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Active binary switching of soft colloids: stability
and structural properties

Michael Bley,a Joachim Dzubiella*ab and Arturo Moncho-Jordá *cd

We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics

(R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of

soft Gaussian colloids with binary interaction switching, i.e., we consider a one-component colloidal

system in which every particle can individually switch stochastically between two interaction states

(here, sizes ‘big’ and ‘small’) at predefined rates. We consider the influence of switching activity on the

inhomogeneous density profiles of the colloids confined by various external potentials, as well as on

their pair structure and phase behavior in bulk solutions. For the latter, we extend the R-DDFT method

to incorporate the Percus test-particle route. Our results demonstrate that switching activity strongly

modifies the steady-state density profiles and structural (pair) correlations. In particular, the switching

rate interpolates from a near-equilibrium binary colloidal mixture of two states at very low rates to a

non-equilibrium, ‘one-state liquid’ at very high rates characterized by one, average interaction size. The

latter limit can be described by an equivalent effective one-component (EOC) equilibrium system, for

which the exact analytical expression for the effective pair potential is a diffusion-weighted

superposition of the active systems’ pair potentials. This leads to the interesting fact that under certain

conditions an interacting switching system can behave like a non-interacting (ideal) gas in the limit of

high switching rates. Moreover, for colloids that are unstable (i.e., demix) near equilibrium, we

demonstrate that phase separation and micro-clustering in both confinement and bulk can be

dynamically controlled by the switching rate, and vanish for high rates. All R-DDFT results are in

excellent agreement with our R-BD simulations.

1 Introduction

Active matter systems are usually defined as collections of
particles containing internal degrees of freedom with the ability
to take in and dissipate energy and, in the process, execute
systematic movement. Examples of active soft matter systems
are self-propelled nanoparticles,1,2 active Brownian particles,3–6

active contractile biopolymers such as myosin II motors acting
on actin filaments inside the cytoskeleton of living cells,7,8 or
biological systems such as bacteria.9 These non-equilibrium
systems have drawn the attention of the soft matter scientific
community in the recent years due to the very rich dynamic and
phase behavior.10 By continually consuming energy, they

circumvent the laws of equilibrium thermodynamics, leading
to steady states that depend on kinetic parameters.11

Biological activity, in particular mediated through fuel-driven
changes of molecular properties and conformations, has been
made responsible for liquid–liquid phase separation and
condensation in cells, with large implications for physiology and
disease.12,13 Living cells contain distinct sub-compartments to
facilitate spatiotemporal regulation of biochemical reactions
where transient microstructuring is key for function. Recently,
novel systems have been designed to achieve programmable
transient conformational states fueled by chemical signals with
a controlled lifetime.14–16 All these applications can be included
in a more ambitious project of discovering supramolecular
systems with non-equilibrium transient morphologies for
designing future active, adaptive and autonomous materials.17

The microscopic origins and features of non-equilibrium
structuring, however, are not well understood. Theoretical
frameworks for interacting reaction-diffusion systems have been
linked so far only to microstructuring dynamics of non-active
systems driven by chemical reactions18–21 or virus infections.22,23

In this work, in contrast to the well-studied motile
activity,11,24 we focus on a different kind of active system
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formed by colloids in which each individual particle can
actively switch between two different states at some specific
kinetic rate. These states, for example, can differ in the
particle conformations and thus have a different interaction
size. Such a system may represent a good model for
mimicking the behavior of soft active hydrogels or vesicles
switching (or ‘breathing’) between two states14,25–27 or respon-
sive, conformationally switching biopolymers.12,28,29 Recent
developments have provided also the opportunity to create soft
micromachines with programmable morphology.30

We note that such a system could also be viewed as a binary
mixture of two different colloidal types, where each species
switches into the other at some specific kinetic rate. Regarding
the experimental realization, however, this would involve mass
transfer and reversible chemical reactions between the colloidal
particles or from some reservoir. Here, we have in mind autonomous
soft particles, like hydrogels, vesicles, or artificial cells, etc.,
which are internally fueled and thus can actively change size or
shape individually. For vanishing switching rates, such a system
is in equilibrium, and a two-component colloidal mixture of
two different species A and B represents the same system.
These binary systems can also be unstable, i.e., demix in
equilibrium, if particle types or states, A and B, are incompatible,
as well known for colloidal mixtures.31 For infinite rates we
will demonstrate that our actively switching system can be
mapped to an effective one-component equilibrium system with
equivalent structure.

In our paper we consider in particular soft colloids interacting
through Gaussian pair potentials with binary switching between
two sizes (referred as ‘big’ (b) and ‘small’ (s) from now on). These
Gaussian pair potentials represent a generic model for polymers
and soft colloidal hydrogels32–34 and cells.35 To investigate
structural features of such an active colloidal dispersion, we make
use of a reactive dynamical density functional theory (R-DDFT)
previously used in similar problems18–23,36 and solve it in the non-
equilibrium steady-state. To check for the quality of the R-DDFT,
which makes mean-field assumptions for spatiotemporal
correlations, we complement our study with reactive Brownian
dynamics (R-BD) computer simulations. These methods allows
us to investigate the effects of active switching on the inhomo-
geneous density profiles of mixtures confined in various external
potentials, such as slab geometry and inside an spherical cavity.
To study the phase behavior and structure also of bulk systems,
we generalize the R-DDFT to incorporate the Percus test-particle
route.31 We also consider binary systems which are unstable
and demix in equilibrium and investigate how they respond to
switching interactions.

We demonstrate in our work that the switching rate has
drastic effects on colloidal structure and phase behavior.
In particular, we show that the rate interpolates between a
system comparable to the corresponding equilibrium binary
mixture at low rates and a non-equilibrium effective ’one-state’
liquid for large rates, strongly affecting the structure and
stability in bulk and confinement. Importantly, we show that
sufficiently fast switching impedes the phase separation of an
(in equilibrium) unstable fluid, allowing the control of the

degree of demixing and local microstructuring by tuning the
activity rate. The system also demonstrates a high degree of
versatility, as the interaction parameters can be chosen to
obtain, for instance, a purely ideal effective system in the limit
of fast switching rates, even though particle interactions are
non-negligible. The results are in excellent agreement with the
reactive BD computer simulations, which further support all
our data and the high quality of the R-DDFT approach. Hence,
our work describes how active systems of switching particles
modify the inhomogeneous properties in comparison to non-
active systems, and how this may be exploited to control the
structure and phase behavior.

2 Theory

We investigate an active system formed by colloids in binary
states, i.e., a colloid has either a big (b) or a small (s) size.
Particles of state b have the ability to spontaneously convert
into state s at some fixed rate kbs (units of time�1), and similarly
particles of state s switch into particles of state b at rate ksb,

bÐ
kbs

ksb
s. This kind of switching binary mixtures offers the

possibility to study the role played by the switching activity on
the non-equilibrium properties.

With the purpose of characterizing the effect of the
activity on all these properties, we make use of a well-known
model system formed by a binary mixture of soft
Gaussian colloids, defined by the following pair interaction
potentials37

buij = eije
�r2/sij

2

with i, j = s,b, (1)

where r is the interparticle distance, b = 1/kBT (kB is the
Boltzmann constant and T the absolute temperature), eij 4 0
denotes the strength of the i–j pair interactions, and sij repre-
sents the range (we will denote sbb and sss by sb and ss

respectively, to simplify notation). These soft pair potentials
remain finite for any interparticle distance, so particles can
interpenetrate each other.

