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The pseudofermion functional renormalization group (PFFRG) method has proven to be a powerful numerical
approach to treat frustrated quantum spin systems. In its usual implementation, however, the complex fermionic
representation of spin operators introduces unphysical Hilbert-space sectors which render an application at
finite temperatures inaccurate. In this work we formulate a general functional renormalization group approach
based on Majorana fermions to overcome these difficulties. We, particularly, implement spin operators via an
SO(3) symmetric Majorana representation which does not introduce any unphysical states and, hence, remains
applicable to quantum spin models at finite temperatures. We apply this scheme, dubbed pseudo-Majorana
functional renormalization group (PMFRG) method, to frustrated Heisenberg models on small spin clusters
as well as square and triangular lattices. Computing the finite-temperature behavior of spin correlations and ther-
modynamic quantities such as free energy and heat capacity, we find good agreement with exact diagonalization
and the high-temperature series expansion down to moderate temperatures. We observe a significantly enhanced
accuracy of the PMFRG compared to the PFFRG at finite temperatures. More generally, we conclude that the
development of functional renormalization group approaches with Majorana fermions considerably extends the
scope of applicability of such methods.
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I. INTRODUCTION

Finding numerical solutions of quantum many-body prob-
lems is one of the core disciplines in modern condensed
matter theory. In a wide range of physical settings the prob-
lem amounts to analyze ground-state and finite-temperature
phases of a system of interacting spins on a lattice. Even
though the corresponding microscopic models are often
conceptually simple, such as two-body Heisenberg spin
Hamiltonians, they may harbor a colorful range of physi-
cal phenomena including exotic types of long-range orders
[1], quantum phase transitions [2,3], or quantum spin liq-
uids [4–6]. While quantum spin phases are traditionally
described in terms of broken or unbroken symmetries, a
more modern understanding also includes concepts such as
long-range entanglement or topological order [7] and reaches
out to applications in the context of quantum information
processing [8].

Despite the shifts of focus which the field has gone through
in the recent decades, the accurate numerical treatment of in-
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teracting quantum spin systems remains a highly challenging
and longstanding problem. In fact, none of the currently
available numerical methods are able to ultimately determine
the eigenstates of a generic spin model. For example, quan-
tum Monte Carlo methods [9,10] which enjoy the invaluable
advantage that numerical errors are, in principle, only of sta-
tistical nature, suffer from the infamous sign problem when
applied to frustrated spin systems. Similarly, density matrix
renormalization group, matrix product, and tensor network
approaches [11–15] have made tremendous progress in recent
years and are the undisputed method of choice for a variety
of spin systems (particularly in one dimension). On the other
hand, the scaling of the entanglement entropy poses a serious
challenge for such techniques in higher dimensions.

An alternative approach is based on functional
renormalization group (FRG) concepts [16–18] which
are, in principle, oblivious to the system’s dimensionality.
In its standard fermionic formulation this technique has
first been applied in the context of electronic Hubbard-type
models [19–21] where it has become an established tool to
describe competing types of long-range orders. In addition, a
more recently developed variant of the FRG [22] specifically
targets quantum spin systems. The key conceptual step
of this latter technique is to express the spin operators
in terms of auxiliary fermions [23], justifying the name
pseudofermion functional renormalization group (PFFRG).
Within the last decade the PFFRG has been successfully
applied to a wide range of spin systems [22,24–63] and has

2469-9950/2021/103(10)/104431(15) 104431-1 Published by the American Physical Society

https://orcid.org/0000-0002-5758-7506
https://orcid.org/0000-0003-1063-2389
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.104431&domain=pdf&date_stamp=2021-09-03
https://doi.org/10.1103/PhysRevB.103.104431
https://creativecommons.org/licenses/by/4.0/


NIGGEMANN, SBIERSKI, AND REUTHER PHYSICAL REVIEW B 103, 104431 (2021)

constantly been extended and generalized. Today, the PFFRG
is, hence, remarkably flexible with a scope of applicability
comprising two-dimensional [22,24–35,37,38,40,41,44–
46,48,49,51,54,55,57,59–61,63] and three-dimensional
[36,39,42,43,47,50,52,53,55,56,58,62] quantum spin systems
on arbitrary lattices, including complex frustrated and
longer-range coupled networks [48,49] with general isotropic
or anisotropic [54] two-body spin interactions. Further recent
developments concern the generalization to arbitrary spin
magnitudes S [41] or higher spin symmetry groups SU(N )
[44,45,60] and, on a more technical level, the implementation
of multiloop schemes [46,62,63].

Despite its success in accurately determining ground-state
spin correlations, the PFFRG comes along with a well-known
obstacle. The aforementioned pseudofermionic description in-
troduces an enlargement of the Hilbert space associated with
states that do not correspond to states of the physical spin
system. These unphysical states typically appear at energies
above the ground-state energy of the spin system. Thus, on
the level of zero-temperature investigations, this problem has
been argued to be rather mild and can be treated by shifting
unphysical states to higher energies [41]. In a recent inves-
tigation of this problem, on the other hand, the average spin
magnitude within the PFFRG was found to differ from the
theoretically expected result even for higher-loop orders [63].
More importantly, the enlarged Hilbert space has so far pro-
hibited an application to finite temperatures.

This work aims at resolving issues due to unphysical spin
states by modifying the PFFRG on a very fundamental level.
Instead of using a complex fermionic spin representation, we
employ a certain, so-called SO(3) Majorana fermion rewriting
of spin operators [64,65] which does not generate unphysical
states but only introduces redundant Hilbert-space sectors.
This property distinguishes it from other Majorana represen-
tations [66] and as such makes it attractive as a first candidate
for a Majorana-based spin FRG. We, accordingly, dub our
approach pseudo-Majorana functional renormalization group
(PMFRG) method. This modification opens up various di-
rections of investigation: (i) Most importantly, the PMFRG
becomes applicable to finite temperatures which only require
small methodological adjustments presented below. (ii) As
a side product, we discuss how to calculate thermodynamic
quantities such as the free energy, energy, and heat capacity
which have so far not been studied within the PFFRG. (iii) To
the best of our knowledge, a Majorana implementation of the
FRG has so far not been published. Our developments below
are formulated in a general way such that they are applicable
to arbitrary Majorana models also outside the realm of quan-
tum magnetism. (iv) Certain spin models, most prominently
the Kitaev honeycomb model [67], are exactly solvable when
expressed in terms of Majorana fermions. Although Kitaev’s
spin representation differs from the one employed here, the
exact solution is also obtainable within the SO(3) Majorana
representation [66] used here. Even though not the focus of
this work, one may thus expect that the PMFRG performs
better for Kitaev-type spin models and perturbations thereof
as compared to the PFFRG.

