50% of the search time can be saved
by the combined LD-FD search relative to the case with full
LD or full FD search. However, the reduction factor reported
in experiments is usually based on the FD search limit [1],
which can be very large with very small targets. Moreover, the
coiled and flexible nature of DNA networks plays a critical
role for the feasibility of the combined LD-FD search [19],
making the intermittent search possibly more efficient in the
network of flexible chains or in an imperfect lattice with
defects.

Note also that here our chain network based on the cubic
lattice is a model on the simplest level. The flexibility of
the chain, the chemical components of the polymer, as well
as the heterogeneity of the polymer structure are all ignored in
the current work, which may further add important corrections
to the target search time. However, this minimal polymer
network model captures most salient features of complex gels,
as similarly and previously considered [44,45]. As a result, the
measure of the target search time remains on a level afford-
able for computational studies. Apart from that, our model
focuses on the target fixed at the cross-link in the center of
the box. This facilitates the development of theoretical tools,
for instance the random walk theory in the lattice, but does
not necessarily represent general occasions where the target
could be placed elsewhere. A good example for that is to
compare the target placed in the middle of the chain and on the
cross-link, where the relevant LD search time has already
been very different in the limit of lt → 0. Nevertheless, the
dynamic features uncovered here of the FD, LD, and com-
bined LD-FD search should apply to targets with a generic
placement.

V. CONCLUSIONS

To conclude, we have studied the target search process of a
diffusing pointlike tracer in a 3D spatial lattice modeling poly-
mer networks. The target is fixed at one lattice cross-link in the
center of the simulation box, and the tracer can conditionally
associate and dissociate with the polymer chain along the
tracing pathway. Our study quantifies the dependence of the
target search time on the target size and the friction coefficient
of the tracer. Critical target sizes are revealed regulating the
efficiency of the LD, the FD, and the combined LD-FD search.
In particular, we have found under certain conditions that the
search can be optimized via the combined LD-FD search,
which saves up to 50% of the search time relative to the cases
of full LD or full FD search.

As one may notice, the combined LD-FD search in our
study is in spirit similar to the sliding-hopping dynamics
observed in many biological systems. The relation koff =
p∗

offγ1/γ
exp
1 can provide a rough translation of the optimal

desorption probability p∗
off into the desorption rate koff for the

tracer [19]. Further applications, for instance, to nanoreactors
where small catalytic targets are immobilized in the poly-
mer network [28] and the metal-organic frameworks (MOFs)
[29,36], should be relevant to this study. In particular, the un-
derlying theoretical predictions discussed in this work could
be useful for designing the catalyst and polymer network
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conjugate structures, aiming at the optimization of a desired
catalytic activity.
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APPENDIX: PSEUDO GREEN’S FUNCTION

We consider the Laplacian operator [42]

(−�)i j = δi j − wi j, (A1)

where δi j is the Kronecker symbol and wi j refers to the sym-
metric transition rate of the tracer from lattice point i to j.
The operator �i j applies to N cross-links at the finite-size
lattice subject to the periodic cubic box in all directions.
The pseudo–Green’s function on the lattice is then defined
as [63]

(−�)i jH (ri|r j ) = δ(ri − r j ) − φ(0)∗(ri ) × φ(0)(r j ). (A2)

Note that φi(r) defines the ith eigenfunction of the operator
(−�)i j with the eigenvalue λi. Index i ranges for N possi-
ble eigenfunctions from 0 to N − 1. The pseudo–Gaussian
function H (ri|r j ) differs from the conventional Gaussian
function via the product (−φ(0) × φ(0) ), corresponding to the
underlying lattice with finite size and periodic boundaries
[42,63].

Particularly for the 3D simple cubic lattice under study,
the analytical expression of H (r|r′) can be obtained via the
Fourier analysis via the equation [42]

H (r|r′) = 1

N

NL−1∑
m=0

NL−1∑
n=0

NL−1∑
p=δ(m,n)(0,0)

×exp[2imπ (x − x′)/NL + 2inπ (y − y′)/NL + 2ipπ (z − z′)/NL]

1 − 1
3 [cos(2mπ/NL ) + cos(2nπ/L̃) + cos(2pπ/L̃)]

. (A3)

Here, the cubic lattice consists of NL = 2L̃ + 1 lattice points in each direction. The target and the initial position of the tracer are
labeled with the position vector r and r′, with the integral coordinates (x, y, z) and (x′, y′, z′), respectively. The imaginary part in
the exponential term of Eq. (A3) will self-cancel over the summation on m, n, p.
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