2.1 Stationary compositions of switching particles

Let first consider the time evolution of the particle concentrations
for a homogeneous system (bulk) in which states b and s switch
one into each other, b " s. We consider the binary system
formed by Nb particles of state b and Ns particles of state s
contained within a volume V, at fixed temperature T. The bulk
number densities of species of each state are given by ri = Ni/V
(i = b,s). We denote the total number density by rT = rb + rs, and
the molar fractions by xs = rs/rT and xb = 1 � xs. The first-order
differential equations that rule the switching kinetics can be
written as

drb
dt
¼ ksbrs � kbsrb;

drs
dt
¼ kbsrb � ksbrs: (2)

In each case, the first term of the right hand represents the
production, whereas the second one the disappearance of this
component. These coupled differential equations are analytically
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solvable, starting from the initial conditions rb(t = 0) = rb0 and
rs(t = 0) = rs0, leading to the following time dependent concen-
trations

rbðtÞ ¼
1

K
ðrb0kbs � rs0ksbÞe�Kt þ ksbrT0½ �

rsðtÞ ¼
1

K
ðrs0ksb � rb0kbsÞe�Kt þ kbsrT0½ �;

8>><
>>: (3)

where K� kbs + ksb and rT0 = rb0 + rs0. During the whole process,
the total number of particles in the system is preserved, i.e. rb(t) +
rs(t) = rb0 + rs0 = rT. The composition xi varies exponentially with
time at the same rate to finally reach the stationary state, in which
the concentrations become constant. The final steady-state
compositions are given by xb(t - N) = ksb/(kbs + ksb) and
xs(t - N) = kbs/(kbs + ksb). In particular, if the initial
concentrations are adjusted to fulfill the condition kbs/ksb = rs0/
rb0 = xs/xb, then the system is originally stationary at t = 0 and the
integration of the kinetic equations (eqn (2)) leads to a time-
independent solution, in which the compositions are constant:
xb(t) = xb0 and xs(t) = xs0.

2.2 Reactive dynamical density functional theory (R-DDFT)

2.2.1 Basic formalism. We denote uext
i (r) (i = b,s) as the

external potentials acting on the big and small colloids at
position r. These potentials can be caused by applied external
forces (such as electrostatic or gravitational fields) or simply
represent the effect of confining walls. In the absence of
switching activity, the time-dependent density profiles of the
colloids affected by these external fields, {ri(r,t)}, can be pre-
dicted by the dynamical density functional theory (DDFT),
which represents an adaptation of the classical equilibrium
density functional theory for fluids of Brownian particles to
non-equilibrium conditions.38,39 According to DDFT, the time
evolution of the ensemble average density profiles obeys the
following continuity equation40,41

@riðr; tÞ
@t

¼ �r � Ji with i ¼ b; s; (4)

where the net fluxes are given by

Ji = �Di[rri(r,t) + ri(r,t)br(uext
i (r) + mex

i (r,t))], (5)

with i = b,s. Here, Di represents the diffusion constant of
component i (which is assumed to be independent on the

specific location of the particles), and mexi ðr; tÞ ¼
dFex½friðr; tÞg�

driðr; tÞ
.

Fex[{ri(r,t)}] is the equilibrium excess free energy functional with
the equilibrium density profiles replaced by the non-equilibrium
ones ri(r,t).

The equilibrium and non-equilibrium properties of soft
Gaussian particles described by eqn (1) are well represented by
a weakly correlated mean-field fluid over a surprisingly wide
density and temperature range, being more accurate by increasing
particle densities.33 The mean-field free energy functional for

colloidal mixtures of two states, i = b,s, reads as:

F ex½friðrÞg� ¼
1

2

X
i; j¼b;s

ðð
riðrÞrjðr0Þuijðjr� r0jÞdrdr0: (6)

Using eqn (6) we find the mean-field non-equilibrium excess
chemical potential

mexi ðr; tÞ ¼
X
j¼b;s

ð
rjðr0; tÞuijðjr� r0jÞdr0: (7)

Starting from a non-equilibrium initial state, the time-
dependent density profiles, {ri(r,t)}, evolve towards the final
equilibrium distribution, {req

i (r)}, in which the diffusive fluxes
of both species become zero at any point of the space, Ji = 0.

However, the DDFT method described before is restricted to
the case of non-active systems. The question that naturally
arises at this point is how the DDFT formulation can be
generalized to active systems, in which each particle switches
between two states b and s at some predefined rates. In this
case, the time evolution of the particle concentrations is not
only caused by the diffusive fluxes {Ji}, as they do not account
for the production and disappearance of each component due
to the switching activity, provided by eqn (2). This process
occurs locally, so the conversion rate of big colloids into small
ones and vice versa only depends on the local concentrations of
both species. Therefore, the classical DDFT framework has to
be extended to consider this new effect. This can be achieved by
including into the continuity equation (eqn (4)) new terms to
account for the production and disappearance of particles due
to active switching, which follow the kinetic equations (eqn (2)).
The resulting theoretical framework, called reactive dynamical
density functional theory (R-DDFT), has been successfully
applied to similar problems.18–21,36 According to R-DDFT, the
time evolution of the density profiles of big and small soft
colloids is given by the following set of differential equations:

@rbðr; tÞ
@t

¼ �r � Jb þ ksbrsðr; tÞ � kbsrbðr; tÞ

@rsðr; tÞ
@t

¼ �r � Js þ kbsrbðr; tÞ � ksbrsðr; tÞ

8>>><
>>>:

; (8)

Eqn (8) together with eqn (5) and (7) represent a closed set of
equations to predict the time evolution of the density profiles
for a mixture of switching Gaussian particles.

If the external potentials uext
i (r) are time independent, then

the system evolves in time until a steady state is eventually
reached. However, this final (activity-present) state does not
imply that the net fluxes are zero any more. Instead, the steady-
state density profiles (qri/qt = 0) in the presence of switching
activity are the solution to

r � Jb ¼ ksbrsðrÞ � kbsrbðrÞ

r � Js ¼ kbsrbðrÞ � ksbrsðrÞ

(
; (9)

so the net diffusive fluxes are balanced by the production
and disappearance of particles due to the switching activity.
Since Ji a 0, this final steady regime reached at t - N is
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not an equilibrium state. In particular, the density profiles
or any other macroscopic properties as the pressure will
be dependent on the dynamic properties, namely Ds, Db, kbs

and ksb.
2.2.2 Switching activity in stationary situations. In the

following we will assume that the bulk concentrations (or the
total number of particles of state b and s for confined systems)
satisfy the stationarity condition

rbulks

rbulkb

¼ xs

xb
¼ kbs

ksb
: (10)

Therefore, the bulk properties (and so the composition of the
mixture of states) will remain constant, even though the inhomo-
geneous properties induced by the presence of external potentials,
confining walls or by phase separation will still be affected by the
switching activity. As eqn (10) interconnects both kinetic rate
constants, we can use only one of them, for instance kbs, to
characterize the switching rate. It can be written as the inverse
of the characteristic big-to-small conversion time, kbs = 1/t. We
can compare t with the typical diffusion time for small particles,
t0 = ss

2/Ds. We therefore conveniently define the switching
activity as

a ¼ t0
t
¼ kbsss2

Ds
: (11)

For a { 1, the b " s conversion rate is so slow that the time
evolution of the density profiles is dominated by the diffusion. In
this case, any switching event at some specific location is rapidly
compensated by diffusive fluxes of particles that balance the effect
of the activity. In the limit a - 0 the classical (equilibrium) DFT of
a true binary mixture is recovered. In this particular case, the
density profiles converge to the equilibrium distribution for t -
N. For a c 1 the exchange rate is so large that the diffusion is
not fast enough to compensate its effects, so switching events
dominate over diffusion. Thus, in the final steady-state
the particle states b and s can not be distinguished anymore
because they do not have enough time to diffuse and reorganize
according to the applied external potentials. Consequently, in
every point of the space we have that both steady-state density
profiles share the same shape. We elaborate on this in the next
subsection.