Apart from the methodological focus of this work, we
also present various applications of the PMFRG to simple
quantum spin models allowing us to assess its accuracy. As

a first benchmark test we treat small clusters of up to six
interacting spins where our results can be straightforwardly
compared with exact diagonalization. An overall finding is
that the thermodynamic behavior of the spin correlations from
PMFRG are surprisingly accurate and reproduce the exact
result significantly better than PFFRG. It should be empha-
sized that despite the finite Hilbert space of our spin clusters,
their treatment within PMFRG is still highly nontrivial and
poses the same challenges as for infinite lattice systems. In-
deed, due to the incorporation of various mean-field limits,
one can expect that the FRG unfolds its full strength only
in infinite spin systems of two and higher dimensions. This
motivates us to move on to frustrated Heisenberg models on
two-dimensional (2D) square and triangular lattices where we,
likewise, find good agreement of thermodynamic properties
with other approaches. A persistent technical issue, however,
occurs in the low-temperature limit where PMFRG detects
spurious divergencies of spin correlations. We interpret this
behavior as an artifact of the redundant Hilbert-space sectors
in our Majorana representation. While such subtleties remain
to be further studied, we expect that our developments lay
the groundwork for various future directions of research and
significantly enlarge the scope of applicability of FRG ap-
proaches.

The remainder of this work is organized as follows: After
briefly reviewing the key concepts of the PFFRG in Sec. II,
we discuss in detail the properties of the SO(3) Majorana
representation in Sec. III. Thereafter, Sec. IV formulates a
general functional renormalization group approach for Ma-
jorana systems. The specific implementation for Heisenberg
spin models in SO(3) Majorana representation is discussed
in Sec. V with a particular focus on the parametrization of
vertex functions, taking into account the system’s symmetries.
The resulting RG flow equations are presented in Sec. VI and
the computation of various physical observables is detailed in
Sec. VII. The following Secs. VIII and IX discuss applications
to small interacting spin clusters as well as to square and
triangular lattice models. The paper ends with a conclusion
in Sec. X.

II. BASIC CONCEPTS OF THE PFFRG

As a preparation for the following sections, we first briefly
review basic concepts and properties of the PFFRG approach
without being exhaustive on all methodological details. For
a more detailed and self-contained description, we refer the
interested reader to Refs. [22,41,44,54].

The PFFRG is capable of treating general two-body spin
Hamiltonians; in this work, however, only Heisenberg models
of the form

H =
∑
(i, j)

Ji j

∑
α

Sα
i Sα

j (1)

will be considered, where (i, j) refers to all possible pairings
of sites and Sα

i is the α component of a spin- 1
2 operator at site

i. We note in passing that recently developed FRG approaches
[68,69] directly take Eq. (1) as a starting point. In contrast,
the PFFRG treats the interacting fermionic model that results
from representing the spin- 1

2 operators via (pseudo)fermions
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fia (with a =↑,↓) [23]:

Sα
i = 1

2

∑
a,b

f †
iaσ

α
ab fib. (2)

Here and in the following, we set h̄ = kB = 1. However, this
representation is a valid rewriting of the spin operators only
in the local subspace with

∑
a f †

ia fia = 1 while states with
zero or double fermionic occupancy are unphysical. Since
these spurious states carry zero spin, they may be considered
as voids in the spin system, associated with an excitation
energy on the order of the exchange coupling. As a con-
sequence, ground-state properties are believed to be largely
unaffected by unphysical states, such that at T = 0 the PFFRG
may be faithfully implemented with the simpler condition∑

a〈 f †
ia fia〉 = 1. Other approaches aiming to enforce the occu-

pancy constraint more rigorously introduce an energy penalty
for unphysical states [41] or a particular form of an imagi-
nary chemical potential [70]. In either case, the unphysical
states remain an obstacle for an application of the PFFRG,
especially at finite temperatures. This motivates us to imple-
ment the FRG with the Majorana representation discussed in
Sec. III where no unphysical states occur.

The key benefit of the representation in Eq. (2) is that
the resulting model becomes amenable to fermionic many-
body techniques such as the FRG which is formulated in
terms of irreducible fermionic vertex functions (“essential
parts of correlation functions”). The centerpiece of the method
is given by a hierarchy of flow equations reminiscent of
one-loop diagrammatic perturbation theory which describe
the change of vertex functions when a Matsubara-frequency
cutoff parameter �, introduced in the bare Green function
G0,�(iω) = G0(iω)�(|ω| − �), is varied. The basic idea is
that at the starting point � = ∞, the bare propagator vanishes
and all vertex functions are trivially known. For a numerical
solution of the flow equations down to � = 0 (the cutoff-free
physical case), a truncation of the formally exact hierarchy of
flow equations, usually at the level of the four-point vertex, is
necessary.

The four-point vertex is directly related to the (momentum-
resolved) static spin susceptibility which represents the central
outcome of the PFFRG approach. The onset of magnetic or-
dering is signaled by a divergence of the susceptibility along
the RG flow (which in a finite system typically reduces to a
finite peak or a kink). Accordingly, nonmagnetic (and possibly
quantum spin liquid) phases are characterized by an RG flow
that remains smooth down to the lowest accessible � scales.

Due to the lack of a small parameter in the purely in-
teracting pseudofermion Hamiltonian, the truncation of the
flow equations is an a priori uncontrolled procedure. It can
be shown, however, that within the usual truncation on the
level of the four-point vertex, both quantum fluctuations and
classical ordering tendencies are correctly described in lead-
ing orders of 1/N and 1/S, respectively [41,44]. Here, N and
S describe the artificial enlargement of the spin’s symmetry
group [SU(2) → SU(N )] and the spin length [ 1

2 → S], re-
spectively. In two very recent works, certain contributions
of the six-point vertex have been taken into account using a
multiloop extension [62,63] equivalent to a solution of the
parquet self-consistency equations [71–73]. The quantitative

robustness of the results with respect to increasing loop orders
was interpreted as further evidence for the accuracy of the
PFFRG.

III. SO(3) MAJORANA REPRESENTATION

In this section we discuss the SO(3) Majorana represen-
tation [64,65] for spin 1

2 in detail. For each spin Sα
i at site

i, three different flavors α ∈ {x, y, z} of Majorana fermions
η

α†
i = ηα

i are introduced. They fulfill the anticommutation re-
lations {ηα

i , η
β
j } = δi jδ

αβ which imply (ηα
i )2 = 1

2 . The formal

Hilbert-space dimension per Majorana is
√

2 as appropri-
ate for half a (complex) fermion. The spin operators Sα

i =
− i

2

∑
βγ εαβγ η

β
i η

γ

i , more explicitly written as

Sx
i = −iηy

i η
z
i , Sy

i = −iηz
i η

x
i , Sz

i = −iηx
i η

y
i , (3)

can be easily checked to fulfill the spin- 1
2 algebra

Sα
i Sβ

i = 1

4
δαβ + i

2

∑
αβγ

εαβγ Sγ

i . (4)

As an example, a Heisenberg coupling term from Hamiltonian
(1) is represented as∑

α

Sα
i Sα

j = −(
η

y
i η

z
i η

y
jη

z
j + ηx

i η
z
i η

x
jη

z
j + ηx

i η
y
i η

x
jη

y
j

)
. (5)

As usual for auxiliary particle representations, the SO(3)
Majorana representation comes with a gauge freedom. The lo-
cal Z2 gauge transformation ηα

i → εiη
α
i with εi = ±1 leaves

spin operators invariant since each spin consists of a product
of exactly two Majoranas with equal lattice index. This gauge
freedom is also relevant to understand the structure of the Ma-
jorana Hilbert space. To see this, define the Majorana operator

τi = −2iηx
i η

y
i η

z
i , (6)

which anticommutes with any τ j from a different site j 
= i
and fulfills

τiη
α
j =

{
ηα

i τi if i = j,

−ηα
j τi if i 
= j.