2.2.3 The effective one-component (EOC) equilibrium
system describes a c 1. The microstructure, i.e., all the
steady-state radial distribution functions, converges to the
same function of the interparticle separation, gij(r) - geff(r),
for a c 1. Therefore, we can define an effective pair potential
lima-Nuij(r) = ueff(r) of an equivalent equilibrium system that
describes the non-equilibrium active system in the limit a c 1.
For the same reason, the external potential acting on
both species may also be expressed by an effective potential
lima-Nuext

i (r) = uext
eff (r). It can indeed be shown mathematically

(see Appendix) from the R-DDFT equations that the effective
external potential can be written as an average of the individual

external potentials36

uexteff ðrÞ ¼
Dbxbu

ext
b ðrÞ þDsxsu

ext
s ðrÞ

Dbxb þDsxs
: (12)

Similarly, the effective interparticle particle pair potential
takes the following analytical form

ueffðrÞ ¼
Dbxb

2ubbðrÞ þ ðDb þDsÞxbxsubsðrÞ þDsxs
2ussðrÞ

Dbxb þDsxs
:

(13)

These arguments show that the microstructure in the limit
a - N actually corresponds to the one of an effective one-
component system (EOC) in equilibrium.

It is important to emphasize here some important points.
First, eqn (12) and (13) for the effective external and interparticle
interactions of the EOC equilibrium fluid are only correctly
defined in the limit of very fast activity rates, a c 1. If we are
not in this limit, the non-equilibrium system cannot be mapped
onto an non-active effective one-component fluid. Second, ueff(r)
depends on the assumptions made for the excess free energy in
the DFT. The analytical form provided by eqn (13) represents
a particular result for the binary mean-field fluid. Different
prescriptions for Fex will lead to different expressions for the
effective pair potential. Finally, uext

eff(r) and ueff(r) depend on the
dynamic properties of the system. If we change the diffusion
coefficients, the effective pair potential will be different too, and
so the steady-state density profiles. Consequently, properties
such as the bulk pressure of the fluid, obtained via integration
of the compressibility equation, will depend on the particle
diffusivities, which is a clear signature that the active system
is not in equilibrium for a a 0, even though it reaches the
steady-state for t - N.

2.3 R-DDFT for Percus’ test particle route

For a binary mixture of big and small colloids interacting with
pair potentials that only depend on interparticle distance, r, the
microstructure is fully determined by the big–big, big–small
and small–small time-dependent radial distribution functions
gbb(r,t), gbs(r,t) and gss(r,t) of the homogeneous bulk suspension
(without confining external potential).

In order to calculate gij(r), we need to generalize the R-DDFT
framework. For this purpose, we first make use of the Percus
test particle route.42,43 Within this method, in principle one
should solve the R-DDFT equations in the presence of a test
particle of state i located at the origin r = 0 that acts as an
external potential for the mixture. The density profiles of
particle of state j around this central particle, rij(r,t), normal-
ized by the corresponding bulk density rbulk

j , provide the radial
distribution function, gij(r,t) = rij(r,t)/rbulk

j . However, this
procedure still lacks a very important feature of the real active
switching mixture: the external potential exerted by the central
particle is not fixed, but it fluctuates due to the switching of the
central colloid.

To introduce the switching of the external potential, the
two-state R-DDFT framework must be extended to a four-state
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R-DDFT that also takes the transition probability between the
two possible states of the fluctuating central particle into
account. We denote rp

ij(r,t) as the probability density of finding
a particle of state j located at a distance r from a central particle
of state i at time t, and define the the vector rp(r,t) as

rp(r,t) = (rp
bb(r,t),rp

bs(r,t),rp
sb(r,t),rp

ss(r,t)). (14)

Analogously, we can define the vector including the four
currents

J = ( Jbb, Jbs, Jsb, Jss). (15)

In the context of the mean-field approximation, the diffusive
currents are given by

Jij ¼ �Djrrpijðr; tÞ

�Djr
p
ijðr; tÞbr uijðrÞ þ

X
k¼b;s

ð
rikðr0Þukjðjr� r0jÞdr0

" #
:

(16)

The time evolution of the probability densities rp
ij(r,t) obeys

the following set of four coupled Fokker–Planck equations,
which include particle interactions (modeled through the
mean-field approach)44–46

@

@t
rpðr; tÞ ¼ �r � JþW � rpðr; tÞ: (17)

The transition rate matrix W takes into account not only the
switching between both kind of colloids (b and s) distributed
around the central potential, but also the switching of the
fluctuating external potential in itself. It is given by

W ¼

�2kbs ksb ksb 0

kbs �ðkbs þ ksbÞ 0 ksb

kbs 0 �ðkbs þ ksbÞ ksb

0 kbs kbs �2ksb

0
BBBBBB@

1
CCCCCCA

(18)

W satisfies the required properties of any transition matrix,
namely Wij � 0 iaj and

P
i

Wij ¼ 0 8j.47

2.4 Boundary conditions and numerical details

To solve the R-DDFT (eqn (8)), three boundary conditions are
required. First, the initial density profiles (for t = 0) have to be
specified: ri(r,t = 0) = ri0(r). The second and third condition
involve the knowledge of the number densities in two different
locations. For binary active mixtures confined between two
planar walls separated by a distance L, these conditions impose
zero diffusive fluxes at both confining walls: Ji(z = 0,t) = Ji(z = L,t) = 0.
For mixtures confined inside a spherical cavity of radius R, we
get Ji(r = 0,t) = 0 due to spherical symmetry at the center of the
cavity and Ji(r = R,t) = 0 (closed confining spherical wall).
Finally, to integrate the four-state R-DDFT (eqn (17)), we also
have the condition Jij(r = 0,t) = 0 (spherical symmetry), whereas
the third condition imposes fixed probability densities far away
from the central particle r - N, given by rp

bb(N,t) = ksb
2/(kbs +

ksb)2, rp
ss(N,t) = kbs

2/(kbs + ksb)2 and rp
bs(N,t) = rp

sb(N,t) = kbsksb/

(kbs + ksb)2. In this way, the composition of the mixture in the
bulk is preserved.

In order to numerically integrate the R-DDFT and the
stochastic R-DDFT equations, we use a spatial grid of Dz =
Dr = 0.01ss. The time step has been fixed to Dt = 10�5t0, which is
small enough to avoid the appearance of numerical instabilities
(Dt o Dz2/(2Ds)). For the case of the calculation of the radial
distribution functions, the integration extends over a distance
larger that rmax = 80ss to avoid finite-size effects, using
Fast Fourier Transforms to evaluate the convolution integrals
appearing in eqn (16).

3 Reactive Brownian dynamics (R-BD)
computer simulations

Complementary to the R-DDFT, all systems have been simulated
using a reactive Brownian dynamics (R-BD) algorithm, which
includes active switching between the two different states of
colloids, b and s. The overdamped Langevin equation of motion
for a particle i writes

xi
:ri = �rU(ri) + r(t), (19)

where :ri and ri denote velocity and position of the i-th particle,
the drag coefficient xi and the diffusion coefficient Di are related
as Di = kBT/xi, and r(t) is the random force vector. The compo-
nents of the random force vector fulfill the properties hRa(t)i = 0
and hRa(t)Rb(t0)i = 2xi

2Didabd(t � t0) with a and b denoting the
spatial dimensions, and d and dab as Dirac and Kronecker delta
functions, respectively. The first term on the right hand side in
eqn (19) yields the force acting on the i-th particle

Fi ¼ �rUðriÞ ¼ �ruexti ðriÞ �
XN
jai

ruijðrijÞ; (20)

which consists of the contribution through the position-
dependent external field and the pairwise interactions of all
other neighbors found at distances rij. The positions of all N
particles are updated using the Euler–Maruyama propagation
scheme,48 which writes

riðtþ DtÞ ¼ riðtÞ þ
Dt
xi
Fi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DiDt

p
fi; (21)

where Dt is the integration time-step, which is 10�3t0 for systems
M3 and M4 (Table 1), and 10�4t0 for the systems M1 and M2,
respectively, and fi is a vector consisting of random values
following a standard normal distribution.