(7)

Consequently, τi commutes with all spin operators and thus
with any spin Hamiltonian. To construct a set of mutually
commuting operators one needs to pair τi with another con-
served Majorana operator.

One choice [74] is to define an additional Majorana η0
i per

site, so that the parity pi = 2iτiη
0
i with eigenvalues ±1 is a

constant of motion. These eigenvalues split the local Majorana
Hilbert space of dimension four into two dynamically decou-
pled two-dimensional parts each of which are in one-to-one
correspondence to the original local spin Hilbert space. To
invoke η0

i in the Hamiltonian, parity projection schemes are
required that eventually lead to one of two alternative four
Majorana spin representations [66]. However, as stated above,
we will avoid this additional complication in the remainder of
this work.

An alternative, nonlocal pairing scheme which does not
introduce additional degrees of freedom requires an even
number of sites N [75]. Given an arbitrary but fixed pairing
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of sites (i, j), we can define the N/2 parities p(i, j) = 2iτiτ j =
±1. Similar to above, each eigenstate of a spin Hamiltonian is
2N/2-fold degenerate, each copy labeled by the above parities.
In other words, the total Majorana Hilbert-space dimension
of 23N/2 is organized into the usual 2N physical spin configu-
rations, each with an artificial degeneracy of 2N/2. Choosing
a different pairing of sites corresponds to a unitary rotation
of the 2N/2 basis vectors for the artificial part of the Hilbert
space. Note that since Eq. (3) fully reproduces the correct
spin algebra without the need for an additional constraint, this
Hilbert-space enlargement introduces no unphysical states,
but only exact copies of the physical spin states [66]. This
degeneracy is closely connected to the aforementioned local
Z2 gauge symmetry: As the transformation τi → −τi flips the
parity p(i, j), it switches between degenerate states of different
parities.

For thermodynamic properties, the above degeneracy leads
to the relation Zpm = 2N/2Z between the exact partition func-
tions defined in spin and SO(3) pseudo-Majorana (pm) Hilbert
space. Thus, we have for the physical free energy per site,
f = −T log (Z )/N ,

f = fpm + T

2
log (2), (8)

where the first term fpm ≡ − T
N log (Zpm) will be computed

via PMFRG and the second term accounts for the redundancy
inherent in the SO(3) Majorana representation.

Any expectation values for spin operators (or correlators)
Os are easily computed in the Majorana representation as
well. This follows from the observation that the Majorana
version of such an operator Opm is diagonal in the parity sector
and the same is true for any physical density matrix ρpm, like
for example the Boltzmann factor ρpm ∼ e−βHpm . Then, the
degeneracy factor 2N/2 simply cancels [76] and we have

〈Os〉 ≡ tr Osρs

tr ρs
= tr Opmρpm

tr ρpm
≡ 〈Opm〉. (9)

Finally, we discuss the role of rotations in spin space. In
order to employ the global SO(3) symmetry of the Heisenberg
Hamiltonian in Eq. (1) later on, we demonstrate here that
the three Majoranas transform under SO(3) rotations like the
coordinates of a physical vector. Using τi, the spin operators
can be reexpressed as

Sα
i = τiη

α
i . (10)

We may now consider the general SO(3) transforma-
tion ηα

i → ∑
β Rαβη

β
i with Rαβ ∈ SO(3) being a three-

dimensional rotation matrix. As τi is invariant under this
transformation [66], spin operators must transform as

RαβSβ
i = τi

∑
β

Rαβη
β
i . (11)

It follows that physical SO(3) rotations of a spin i are equiva-
lent to rotations of the Majorana vector (ηx

i , η
y
i , η

z
i ).

IV. GENERAL MAJORANA FRG FLOW EQUATIONS

As a basis for our FRG treatment of spin systems
in pseudo-Majorana representation, we first introduce flow
equations that are valid for general interacting Majorana

Hamiltonians. To the best of our knowledge, such equations
have not been published in the literature before. We consider

H = i

2

∑
μ1,2

Aμ1μ2ημ1ημ2

+ 1

4!

∑
μ1,2,3,4

Vμ1μ2μ3μ3ημ1ημ2ημ3ημ4 , (12)

where {μi} is an arbitrary set of single-particle indices. As
above, we use the convention {ημi , ημ j } = δμiμ j . Majorana
exchange statistics require the antisymmetry of A and V under
exchange of any two indices, and Hermiticity mandates that
both couplings must be real.

Assuming thermal equilibrium, we move on to an
imaginary-time path-integral formulation [76,77] defined in
terms of Grassmann fields ημ(τ ). The action reads as

S =
∫ β

0
dτ

(∑
μ

1

2
ημ(τ )∂τημ(τ ) + H ({ημ(τ )})

)
, (13)

where ∂τ denotes a derivative with respect to imaginary
time and β = 1/T . We define the Fourier transform ημ(τ ) =
T

∑
n eiωnτ ημ(iωn) where the fermionic Matsubara frequen-

cies are given by iωn = πT (2n + 1), with n ∈ Z. In slight
abuse of notation, in the following, we will denote ωn1 by
ω1 and equivalently for other frequencies. The noninteracting
part of the action may then be written as

S0 = −1

2

1

β2

∑
ω1,2

∑
μ1,2

ημ1 (ω1)
[
G−1

0

]
μ1ω1, μ2ω2

ημ2 (ω2) (14)

with the bare Majorana Green’s function[
G−1

0

]
μ1ω1, μ2ω2

= (iω1δμ1μ2 − iAμ1μ2 )βδω1,−ω2 . (15)

This definition is analogous to the complex fermionic bare
Green’s function except for the opposing signs of the two
frequencies in the Kronecker delta related to the absence of
an independent Grassmann partner field η̄ with a relative sign
in the Fourier transform.

We are now ready to apply the general FRG scheme from
Ref. [17], derived for an action of a superfield vector � con-
taining an arbitrary number of bosonic or Grassmann fields
labeled by the composite index l = (ωl , μl ):

S[�] = S0[�] + Sint[�]

= −1

2

∫
l

∫
l ′
�l

[
G−1

0

]
l,l ′�l ′ + Sint[�], (16)

where
∫

l = β−1 ∑
ωl

∑
μl

. A comparison of Eqs. (16) and (14)
yields the direct correspondence �l=(μl ,ωl ) = ημl (ωl ). We em-
phasize the difference to the superfield vectors of complex
fermions or bosons, which require an additional but indepen-
dent superfield label, i.e., � = (ψ̄, ψ ).

The starting point of the FRG scheme is the introduction of
a cutoff scale � in the bare Green’s function G0 → G�

0 such
that G�=∞

0 = 0 and G�=0
0 = G0. Although the flow equations

describing the evolution of irreducible vertices with � [17]
below are general, in the rest of this work, we will consider a
multiplicative Matsubara frequency cutoff ��(ω1) to the bare
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Green’s function

[
G�

0

]
μ1ω1,μ2ω2

= ��(|ω1|)[G0]μ1ω1,μ2ω2
. (17)

At zero temperature, this cutoff is often chosen to be a
Heaviside function ��(|ω|) = θ (|ω| − �); at finite temper-
atures a smooth cutoff must be chosen instead. While a
momentum-based cutoff is also used in some works, we will
not consider such schemes here, as our main focus lies on
pseudo-Majoranas without kinetic energy.

As a consequence of the cutoff, the self-energy � and the
four-point vertex � acquire implicit dependence on �. These
quantities are defined via the Dyson equation in a superspace
spanned by (ωi, μi ),

G = [
G−1

0 − �
]−1

, (18)

and the tree expansion for the connected Green’s functions

G4,c
l1,l2,l3,l4

= −
∫

l1′ ,2′ ,3′,4′
Gl1l1′ Gl2l2′ Gl3l3′ Gl4l4′ �l1′ l2′ l3′ l4′ , (19)

respectively. This � dependence is given by coupled differen-
tial equations, referred to as flow equations. Physical results
can be extracted from the solution at � = 0. Since the action
for Majorana systems was rephrased in superfield notation,
we can employ the associated general flow equations [17]
for �� and ��. As appropriate in thermal equilibrium, and
to simplify notation, we employ a modified version of the

Green’s function and vertices with the frequency-conserving
delta function explicitly spelled out:

Gμ1ω1,μ2ω2 = Gμ1μ2 (ω2)βδω1,−ω2 , (20a)

�μ1ω1,μ2ω2 = �μ1μ2 (ω1)βδω1,−ω2 , (20b)

�μ1ω1, μ2ω2, μ3ω3, μ4ω4 ≡ �μ1μ2μ3μ4 (ω1, ω2, ω3, ω4)

×βδω1+ω2+ω3+ω4,0. (20c)

With the above definition, the Dyson equation for fixed-
frequency indices G−ω,ω = [[G−1

0 ]
ω,−ω

− �ω,−ω]
−1

can be
written as

G(ω) = [iω − iA − �(ω)]−1. (21)

The Green’s function and self-energy defined in Eqs. (20a)
and (20b) fulfill G(ω) = GT (−ω) and �(ω) = �T (−ω), re-
spectively.

We also restrict ourselves to the absence of parity symme-
try breaking (expectation values of odd numbers of Majorana
operators vanish) and neglect the contribution from the six-
point vertex. The flow equation for the four-point vertex then
separates into three distinct channels, each of which is char-
acterized by one of the three bosonic transfer frequencies
defined as

s = ω1 + ω2 = −ω3 − ω4,

t = ω1 + ω3 = −ω2 − ω4,

u = ω1 + ω4 = −ω2 − ω3. (22)

The Majorana flow equations for the interaction correction to
the free energy, self-energy, and the four-point vertex read as
[17]

d

d�
F�

int = 1

2

∫
ν1,2,3,4

T
∑
ω′

S�
ν1ν2

(ω′)G0,�
ν2ν3

(−ω′)
[
G�

]−1

ν3ν4
(−ω′)��

ν4,ν1
(ω′), (23a)

d

d�
��

μ1,μ2
(ω) = −1

2

∫
ν1,2

T
∑
ω′

S�
ν1ν2

(ω′)��
ν1ν2μ1μ2

(−ω′, ω′, ω,−ω), (23b)

d

d�
��

μ1,μ2,μ3,μ4
(ω1, ω2, ω3, ω4) =

∫
ν1,2,3,4

T
∑

ω

S�
ν1ν2

(ω)

[
��

μ1μ2ν4ν1
(ω1, ω2, ω − s,−ω)��

ν2ν3μ3μ4
(ω,−ω + s, ω3, ω4)G�

ν3ν4
(ω − s)

+��
μ1ν1μ3ν4

(ω1,−ω,ω3, ω − t )��
ν2μ2ν3μ4

(ω,ω2,−ω + t, ω4)G�
ν3ν4

(ω − t )

−��
μ1ν4ν1μ4

(ω1, ω − u,−ω,ω4)��
ν3μ2μ3ν2

(−ω + u, ω2, ω3, ω)G�
ν3ν4

(ω − u)

]
. (23c)

As the free energy does not feed back into the other flow
equations, it is usually not considered within FRG schemes.
In this work, we use its solution to derive further thermody-
namic quantities. In these expressions, we have introduced the
single-scale propagator which is defined as a matrix product
of Green’s functions

S� = −G�

[
d

d�

[
G�

0

]−1
]

G�,

S�(ω2) = −G�(ω2)

[
d

d�

[
G�

0

]−1
(ω2)

]
G�(ω2). (24)

In order to solve the flow equations, initial conditions for
self-energy and the four-point vertex are required. As the bare
propagator vanishes in this limit, we immediately see that

F�→∞
int = 0,

��→∞
μ1,μ2

(ω) = 0,

��→∞
μ1,μ2,μ3,μ4

(ω1, ω2, ω3, ω4) = Vμ1,μ2,μ3,μ4 . (25)

V. SYMMETRY-BASED VERTEX PARAMETRIZATION

We now specialize the general Majorana FRG of this
section to treat the interacting system of pseudo-Majoranas
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ensuing from the application of the representation (3) to the
Heisenberg spin- 1

2 Hamiltonian (1):

H = −
∑
(i, j)

Ji j
(
η

y
i η

y
jη

z
i η

z
j + ηz

i η
z
jη

x
i η

x
j + ηx

i η
x
jη

y
i η

y
j

)
. (26)

As a first step, we proceed with a detailed discussion of the
parametrization of vertices and propagators using the symme-
tries of our model. Following the approach of Ref. [54], we
will first derive symmetry relations for the Green’s functions
defined as

G(1, 2) =
∫ β

0
dτ1dτ2eiω1τ1 eiω2τ2〈ημ1 (τ1)ημ2 (τ2)〉

= Gμ1,μ2 (ω2)βδω1,−ω2 , (27)

G4(1, 2, 3, 4) =
∫ β

0
dτ1dτ2dτ3dτ4ei(ω1τ1+ω2τ2+ω3τ3+ω4τ4 )

× 〈ημ1 (τ1)ημ2 (τ2)ημ3 (τ3)ημ4 (τ4)〉 (28)

= G4
μ1,μ2,μ3,μ4

(s, t, u)βδω1+ω2+ω3+ω4,0, (29)

where the labels (1,2,3,4) contain all arguments that are not
explicitly specified, i.e., 1 = (μ1, ω1) in this case. Matsubara
frequency conservation follows from the fact that thermal ex-
pectation values only depend on imaginary-time differences.
The time-ordering operator is suppressed since it is included
in the path-integral formalism by default. The properties de-
rived in the following will then carry over to � and � due to
their relations via Eqs. (18) and (19).