Table 1 Main parameters describing the particle interactions and con-
centrations for four different binary Gaussian systems. Systems M1 to M3
are stable mixtures in equilibrium, whereas system M4 is located inside the
unstable region of the phase diagram in equilibrium

System ebb ess ebs sb/ss sbs/ss rTss
3 xs Ds/Db

M1 2.0 2.0 2.0 2.0 1.5 0.191 0.5 2.0
M2 2.0 2.0 �2.0 1.0 1.0 0.76 0.5 1.0
M3 2.0 2.0 1.0 1.504 1.277 2.4 0.75 1.504
M4 2.0 2.0 1.888 1.504 1.277 2.4 0.75 1.504
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The possibility of active switching between the particle states
is checked after every integration step, and the probabilities of
switching are defined as

pbs = 1 � e�kbsDt, psb = 1 � e�ksbDt (22)

where kbs = a/t0 and ksb = xba/(xsss). In the active switching
R-BD framework, properties of the i-th particle are switched, if
the random variate following a uniform distribution between
zero and one pi(t) is below pbs if the particle is of state b or is
below psb if the particle is of state s.

These R-BD simulations for up to 8100 switching particles
have been conducted using an own code for production times
up to 25tB and the parameters presented in Table 1. The box
sizes have been varied for the bulk simulations at the given
densities to reduce finite size effects. For the cubic and spherical
system, cut-off distances for the pairwise interactions have been
set to values close to half of the respective box size ranging from
5.9 to 7.4ss for cubic box dimensions with edge lengths 12 and
15ss, respectively. For the bulk simulations of the systems M3
and M4, periodic boundary conditions (pbc) have been applied
on the cubic simulation cells. In the simulations of the mixtures
M1 and M2 confined between two walls, the pbc have been
maintained in the two dimensions perpendicular to the
separation vector of the walls with box sizes lx = ly = 10ss at a
separation distance lz = 2.5ss, using a cut-off distance of 3.5ss. The
spherical cavity has radius 6.0ss (same for the potential cut-off).

4 Results and discussion

We explore two different conditions of confinement (i.e.,
between two parallel planar walls and inside a spherical
compartment) as well as bulk solutions (without external
potentials). Starting from an initial non-equilibrium configuration,
the particle densities ri(r,t) evolve in time until a final steady-
state regime is reached. This final state depends on the switching
activity rate, a. We use our mean-field R-DDFT to determine the
inhomogeneous steady-state density profiles of confined colloids,
ri(r), and the four-state R-DDFT to calculate the steady-state radial
distribution functions of the bulk suspension, gij(r). In all cases,
theoretical results are compared with the R-BD simulations.
We cover activities ranging from a = 0 (non-active equilibrium
state) to a = 1000 (fast switching rate regime), which yields results
comparable to a - N.

Table 1 shows the interaction parameters, number densities
and state compositions of four different active systems of
Gaussian colloids (systems M1 to M4) that will be matter of
investigation. Systems M1 to M3 correspond to stable mixtures
(they do not phase separate in equilibrium), whereas system M4
is located inside the unstable region of the phase diagram, so it
undergoes fluid-fluid demixing.49 In all cases, the kinetic rate
constants have been chosen to fulfill the condition given by
eqn (10) to preserve the composition of the mixture of states.
The particle diffusivities are in all cases assumed to follow the
Einstein relation, Di = kBT/(3pZsi), so Db = (ss/sb)Ds.

In addition to the active systems, we also explore the effective
one-component (EOC) in equilibrium, which is equivalent to the
active system in the limit a - N where all external potentials
and all particle–particle pair interactions converge to the same
effective potentials, given by eqn (12) and by eqn (13), respectively.

4.1 Inhomogeneous properties and microstructure of stable
mixtures

4.1.1 Symmetric slit-pore confinement. We first investigate
the non-equilibrium steady-state density profiles of system M1
confined into a narrow slit pore. The total average density and
composition of this system are rTss

3 = 0.191 and xs = xb = 0.5.
We emphasize that rT is a fixed quantity because the slit
represents a closed system. The distance between both planar
walls is L = 2.5ss. In order to confine the colloids, the same
external auxiliary potential is applied to both components:

buext
b (z) =buext

s (z) = 10(e�50z/ss + e�50(L�z)/ss) (23)

for 0 o z o L, and uext
b (z) = uext

s (z) = N for z o 0 or z 4 L.
The theoretical density profiles are obtained starting at time

t = 0 from the equilibrium profiles of the non-active system (a =
0), and then turning on the activity at t 4 0. The local densities
evolve rapidly at short times and finally converge to the final
steady state, in which the effect of the activity is exactly
balanced by the diffusive currents. Black solid and red dashed
lines in Fig. 1 show the steady-state profiles of big and small
colloids for a = 0, 10, and 1000. As observed, activity modifies
the density profiles near each wall, even though the average
concentrations of each component remain unaltered. The
adsorption peak of big particles decreases whereas the concen-
tration peak of small particles close to the wall shows an
increase coupled with a reduction of the depletion region.

In addition to the theoretical calculations, we performed
R-BD simulations in the same conditions to estimate the
reliability of our mean-field R-DDFT method. Fig. 2(a) depicts
a representative snapshot of system M1 confined betweeen two
planar walls for a = 0. The nearly quantitative agreement
between the R-DDFT theoretical predictions and the R-BD
simulation data obtained in the steady-state regime (depicted
as hollow symbols in Fig. 1) indicates that the reactive mean-
field DDFT is able to capture the non-equilibrium structure of
the active mixture of states of the soft colloids for any activity
rate a. It should be remarked that the mean-field approach
used in our theoretical model (eqn (6)) compares very well to
the simulation data, even for the small values of the particle
number densities of system M1.

For very large activities, the system finally tends to a steady-
state in which the density profiles of big and small particles
converge to each other. This fact can be clearly observed in
Fig. 1(c) where the density profiles for a = 1000 are shown.
As the activity rate increases, particle switching enforces a
decrease of the concentration of big colloids and an increase
of small ones close to the walls. For a = 1000, both profiles
converge to a common form, thus indicating that the binary
system behaves as an effective one-component system (EOC) in
the limit of large switching activity.
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This result can be rationalized as follows: the switching
activity introduces in the system a delocalization of the particle
states (big and small), in the sense that a colloid of state b in
certain location is suddenly converted into a particle of state s.
If a { 1 the switching events are rare and the diffusive currents
are still able to preserve the distinction between both states.
However, for a c 1 many switching effects occur during the
diffusive time t0, so particles do not move fast enough to
rearrange their location by diffusion. Consequently, they tend
to experience the same average interparticle effective inter-
action (uij(r) - ueff(r) for a - N). In order to confirm this,
we include in plot Fig. 1(c) the corresponding prediction from
the equilibrium EOC, where the colloids are interacting through
an average external and particle–particle pair potentials given by
eqn (12) and (13), respectively (blue lines for theory and blue
symbols for R-BD simulations). The agreement between the
density profiles obtained for a = 1000 and the EOC confirms
that the active system indeed converges to the EOC model in the
limit of large switching rates.