A. Hermiticity

The Hamiltonian is a Hermitian operator, satisfying H =
H†. Due to 〈O〉∗ = 〈O†〉 and η(τ )† = e−Hτ ηeHτ = η(−τ ) in
the Heisenberg picture, one can find the complex-conjugate of
the two-point Green’s functions as

G(1, 2)∗ =
∫

dτ1dτ2e−iω1τ1−iω2τ2〈ημ2 (−τ2)ημ1 (−τ1)〉

= −G(1, 2). (30)

As a consequence, the two-point Green’s function in Mat-
subara frequency space is purely imaginary and from an
analogous argument, the four-point Green’s function must be
real:

G(1, 2) ∈ iR,

G4(1, 2, 3, 4) ∈ R. (31)

B. Time-reversal symmetry

Time reversal T is an antiunitary operation (〈ψ |ψ ′〉∗ =
〈T ψ |T ψ ′〉) which in the present case can be defined by
performing a complex conjugation while leaving Majorana
operators invariant [78]:

TiT −1 = −i, T ημT −1 = ημ. (32)

This flips the sign of the spin operators (3) as required. Time-
reversal symmetry is violated by an external magnetic field
or, more generally, any Majorana bilinear in the Hamiltonian.

For a T -symmetric Hamiltonian T HT −1 = H , thermal ex-
pectation values obey 〈O〉 = 〈TOT −1〉∗. From this, we have
〈ημ1 (τ1)ημ2 (τ2)〉 = 〈ημ1 (τ1)ημ2 (τ2)〉∗ and with Eq. (27), it fol-
lows that

Gμ1μ2 (ω1, ω2) = Gμ1μ2 (−ω1,−ω2)∗. (33)

Similarly, the four-point correlator has the property

G4(1, 2, 3, 4) = G4
μ1μ2μ3μ4

(−ω1,−ω2,−ω3,−ω4)∗. (34)

C. Local Z2 gauge redundancy

Since our considerations from here on require the explicit
specification of site indices, we will now separate the previ-
ously used superlabel μ into a site index and a Majorana flavor
μ → (i, α). In the SO(3) Majorana representation spins are
invariant under the gauge transformation ηα

i → εiη
α
i for all

α = x, y, z with εi = ±1 for an arbitrary lattice site i. Since
expectation values must be invariant under gauge transforma-
tions as well, we may write〈

η
α1
i1

(τ1)ηα2
i2

(τ2)
〉 = εi1εi2

〈
η

α1
i1

(τ1)ηα2
i2

(τ2)
〉
, (35)

where εi1εi2 = −1 may always be chosen for two different
sites. As a consequence, nonzero propagators must contain an
even number of Majorana operators from each site, so that

Gi1i2 (1, 2) ≡ δi1i2 Gi1 (1, 2). (36)

Likewise, the four-point correlator can only depend on up to
two distinct sites only, so we choose

G4
i,i, j, j (1, 2, 3, 4) ≡ G4

i j (1, 2; 3, 4). (37)

Correlators of the form i ji j and i j ji need to be brought
to the standard form (37) using fermionic anticommutation
rules, which restricts the number of allowed permutations in
G4

i j (1, 2; 3, 4) to exchanges of the first and last two indices
only. As a consequence of the (bi)local nature of propagators
(four-point vertices), the site summations in the flow equations
can be simplified. The special case i = j for the four-point
vertex needs to be considered separately. The corresponding
flow equations can then be expressed diagrammatically as
shown in Fig. 1. The bubble diagram corresponding to the
s channel of the nonlocal vertex �i j shown in Fig. 1(d) is
of particular interest. As in the PFFRG this diagram includes
the random-phase approximation which is responsible for the
emergence of long-range magnetic order [41].

D. Lattice symmetries

For simplicity, the systems that are considered in the fol-
lowing consist of equivalent sites. Correlators can then always
be computed with one arbitrary reference site fixed. Com-
bining this with local Z2 gauge redundancy eliminates all
site indices of the two-point correlator. Similarly, four-point
correlators depend only on the distance vector between the
two sites. Although this means that the order of site indices in
�i j is irrelevant for systems with equivalent sites, we will not
make use of this property. As a result, the pseudo-Majorana
flow equations presented here are easily generalized towards
non-Bravais lattices by adding an additional sublattice index.
Most lattice systems further exhibit point-group symmetries,
such as the C4 rotation symmetry and mirror planes of the
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FIG. 1. Z2-invariant Majorana FRG flow equations for the in-
teraction correction to the free energy (a), the self-energy (b), and
the local (c) and nonlocal (d) four-point vertices. The order of labels
1 = (α1, ω1) always corresponds to that on the left-hand side of the
vertex flow equations such that the site index is conserved along
solid lines. In these equations, internal lines correspond to fully
dressed Green’s functions Gi(1, 2), while the single-scale propagator
Si(1, 2) is represented by a slashed line. Similarly, the crossed line in
(a) corresponds to the local propagator [SG0G−1]i(1, 2).

square lattice, which can straightforwardly be used to reduce
the numerical effort and are not further discussed in the fol-
lowing due to their lattice-specific nature.

E. Global SO(3) rotation symmetry

The global SO(3) spin-rotation symmetry of the Heisen-
berg model can easily be translated to vertex functions. As
discussed in Sec. III, global spin rotations specified by a 3 × 3
rotation matrix Rαμ(φ) act on the Majorana fermions as

ηα
i →

∑
β

Rαβ (φ)ηβ
i ∀ i. (38)

The Heisenberg Hamiltonian is invariant under spin rotations
due to the isotropic nature of its couplings.