It is important to emphasize again that the active system in
the limit a - N cannot be confound with a truly equilibrium
system. Indeed, the effective potentials ueff(r) and uext

eff (r) in
contrast to the conventional ones, include the diffusion
constants, which is a signature of the non-equilibrium nature
of the underlying mixture. In fact, the component with a larger
diffusivity contributes more to the average.

4.1.2 Asymmetric slit-pore confinement. In order to study a
confined active system in which big and small colloids interact
differently with the confining walls, we solve again the two-
states R-DDFT differential equations using an asymmetric
external field for small and big colloids in such a way that
component b is attracted to the left wall and repelled from the
right one, whereas component s is repelled from the left and
attracted to the right wall. In particular, we select

buextb ðzÞ ¼ �2e�5z=ss þ 2e�5ðL�zÞ=ss þ buauxðzÞ

buexts ðzÞ ¼ þ2e�5z=ss � 2e�5ðL�zÞ=ss þ buauxðzÞ

8<
: ; (24)

where uaux(z) is an auxiliary short-range potential included to
avoid particle penetration inside the walls, given by buaux(z) =
10(e�100z/ss + e�100(L�z)/ss). For these conditions, the system
confined inside both plates is the one identified in Table 1 as
system M2. This system has a symmetrical composition, both
components have the same particle size (sb = ss = sbs) and
diffusion constants. Particles of the same state are repelled,
whereas particles of different state are attracted (ebb = ebb =
�ebs = 2). This combination of parameters tries to reproduce
the typical screened electrostatic interactions appearing in a
binary mixture of oppositely charged colloids confined inside
two charged electrodes.

Fig. 1 Steady-state density profiles of big and small soft colloids for
system M1 confined within a narrow planar slit (wall separation L =
2.5ss), for activities (a) a = 0, (b) a = 10 and (c) a = 1000. Black solid and
red dashed lines show R-DDFT predictions for rb(z) and rs(z), respectively.
Black squares and red triangles denote the same profiles calculated from
R-BD simulations results. Blue lines and symbols are R-DDFT and R-BD
results obtained for the effective one-component system (EOC).

Fig. 2 Snapshots of Brownian dynamics simulation. (a) System M1
confined inside a narrow slit for a = 0. (b) System M4 confined inside a
spherical compartment for a = 0 (equilibrium)and a = 100. Blue and red
spheres represent colloids in the big and small states, respectively.
(b) System M4 in bulk (box with periodic boundary conditions) for a = 0,
10 and 1000.
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Fig. 3 depicts the steady-state density profiles of the active
M2 system for a = 0 (equilibrium), 10 and 1000. The accordance
between theory and simulation is very good in all cases.
Differences are only observed around the adsorption peak close
to the attractive wall for each component, where the theory
overestimates the local density. This discrepancy can be attributed
to the limitation of the mean-field approach when predicting the
structure in regions with strong density variations.

Again, the steady-state density profiles in the regime of very
fast switching rates converge to the ones obtained for the
corresponding EOC. For the particular choice of interaction
parameters of system M2, the resulting effective pair inter-
action potential and external potential are given by ueff(r) = 0
and uext

eff (z) = 0 (excluding the auxiliary short-range potential that
prevents wall penetration). In other words, in the limit of fast
switching activities, a c 1, particle interactions are dynamically
neutralized leading to a system that effectively behaves as an
ideal system. This can clearly appreciated in Fig. 3(c), in which

the density profiles of both components tend to a flat distribution
typical of a non-interacting system. It is well known that ideal
systems do not exist in nature; they are an idealization limit for
diluted and weakly interacting systems. Consequently, these
result points out a surprising property of potential practical
interest of active switching systems: they can be designed to fully
reproduce the behavior of a real ideal system, even though particle
interactions are non-negligible.

4.1.3 Bulk. The switching activity not only has important
implications on the inhomogeneous density profiles of confined
systems, but also on the local ordering of the particles around
each other, i.e. the microstructure in bulk. For an homogeneous
bulk suspension, the microstructure of the mixture of states
is characterized by means of the partial radial distribution
functions, gij(r), so that rbulk

j gij(r) is the number density of
particle of state j at distance r from a central colloid of state i
located at r = 0. Due to the condition given by eqn (10), bulk
concentrations far away from the central particle (r - N) are
not affected by activity. However, the shape of gij(r) can be
significantly modified close to the central particle for two
reasons: (1) switching events of the colloids around the central
particle; (2) switching events of the central particle in itself,
which behaves as a fluctuating external potential for the rest of
the mixture due to the non-equilibrium activity.

To explore the role of the switching activity on the micro-
structure, we employed our four-state R-DDFT and R-BD
simulations to determine gij(r) for increasing activity rates. We
selected the system M3 of repulsive Gaussian colloids shown in
Table 1. The interaction range of this system represents fairly
well the simulation data for mixtures of linear flexible polymers
with a number of monomers Nm = 200 (big) and 100 (small),
immersed in a good solvent.33 Since ebs o ebb = ess, there is
a decrease of energy penalty by placing unlike species as
neighbors, which in turn favors mixing between both
components. In fact, mixture M3 is a stable system that does
not exhibit fluid-fluid demixing.

Lines in plots (a)–(d) of Fig. 4 show the steady-state radial
distribution functions (gbb(r), gss(r) and gss(r)) obtained from
our theory for four different values of the switching activity rate,
namely a = 0 (equilibrium), 1, 10 and 1000. The corresponding
simulated radial distribution functions in the steady-state
regime are shown as hollow symbols in Fig. 4. Excellent
agreement is found between simulations and theoretical
predictions, thus confirming that incorporating the test-
particle route to the four-states R-DDFT represents a reliable
method to predict the microstructure of non-equilibrium active
switching mixtures. Since the mean-field approach involved in
our model (see eqn (6)) becomes exact in the high density limit,
this agreement is expected to improve even more by increasing
the bulk total number density of the system, rT.

All pair interactions in system M3 are purely repulsive, and
thus the resulting gij(r) have a soft correlation hole at small
interparticle distances, typically observed in this kind of soft
repulsive potentials. The hole is smaller for gbs(r) due to the
weaker repulsion between big and small colloids. This soft
correlation hole is gradually reduced as rT increases, a behavior

Fig. 3 Steady-state density profiles for system M2 confined within a
narrow planar slit (wall separation L = 2.5ss), for activities (a) a = 0, (b)
a = 10 and (c) a = 1000. An external asymmetric potential is applied to both
species. Black solid and dashed lines represent theoretical predictions for
rb(z) and rs(z), respectively, obtained with R-DDFT. Black squares and red
triangles show the same profiles obatined from R-BD simulations. Blue
lines and symbols are R-DDFT and R-BD results for the EOC.
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typical of finite core potentials, approaching the ideal-gas-like
behavior in the high density limit. For a = 0, the three partial
radial distribution functions are very different from each other,
but increasing the switching activity leads to a progressive
approach of the three distribution functions. In the limit of
large a, the three functions converge to the same common
profile, which in turn matches the corresponding g(r) for the
EOC (ueff(r) given by eqn (13)).