We will now apply this symmetry to restrict the types
of vertices and find relations between vertices with different
flavor indices. Of particular interest are the specific rotations
along the x, y, and z axes as displayed in Table I. The
combination Rx(π/2) ◦ Rz(π/2) ≡ P realizes an anticyclic
permutation of the flavors. We apply these symmetries to
correlators, using the convention γ 
= α 
= β 
= γ to refer to
fixed, pairwise different flavors. In this way, we find that the
two-point Green’s function does not depend on any flavor
labels: 〈

ηα
1 η

β

2

〉 Rα (π )= −〈
ηα

1 η
β

2

〉 = 0

⇒ Gα1,α2 (1, 2) = Gα1 (1, 2)δα1,α2

P= G(1, 2)δα1,α2 . (39)

TABLE I. Symmetry transformations corresponding to specific
spin rotations along the x, y, and z axes.

Angle x y z

π/2 ηy → −ηz ηx → ηz ηx → −ηy

ηz → ηy ηz → −ηx ηy → ηx

π ηy → −ηy ηx → −ηx ηx → −ηx

ηz → −ηz ηz → −ηz ηy → −ηy

Because the four-point correlator has four flavor indices, at
least two of them must be equal. An argument analogous to
above shows that only vertices with an even number of fla-
vors can be nonzero. Furthermore, rotations by π/2 transform
different flavor combinations into each other, for instance,〈

ηα
1 ηα

2 η
β

3 η
β

4

〉 Rα (π/2)= 〈
ηα

1 ηα
2 η

γ

3 η
γ

4

〉
. (40)

These arguments identify four independent flavor con-
figurations for the four-point correlator, G4

xxxx(1, 2, 3, 4),
G4

xxyy(1, 2, 3, 4), G4
xyxy(1, 2, 3, 4), and G4

xyyx(1, 2, 3, 4); all
other types are either zero or related by Eq. (40).

After these simplifications, we consider a general rotation
to find a relation between those four different correlators.
Since they are now parametrized in terms of x and y, we only
need to consider rotations along the z axis. The ηx Majoranas
then transform as ηx

i → cos θηx
i − sin θη

y
i so that

G4
xxxx

Rz (θ )= 〈(
cos θηx

1 − sin θη
y
1

)
. . .

(
cos θηx

4 − sin θη
y
4

)〉
. (41)

Expanding the product and using the above symmetries, we
obtain a relation independent of θ ,

G4
xxxx = G4

xxyy + G4
xyxy + G4

xyyx, (42)

where the argument (1,2,3,4) has been suppressed. Since we
considered an arbitrary rotation, our last consideration further
serves as a proof that no other symmetries than the ones
already shown may be found from SO(3) rotations. Indeed,
one arrives at the same identity regardless of which type of
correlator one transforms (i.e., transforming G4

xyxy yields the
same result). Rotations along the x or y direction also generate
no further information as a result of the permutation symme-
try P and rotations around an arbitrary axis may always be
decomposed as a product of x, y, and z rotations.

VI. PSEUDO-MAJORANA FRG FLOW EQUATIONS

The symmetries of the last section imply the following
parametrization of the pseudo-Majorana propagator:

G(1, 2) = G(−ω1)δi1,i2δα1,α2δω1,−ω2β, (43)

where the imaginary and antisymmetric self-energy, abbrevi-
ated as �(ω) = −iγ (ω), enters via the Dyson equation (18):

G(ω) = 1

iω + iγ (ω)
≡ −ig(ω). (44)

In analogy to the real functions γ (ω) and g(ω) we also replace
the imaginary single-scale propagator via S�(ω) = −iġ�(ω).
Due to the diagonal structure of the propagators, the symme-
tries for the four-point Green’s functions then carry over to
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TABLE II. Transformations of the frequency arguments under
time reversal T and specific permutations of indices in �i j (1, 2; 3, 4).
The latter three rows apply to all three types of vertices and allow
for a parametrization using positive frequencies only. Note that the
final two permutations also exchange the order of i and j which is of
importance for non-Bravais lattices. The remaining t ↔ u symmetry
for �c can be established by the exchange 1 ↔ 2, which changes the
vertex to the form �xyyx . Using Eq. (42) to express �xyyx (s, t, u) =
−�c(s, u, t ) in terms of the other vertices used in the parametrization,
we obtain �c i j (s, u, t ) = (−�a i j + �b i j + �c i j )(s, t, u).

Operation Symmetry for �μ i j (s, t, u) Valid μ

1 ↔ 2 t ↔ u and �μ ↔ −�μ a, b

T ◦ (1, 3) ↔ (2, 4) s ↔ −s a, b, c
T ◦ (1, 2) ↔ (3, 4) t ↔ −t and i ↔ j a, b, c
T ◦ (1, 2) ↔ (4, 3) u ↔ −u and i ↔ j a, b, c

vertex functions [cf. Eq. (19)] whose frequency dependence is
parametrized by the three bosonic frequencies introduced in
Eq. (22). The three independent four-point vertices are

�a i j (s, t, u) ≡ �xi, xi, x j, x j (s, t, u),

�b i j (s, t, u) ≡ �xi, xi, y j, y j (s, t, u),

�c i j (s, t, u) ≡ �xi, yi, x j, y j (s, t, u). (45)

In the special case i = j, there are only two independent
vertices since

�c ii(s, t, u) = −�b ii(t, s, u). (46)

Vertices with negative bosonic frequencies are symmetry re-
lated to positive frequencies by time reversal and a symmetry
t ↔ u further allows to reduce the numerical effort. Details
are given in Table II. In the above parametrization, the flow
equations for the interaction correction to the free energy per
spin and the self-energy may be simplified. Specifying the
external flavor and site indices on the left-hand side of the
flow equations, we directly perform flavor sums to obtain

d

d�
f �
int = −3T

2

∑
ω

ġ�(ω)
g0,�(ω)

g�(ω)
γ �(ω), (47)

d

d�
γ �(ω1) = T

2

∑
ω

∑
j

ġ�(ω)

{
��

a i j (0, ω1 + ω,ω1 − ω)

+ 2��
b i j (0, ω1 + ω,ω1 − ω)

}
. (48)

Similarly, we may now express the flow equations for four-
point vertices in the same way. For conciseness of notation,
both the initial fermionic frequencies as well as the exchange
frequencies s, t , and u will be used on the right-hand side
which are defined by Eq. (22) or, inversely,

ω1 = s + t + u

2
, ω2 = s − t − u

2
,

ω3 = −s + t − u

2
, ω4 = −s − t + u

2
, (49)

d

d�
��

a i j (s, t, u) = X �
a i j (s, t, u) − X̃ �

a i j (t, s, u) + X̃ �
a i j (u, s, t ), (50a)

d

d�
��

b i j (s, t, u) = X �
b i j (s, t, u) − X̃ �

c i j (t, s, u) + X̃ �
c i j (u, s, t ), (50b)

d

d�
��

c i, j 
=i(s, t, u) = X �
c i j (s, t, u) − X̃ �

b i j (t, s, u) + X̃ �
d i j (u, s, t ), (50c)

X �
a i j (s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
∑

k

[
��

a ki(s, ω + ω1, ω + ω2)��
a k j (s, ω − ω3, ω − ω4) + 2(a → b)

]
, (51a)

X �
b i j (s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
∑

k

[
��

a ki(s, ω + ω1, ω + ω2)��
b k j (s, ω − ω3, ω − ω4) + (a → b) + (a ↔ b)

]
, (51b)

X �
c i j (s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
∑

k

[
��

c ki(s, ω + ω1, ω + ω2)��
c k j (s, ω − ω3, ω − ω4) + (ω1 ↔ ω2, ω3 ↔ ω4)

]
, (51c)

X̃ �
a i, j 
=i(s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
{[

��
a i j (ω + ω2, s, ω + ω1)��

a i j (ω − ω4, s, ω − ω3)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
] + 2(a → c)

}
, (52a)

X̃ �
b i, j 
=i(s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
{[

��
a i j (ω + ω2, s, ω + ω1)��

c i j (ω − ω4, s, ω − ω3)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
] + (a → c) + (a ↔ c)

}
, (52b)

X̃ �
c i, j 
=i(s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
{[

��
b i j (ω + ω2, ω + ω1, s)��

b i j (ω − ω4, ω − ω3, s)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
] + (b → c)

}
, (52c)

X̃ �
d i, j 
=i(s, t, u) = T

∑
ω

ġ�(ω)g�(ω + s)
{[

��
b i j (ω + ω2, ω + ω1, s)��

c i j (ω − ω4, ω − ω3, s)

+(ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
] + (b ↔ c)

}
. (52d)
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To reduce the length of expressions, we have defined the
single-channel contributions X �

a,b,c i j and X̃ �
a,b,c,d i j in Eqs. (51)

and (52) [46]. The flow equations of local vertices are ob-
tained noting that X̃ �

a,b,c ii(s, t, u) ≡ X �
a,b,c ii(s, t, u). We further

stress that no flow equation for �c ii is required in Eq. (50), as
this vertex is equivalent to �b ii by virtue of Eq. (46).

In the PFFRG, the Katanin truncation scheme [79] was in-
strumental in providing sufficient feedback of the self-energy
flow into the vertex flow equations [22]. It amounts to pro-
moting the single-scale propagator in the flow equations of
four-point vertices to a full derivative of the Green’s function

S�(ω) → d

d�
G�(ω) ≡ Sconv(ω) + SKat(ω)

= −G(ω)2 d

d�

[
G0�(ω)

]−1 + G(ω)2 d

d�
��(ω).

(53)

At zero temperature, frequencies become continuous and
T

∑
ω → (2π )−1

∫
dω. Using the sharp frequency cutoff

G0�(ω) = G0(ω)θ (|ω| − �), we thus obtain in the usual way
using Morris’s lemma [80]

ġ�
T =0(ω) = − δ(|ω| − �)

ω + γ �(ω)
+ ġ�

Kat(ω). (54)

At finite temperatures, a sharp cutoff of frequencies is no
longer possible due to ambiguities that arise if |ω| − � lies be-
tween two discrete Matsubara frequencies. Noting that there
is still freedom in the choice of a smooth cutoff [57,81], here
we choose a Lorentzian cutoff function

��(ωn) = ω2
n

ω2
n + �2

. (55)

Using Eqs. (18), (17), and (53) the expressions for the Green’s
function and the single-scale propagator become

g�(iωn) = ωn

ω2
n + ωnγ (ωn) + �2

,

ġ�(iωn) = −g2(iωn)

(
2�

ωn
+ dγ �(iωn)

d�

)
. (56)

Finally, we need to specify the initial conditions for the newly
defined vertices. After reexpressing the Heisenberg Hamil-
tonian (1) by insertion of Eq. (3) for the spin operators, a
comparison of coefficients yields

f �→∞
int = 0,

��→∞ = 0,

��→∞
a i j = ��→∞

b i j = 0,

��→∞
c i j = −Ji j . (57)

To summarize, in our PMFRG scheme the flow equations for
the free energy (47), self-energy (48), and the vertex functions
(50), are solved numerically starting from large but finite
� � J down to � � 0, approximating the initial conditions
with the � → ∞ values presented above. The flow of the
free-energy correction is integrated along the way but does
not feed back into the other flow equations. Further details on
the numerical implementation of the PMFRG are given in the

Appendix. The next section describes how to extract observ-
ables along the flow and, most importantly, at the physical end
point � = 0.

VII. OBSERVABLES

In this section, we discuss the observables for Heisenberg
spin- 1

2 systems that will be studied in the following sections.
These are the free energy, internal energy, heat capacity, and
static susceptibility. We explain how these observables are
calculated from the eigenstates and eigenenergies of the spin
Hamiltonian (1), its exact representation with SO(3) Majorana
fermions and from the (approximate) solution of the PMFRG
flow equations.

From the partition function of an N-spin system with
eigenenergies En, Z = ∑

n e−βEn , the free energy per spin is
given by

F/N = f = −T

N
log (Z ) = −T

N
log

∑
n

e−βEn . (58)

The energy per spin is

E/N = −∂ log (Z )

N∂β
= ∂ ( f β )

∂β
= 1

NZ
∑

n

Ene−βEn , (59)

which as a function of T also determines the heat capacity

C/N = ∂

∂T
E/N = 1

NT 2

(
1

Z

∑
n

E2
n e−βEn − E2

)
. (60)

For small systems amenable to exact diagonalization, the
rightmost expressions are most convenient. From the solution
of the PMFRG flow equation (47) for the interaction cor-
rection to the pseudo-Majorana free energy per site, we find
fpm = fpm,0 + f �=0

int . The noninteracting free energy for three
pseudo-Majoranas per site is fpm,0 = −3T log(2)/2. Using
the relation between fpm and f , Eq. (8), we finally obtain

f = −T log(2) + f �=0
int . (61)

The static spin-spin correlator can be computed from

χi j =
∫ β

0
dτ

〈
Sz

i (τ )Sz
j (0)

〉
. (62)

Note that χi j can also be interpreted as a static (zero-field)
susceptibility as it measures the response of a spin at site
i when a magnetic field is exerted at site j. We represent
the spin operators by Majorana fermions and obtain from the
vertices of the PMFRG at cutoff scale �,

χ�
i j = + T 2

∑
ω1ω2

g�(ω1)2g�(ω2)2��
c i j (0, ω1 + ω2, ω1 − ω2)

+ T
∑
ω1

g�(ω1)2δi j . (63)

Of particular interest for the two-dimensional systems below
is the uniform susceptibility χ = ∑

i, j χi j .
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FIG. 2. Zero-temperature PMFRG flow of the static local and
nonlocal susceptibilities χi j for the antiferromagnetic Heisenberg
dimer. The gray dotted line represents the exact physical (� = 0)
result.