Fig. 4(e) depicts the theoretical and simulated number–
number static structure factor for system M3 with a = 0, a =
1000 and the EOC. It is defined as SNN(q) = 1 + rTĥave(q), where
ĥave(q) is the Fourier transform of the average distribution
function, haveðrÞ ¼

P
i; j

xixjðgijðrÞ � 1Þ. For a = 0, the correlation

wells of gbb(r) and gss(r) close to r = 0 are deeper than the one for
gbs(r), whereas for a = 1000 the three distribution functions
have converged to the same functional form, leaving the average
almost unaffected. In contrast to this behavior, we will show in
the following section that SNN(q) shows important changes with
a for a system that phase-separates in equilibrium, so it becomes
an excellent indicator of the onset of fluid–fluid demixing.

4.2 Phase separation dynamically controlled by interaction
switching

4.2.1 Spherical cavity. We showed that switching activity
plays a very important role determining the inhomogeneous
properties and microstructure. These results suggest that the
inhomogeneous distribution of a phase-separated mixture
should be also deeply affected by the activity.36

The conditions for stability and the phase diagrams of
repulsive Gaussian mixtures have been extensively studied

under the mean-field approach.33,49 We select a particular
mixture with the same interaction parameters than system
M3, but shifting the big-small interaction to ebs = 1.888.
Although this change seems to be small, it has a very relevant
impact of the phase behavior since the system now phase
separates into two solutions of different composition above
the critical point, located at r�Tss

3 ¼ 1:647 and x�s = 0.7.33,49

In order to ensure the phase separation of our Gaussian
mixture of states, we chose a total number density given by
rTss

3 = 2.4 and composition xs = 0.75 (system M4 in Table 1).
This binary mixture demixes spontaneously for a = 0, as shown
in the R-BD simulation snapshot in Fig. 2(c).

To investigate the effect of the activity on the phase
coexistence, we apply the method described by Archer,40,50 i.e.
we confine the system inside a spherical cavity of radius Rcav = 6ss

by means of repulsive spherically symmetric external potentials

buexti ðrÞ ¼
Eiðr=RÞ10 r � R

1 r4R

(
i ¼ b; s (25)

where Eb = Es = 20 and R = 5ss. The resulting steady-state density
profiles for a = 0 are shown in Fig. 5(a) (lines for theoretical
predictions ans symbols for R-BD simulations). We observe clear
signatures of phase separation at equilibrium: big particles are
mostly adsorbed close to the external wall of the cavity, whereas
small ones are mainly distributed in the central region of the
cavity. This particular segregation of particles is caused by the
existence of an effective attraction between the wall and the larger
component, which arises because the repulsion induced by the
wall has a longer range on the scale of the small particles, leading

Fig. 4 Plots (a)–(d) steady-state radial distribution functions gbb(r) (black line and squares), gss(r) (red dashed line and circles), and gbs(r) (green dashed
line and triangles) for system M3 obtained from solving the 4-states R-DDFT equations (lines) and from R-BD simulations (symbols) in the bulk solution
for activities a = 0 (equilibrium), a = 1, a = 10, and a = 1000. Blue squares and lines in (d) represent the g(r) of the EOC from R-DDFT and R-BD,
respectively. Plot (e) number–number structure factor SNN(q) for a = 0, 10, 1000 and the EOC.
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to an enhanced depletion of small spheres and to an accumulation
of big particles close to the external wall.51

The degree of separation between both components can be
quantified by means of the demixing order parameter d,
defined as

d ¼ 4p
Nb=xb þNs=xs

ðRcav

0

rbðrÞ
xb
� rsðrÞ

xs

����
����r2dr: (26)

where Nb and Ns are the (fixed) total number of big and small
particles inside the cavity. d = 1 implies that big and small
particles completely demix into two non-overlapping regions,
whereas d = 0 means that both components are fused together
with exactly the same density profile. For a = 0 we find d E 0.8,
indicating a high degree of demixing.

The new steady-state profiles with a non-zero activity are
depicted as solid and dashed lines in plots Fig. 5(b)–(e) for
a = 0.1 to 1, 10 and a = 1000, respectively. These plots show that
increasing activity a enhances the density of big colloids in the
center and the concentration of small particles at the outer
layer, indicating activity-driven mixing. For small values of a the
conversion of particles of state s inside the phase with larger
concentration of particles of state b (and vice versa) is so slow
compared to the characteristic diffusion time that the diffusive
fluxes are able to restore both coexistent phases. However,
for activities above a = 1, both density profiles approach to
each other, so demixing becomes significantly suppressed.
In addition, for a = 1000 both profiles adopt the same form,

which means that the states in system are the same everywhere
on average, which occurs as a mixed microstate. This can be
appreciated by plotting the normalized density profiles ri(r)/xi

(see inset in Fig. 5(e)), which converge to exactly the same
common profile, described by the EOC. It should be noted that
the normalized density profiles for a = 0 and a = 1000/EOC
differ. Higher activities lead to an accumulation of the now
rapidly switching particles at the outer layer at r E 5.0ss, since
the frequent switching between the two sizes leads to effectively
bigger average particles sizes.

The dynamic transition from a phase-separated system to
activity-enforced mixed microstates is clearly visible in the
simulation snapshot of Fig. 2(b), obtained for system M4 in
the steady state. For a = 0, big (blue) colloids are mainly located
close to the external wall of the spherical compartment,
whereas an even distribution is observed for a = 100. The
corresponding simulated density profiles are shown as hollow
symbols in plots (a)–(e) of Fig. 5. Also here we find excellent
agreement between theoretical predictions and R-BD computer
simulations. Fig. 5(f) shows the demixing parameter d (eqn (26))
as a function of the activity. As observed, the transition is
gradual and centered close to a = 1, which represents the
inflection point separating mixed and demixed states. In the
limit a - N, d tends to zero, indicating that the binary system
is totally mixed. These results indicate that switching the
activity can be used as a tool to dynamically control the
demixing state of mixtures.

Fig. 5 Plots (a)–(e) steady-state density profiles of big (black) and small (red) soft colloids for the system M4 confined inside a spherical cavity by means
of the external potential buext

b (r) = buext
s (r) = 20(r/(5ss))

10, for activities from a = 0 (equilibrium) to a = 1000. The system is demixed in the equilibrium state
(small particles in the center of the cavity; big colloids close to the external wall of the cavity). Increasing a forces the mixing of both phases. Solid and
dashed lines represent R-DDFT predictions, whereas square and triangle symbols are profiles obtained from R-BD. Blue lines and symbols in plot (e) are
R-DDFT and R-BD results obtained for the effective one-component system (EOC). Inset: Scaled density profiles ri(r)/xi collapsed onto a common form
for a = 1000 and the EOC. Plot (f) demixing order parameter d as a function of a obtained with R-DDFT (black squares) and R-BD (red stars). Dashed black
and red lines are the corresponding values of d for a = 0.
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4.2.2 Bulk. The demixing within a spherical cavity depends
on a confining potential, which always will affect the way in
which particles phase-separate. Thus, it does not allow the
distinction between external effects caused by the boundary
and intrinsic effects originating from active switching.
Therefore, we make use of the four-state R-DDFT and the R-BD
simulations to determine the microstructure and the structure
factor SNN(q) as a function of a now in a bulk suspension with no
external fields applied. Fig. 6(a)–(d) show the radial distribution
functions of the unstable system M4 for four different values of
the switching activity: a = 0.1, 1, 10 and 1000 (please note that gij(r)
cannot be defined for a = 0 because the system is (macro) phase-
separated). For a = 1000, theory and simulation show an almost
perfect agreement and the radial distributions match again the
one for the EOC, thus indicating that activity compels the system
to behave as a stable effective one-component system. By
decreasing a, the three radial distributions depart from each
other. In particular, gbb(r) shows a significant increase for a = 0.1,
indicating condensation of colloids in the big state into a single
phase (in the R-BD simulations, activities below a = 0.1 have
proven to be too computationally expensive due to the required
large simulation boxes at high number densities).

The R-BD simulation snapshots in Fig. 2(c) indicate a
transition from a phase separated system for a = 0 to a
completely homogenous mixed microstate for a = 1000. Evidences
of mixing can be also seen in Fig. 6(e) and (f), where SNN(q) is
plotted using linear and log scale from a = 0.048 to a = 1000 for the
R-DDFT theory. It is well know that SNN(q) tends to diverge at
small q-vectors when approaching the fluid–fluid spinodal, e.g., by
changing temperature or density. In our case we are not moving a

thermodynamic equilibrium state variable, instead we are
decreasing the activity, but we do observe a similar behavior.
For a Z 10, the activity rate is large enough to prevent the phase
separation of the mixture. Indeed, in this regime the static
structure factor shows the typical smooth behavior of stable
mixtures of Gaussian colloids. However, as we decrease a below
this value, a peak develops in the region of small q-vectors.
The height of this peak shows a significant increase as we
decrease the activity below a = 1. For a = 0.048, we get large stable
peaks at low q, which clearly indicates that the switching activity
cannot stabilize the system, so it undergoes micro-phase
separation. The peaks are roughly at q C 0.5–1ss, indicating
clusters of size of multiple colloidal sizes 2p/q C 6–12ss. These
sizes are one order of magnitude smaller that the size of the
spherical cell size used to integrate the R-DDFT equations
(of about lmax E 80ss), so these predictions are not a consequence
of finite size effects.

The agreement between theory and simulations is very good
for a Z 10, but it worsens by decreasing a due to the limitation
of the mean-field approximation in conditions where the
system is affected by large density fluctuations due to phase
separation. As observed, the R-BD simulation results also
exhibit the appearance of a structure factor peak for small
switching activities. Although we can not conclude from the
simulation data the formation of finite-sized micro-clusters
because the correlation length of the clusters is close to half
of the simulation box size, simulation snapshots (see Fig. 2(c))
indicate that macroscopic phase separation is only recovered in
the limit of (almost) total absence of switching. In addition, the
peaks are located at a similar location than the R-DDFT

Fig. 6 Plots (a)–(d) steady-state radial distribution functions gbb(r) (black line and squares), gss(r) (red dashed line and circles), and gbs(r) (green dashed
line and triangles) for system M3 obtained from solving the four-states R-DDFT equations (lines) and from R-BD simulation (symbols) in the bulk solution
for activities a = 0.1 to a = 1000. Blue squares and lines in (d) represent the g(r) of the EOC from R-DDFT and R-BD simulations, respectively. Plot
(e) number–number static structure factor SNN(q) for a Z 0.1 and the EOC. Plot (f) shows in a log scale the peak of SNN(q) that arises by decreasing the
switching activity, indicating that the unstable mixture is affected by phase separation.
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predictions, which are not affected by finite size effects,
which strongly supports the formation of micro-clusters as
the switching activity decreases.

What is the physical origin of the activity-induced mixing?
From a dynamical/mechanical perspective, one can argue that
the non-additive forces that lead to demixing are only acting
temporarily for the transient small-big pairs and, if switching is
sufficiently fast, are counterbalanced by diffusive mixing of like
pairs. That is the reason for micro-clustering and related to a

typical finite diffusive length l 	 ss
ffiffiffiffiffiffiffiffi
6=a

p
; that is roughly the

length a particle can travel before it changes its identity.
Only during this time a demixed region of size l can be
generated, before, on average, diffusive mixing sets in. In the
range of a = 0.1 to 1, the length is about 3 to 8ss and thus
indeed close to the correlation length calculated by R-DDFT.

From a thermodynamic perspective, it seems the power
generated by the switching propagates into the system and
produces useful entropy in terms of helping the system to mix
again. However, a detailed study of this is out of scope of this
work and is postponed to future work.

5 Conclusions

We used reactive mean-field dynamical density functional theory
(R-DDFT) and Brownian dynamics (R-BD) simulations to investigate
the structural properties and phase behavior of active, binary
switching Gaussian colloids in the steady-state regime. Our results
underline that switching activity has a important effect on the
inhomogeneous density profiles of the binary mixture of states
confined between planar walls with external potentials.

While average structures, e.g., mass density profiles, are
surprisingly little affected by switching, the appearance of the
distinct colloidal states can be localized and spatially controlled
by the rate. This interesting finding may be important for
controlling functionality of switching systems, such as in soft
biorobotics.30 For very large switching rates, we show that the
active mixture of states can be mapped onto an equivalent
effective one-component fluid in equilibrium because the
diffusive fluxes are not fast enough to restore the particle
positions during two consecutive switching events. The effective
pair interaction of this EOC system depends on the dynamical
properties of the active mixture such as the particle diffusion
coefficient, so the latter also corresponds to a non-equilibrium
system in the limit of infinitely fast switching. We expect also
interesting physics for the diffusive behavior, where the long
time diffusion constant (also accessible by DDFT43) might inter-
polate between a mean diffusion for small a and the diffusion of
a mean size for large activities.52 This limit also offers an
additional property of potential practical interest, since the
interaction parameters can be chosen to obtain, in the limit of
fast switching activities, a purely ideal effective system, even
though partial particle interactions are non-negligible.

The switching activity also has important effects on the
phase behavior of the system. We show that increasing the
activity suppresses the phase separation of an (in equilibrium)

demixed system confined inside a spherical cavity, inducing a
gradual spatial mixing of the two states. The same behavior is
also observed in the microstructure of a bulk suspension,
where the big-big radial distribution function gbb(r) shows a
progressive decrease in the region of small interparticle
distances by increasing the switching activity, indicating the
dissolution of aggregates of colloids in the big state. This peak
disappears for large enough switching rates, showing that the
switching rate can be exploited to dynamically control the
degree of demixing, i.e., (in)homogenization of spatial state
distributions by tuning the activity rate. Moreover, we note that
the number–number static structure factor of the bulk system
shows that the mean structure of the dispersion (averaged over
both states) is only slightly affected from active switching,
implying that activity can be used for spatial separation of
properties and possibly connected to colloidal functionality,
while mass distributions remain essentially conserved.
This could be interesting in smart material design, e.g., for
dispersions of ‘soft bioroboters’.30

In all cases, R-DDFT predictions are in excellent agreement
with R-BD computer simulations, thus confirming that R-DDFT
constitutes a powerful tool to access the microstructure and
phase behavior of active switching binary mixtures. We only
find semi-quantitative agreement in the limit of small a, since
the mean-field approach is not able to fully capture the density
fluctuations induced by the phase separation.

In future investigations we are planning to study how
interaction switching can be used to tune depletion forces
between colloidal objects immersed in a mixture of soft active
switching particles. Other possible direction is to investigate
the coupling between the switching rates to local properties of
the environment, such as colloidal density, for example, in
bacterial quorum sensing.53 Theoretically, this could benefit
from the recently introduced models for responsive
colloids.52,54 Moreover, it will be interesting to investigate the
non-equilibrium thermodynamics of actively switching
colloids. Obviously, internal switching can perform useful work,
e.g., mixing an in equilibrium demixed system. Future studies
shall address the relations between power transfer, entropy
production, and structure of the system, as in related active
matter systems.55,56 Activity-structure relationships should be
useful for non-equilibrium-based material design. Finally,
another interesting future study could be the inclusion of inertia,
leading to Langevin (underdamped Brownian) dynamics of
actively switching colloids. Here, it can be expected that
inclusion of inertia will pump more kinetic energy into the system
and a higher temperature steady-state will be reached, modifying
distributions and the strength of demixing. In addition,
inertia could affect the short- and intermediate time dynamics
of the system. In particular, for less soft pair potentials, a
sudden switch of interactions creates large forces and extended
‘memory’ in the short-time ballistic motions. Typical correlation
lengths may be significantly affected by this, perhaps even the
long-time dynamics as in Active Brownian Particles (ABPs),57,58

and future studies will hopefully analyze and quantify these
effects.
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Appendix

Determination of ueff(r) and uext
eff (r)

In this Appendix we show that in the limit of very fast switching
rates, a c 1, the active mixture behaves as an effective one-
component system (EOC), so particle–particle interactions are
all given by lima-Nuij(r) = ueff(r) (i,j = b,s). For the same reason,
the external potential acting on both species also converges to
the same effective potential lima-Nuext

i (r) = uext
eff (r). In our

demonstration we are also able to deduce the explicit
expressions for uext

eff (r) and ueff(r). For this purpose, we need to
make use of the condition given by eqn (10) relating the kinetic
rate constants and the composition, which can be written as
ksb/(kbs + ksb) = xb and kbs/(kbs + ksb) = xs. We remind that this
condition guarantees that the relative compositions xi (i = b,s)
are preserved even through the local density profiles change
due to the switching activity.

In the limit of very fast switching rates, a c 1, switching
events occur much faster that the rate of diffusion, kbs c Ds/ss

2,
so there is a large separation between the typical time scales of
switching and diffusion. For very short times, t { ss

2/Ds, the
R-DDFT differential equations (eqn (8)) are dominated by
switching events, so

@rbðr; tÞ
@t


 ksbrsðr; tÞ � kbsrbðr; tÞ
@rsðr; tÞ
@t


 kbsrbðr; tÞ � ksbrsðr; tÞ

8><
>: ; (27)

which can be solved analytically, leading to the following short-
time exponential behaviour

rbðr; tÞ ¼
1

K
ðrbðr; 0Þkbs � rsðr; 0ÞksbÞe�Kt þ ksbrTðr; 0Þ½ �

rsðr; tÞ ¼
1

K
ðrsðr; 0Þksb � rbðr; 0ÞkbsÞe�Kt þ kbsrTðr; 0Þ½ �;

8>><
>>:

(28)

where K = kbs + ksb and rT(r,0) = rb(r,0) + rs(r,0). For time scales
comprehended in kbs

�1 { t { ss
2/Ds the transient exponential

dependence has already relaxed, leading to rb(r,t) = (ksb/K)
rT(r,0) = xbrT(r,0) and rs(r,t) = xsrT(r,0). Once this regime has
been reached, if we observe the evolution of the density profiles
for longer times, the diffusive terms �r�Ji start to contribute,
leading again to a diffusive-controlled time dependence. However,
as the switching kinetic term has already relaxed at a very short-
time scale, both concentrations will satisfy this condition for all
times, namely

rs(r,t) = xsrT(r,t), rb(r,t) = xbrT(r,t) 8t c kbs
�1. (29)

These results can be physically interpreted in the following
way: For a c 1 and t c kbs

�1, the switching events are so fast

that both particle states cannot be distinguished because
colloids do not have enough time to diffuse and reorganize
according to the applied external potentials. Consequently,
both steady-state density profiles share the same shape.

If we evaluate the non-equilibrium production and
disappearance of particles for t c kbs

�1 and employ the
condition provided by eqn (10), we find that

ksbrsðr; tÞ � kbsrbðr; tÞ ¼ ðksbxs � kbsxbÞrTðr; tÞ ¼ 0

kbsrbðr; tÞ � ksbrsðr; tÞ ¼ ðkbsxb � ksbxsÞrTðr; tÞ ¼ 0

(
(30)

Therefore, the R-DDFT equations for a c 1 and t c kbs
�1

can be written as

@rbðr; tÞ
@t

¼ �r � Jb

@rsðr; tÞ
@t

¼ �r � Js

8>>><
>>>:

; with
rbðr; tÞ ¼ xbrTðr; tÞ

rsðr; tÞ ¼ xsrTðr; tÞ

(
(31)

Expanding the terms in eqn (31) we find

@rbðr; tÞ
@t

¼ Dbr � rrbðr; tÞ þ rbðr; tÞbr uextb ðrÞ
��

þ
ð
rbðr0; tÞubbðjr� r0jÞ þ rsðr0; tÞubsðjr� r0jÞð Þdr

��
;

@rsðr; tÞ
@t

¼ Dsr � rrsðr; tÞ þ rsðr; tÞbr uexts ðrÞ
��

þ
ð
rbðr0; tÞubsðjr� r0jÞ þ rsðr0; tÞussðjr� r0jÞð Þdr0

��
:

(32)

On the one hand, a closed equation for r(r,t) can be
obtained by simply adding both expressions and using

eqn (29), so
@rTðr; tÞ

@t
¼ �r � Jb �r � Js. After some reorganiza-

tion of terms, we obtain

@rTðr; tÞ
@t

¼ ðDbxb þDsxsÞr � rrTðr; tÞf

þ rTðr; tÞr
Dbxbu

ext
b ðrÞ þDsxsu

ext
s ðrÞ

Dbxb þDsxs

�

þ
ð
rTðr0; tÞ

1=2
P

i;j¼b;s
ðDi þDjÞxixjuijðjr� r0jÞ

Dbxb þDsxs
dr0

3
75
9>=
>;:

(33)

On the other hand, the continuity equation for the effective
(non-active) one-component mean-field fluid of density
rT(r,t) is

@rTðr; tÞ
@t

¼ Deffr � rrTðr; tÞ þ rTðr; tÞbr uexteff ðrÞ
��

þ
ð
rTðr0; tÞueffðjr� r0jÞdr0

�� (34)

From the last two equations, we show that the time
evolution of an active switching system with a c 1 and t c kbs

�1
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can be completely mapped to an effective non-active one-
component system (EOC), for which lima-Nuij(r) = ueff(r) and
lima-Nuext

i (r) = uext
eff(r). Comparing both expressions, we deduce

the effective diffusion coefficient of the one-component fluid as the
mean diffusion, given by

Deff = Dbxb + Dsxs. (35)

In addition, the effective external potential is

uexteff ðrÞ ¼
Dbxbu

ext
b ðrÞ þDsxsu

ext
s ðrÞ

Dbxb þDsxs
: (36)

Finally, the effective interparticle particle pair potential is

ueffðrÞ¼
Dbxb

2ubbðrÞþðDbþDsÞxbxsubsðrÞþDsxs
2ussðrÞ

DbxbþDsxs
: (37)
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G. Volpe and G. Volpe, Rev. Mod. Phys., 2016, 88, 045006.
25 R. Yoshida, T. Takahashi, T. Yamaguchi and H. Ichijo, J. Am.

Chem. Soc., 1996, 118, 5134–5135.
26 L. Heinen, T. Heuser, A. Steinschulte and A. Walther, Nano

Lett., 2017, 17, 4989–4995.
27 H. Che, S. Cao and J. C. M. van Hest, J. Am. Chem. Soc., 2018,

140, 5356–5359.
28 U. B. Choi, J. J. McCann, K. R. Weninger and M. E. Bowen,

Structure, 2011, 19, 566–576.
29 S. Dhiman, A. Jain and S. J. George, Angew. Chem., Int. Ed.,

2017, 56, 1329–1333.
30 H.-W. Huang, M. S. Sakar, A. J. Petruska, S. Pané and
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58 H. Löwen, J. Chem. Phys., 2020, 152, 040901.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 2

/1
4/

20
22

 1
2:

36
:4

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1sm00670c