VIII. APPLICATION: SMALL SPIN CLUSTERS

A. Spin dimer and the fermion parity issue

Small spin clusters constitute an ideal test bed for prob-
ing the accuracy of our approaches as they already represent
nontrivial problems within the PMFRG (and PFFRG) but are
still exactly solvable. We first investigate the simple case of
two spins i = 0, 1 coupled with an antiferromagnetic Heisen-
berg interaction J = 1. Due to the small Hilbert space, this
dimer model HN=2 = ∑

α Sα
0 Sα

1 is analytically solvable. While
the free energy (58) is straightforwardly found, some care
is required for the calculation of the susceptibility from the
Lehmann representation where the term contributing in the
case iν + En − Em = 0 is often neglected in textbook deriva-
tions. We obtain

χ00 = eβ − 1 + β

2(eβ + 3)
,

χ01 = −eβ − 1 − β

2(eβ + 3)
. (64)

Our PMFRG results for the static susceptibility in the case
T = 0 are shown in Fig. 2 as a function of the cutoff. We
find that χ�

i j flows smoothly without any feature, surpasses
the exact results χi j = ±0.5, and diverges at � = 0. This un-
physical divergence is not restricted to the Heisenberg dimer
but appears in all other models considered here. However, the
dimer allows for the most simple discussion of the origin of
this divergence, which equally plagues the flow of the nonlo-
cal vertices of type �a,01 = �x0,x0,x1,x1 and �c,01 = �x0,y0,x1,y1.

To explain the origin of this divergence, consider the
Heisenberg dimer which can be exactly solved in the SO(3)
Majorana representation

HN=2 = −1

4
px py pz(px + py + pz ). (65)

Here, pα ≡ 2iηα
0 ηα

1 are the three flavor parities related to the
nonlocal parity introduced in Sec. III via p(0,1) = 2iτ0τ1 =
−px py pz. While p(i, j) = ±1 is always conserved for generic

spin systems, pα = ±1 are additional constants of motion
only for the dimer, Eq. (65). As any state, the ground state
is (2N/2 = 2)-fold degenerate and identified in this case by
pα = 1 or −1 for all α. Now consider the effect of a small
perturbation HN=2 → HN=2 + vpx. This does not correspond
to any physical perturbation in terms of spin operators but
lifts the ground-state degeneracy. From this point of view,
the ground-state expectation value 〈pα〉 = 0 is fragile, any
finite perturbation violating the conservation of τi as defined
in Eq. (6) with i = 0, 1 generically causes 〈pα〉 = ±1. This
effect is of course alleviated at finite temperature, where the
relative population difference of the two lowest states split by
∼v is controlled by the ratio v/T . Kubo’s formula allows to
formalize the above considerations for the linear response of
〈pα〉 with respect to vpx,

〈pα〉 = −vGR
pα px (iωk = 0). (66)

In Matsubara frequency space, the retarded Green’s function
above may be obtained in the Lehmann representation noting
that the parities are diagonal in the eigenbasis of the unper-
turbed Hamiltonian 〈n|pα|m〉 = pα

nδnm:

Gpα px (iωk = 0) = β

Z
∑

n

e−βEn pα
n px

n. (67)

At low temperatures this yields β = 1
T , similar to the Curie-

type 1/T behavior of the spin susceptibility of a free spin 1
2

which also features a degenerate ground state in the field-
free case. In complete analogy to the spin susceptibility in
Eq. (63), we can now find the the tree expansion of the parity
susceptibility Gpα px (iωk = 0) in terms of the nonlocal vertices
of type �a (for α = x) or �c (α = y, z). The expressions are
similar to Eq. (63) but crucially probe different frequency
combinations of the vertices (t = 0 instead of s = 0). In other
words, nonlocal vertex components of order ∼1/T are in-
herently expected in the SO(3) Majorana representation. In
an exact calculation, these components are responsible for
the 1/T parity susceptibility of Eq. (67), but do not affect
the spin susceptibility. However, the PMFRG is not an exact
method and the unphysical behavior of χ�

i j at T = 0 must
be a consequence of truncating the PMFRG flow equations
which apparently causes this divergence to spill over to the
spin susceptibility. It is an interesting question if an improved
two-loop truncation scheme [correct to order O(J3)] [46] or
a recently developed but numerically demanding multiloop
generalizations of the (PF)FRG [62,63], can be a possible cure
to this problem.

Fortunately, as the unphysical divergence in the PMFRG
flow only occurs at � = 0 and for T = 0, there are other
options to extract physically meaningful results without going
beyond the flow equations presented above. First, it is still
possible to detect magnetic phases, heralded by divergences
at finite � as we have tested for the J1 − J2 square lattice
Heisenberg model (data not shown).

We devote the rest of the discussion to a second option,
which is the restriction to finite temperatures. As explained
above, this can be expected to suppress the unphysical
divergence and we indeed find all vertices and flowing suscep-
tibilities converge towards � → 0 (see lower inset of Fig. 3
for T = 0.1).
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FIG. 3. (Free) energy, heat capacity per spin, and static suscep-
tibilities of the Heisenberg dimer with J = 1 obtained via PMFRG
(red symbols) at � = 0 as a function of temperature. Displayed in
solid (dashed) gray lines are the results obtained by (pseudofermion)
exact diagonalization, as well as the finite-temperature spin suscepti-
bilities of the PFFRG in black symbols. Each data point corresponds
to a fully converged flow with respect to � as demonstrated in the
exemplary plot at T = 0.1 (cf. Fig. 2).

B. Dimer and hexamer at finite temperature

Results for the physical finite-T susceptibility of the dimer
at � = 0 are shown in Fig. 3. For T � 0.2, we find a very
close agreement between the susceptibility obtained via PM-
FRG and the exact result (solid lines) from Eq. (64). The
difference between the exact result and the PMFRG increases
with decreasing temperature, in agreement with the discus-
sion in the previous subsection. We also show analogous
results of the PFFRG, where the presence of unphysical
states seriously compromises the accuracy of the results at
any finite-temperature scale. To support this interpretation,
we have also included the results of an exact diagonalization
scheme of the pseudofermionic Hamiltonian without project-
ing out unphysical states, further referred to as PFED. The
close agreement between PFFRG and PFED demonstrates
the problematic impact of unphysical states at finite temper-
atures which so far has no known resolution. One approach,
the Popov-Fedotov projection scheme, suppresses unphysical
states in exact calculations of observables upon the introduc-
tion of an imaginary chemical potential. However, producing
a quarter-period shift of Matsubara frequencies [57,70], this
option has so far not been integrated in the PFFRG in a
satisfactory manner.

FIG. 4. PMFRG results for the Heisenberg hexamer in analogy
to Fig. 3. The corresponding PFFRG and PFED results of the spin
susceptibility are included in the inset.

Aside from the magnetic susceptibility, our solution of the
free-energy flow equation enables us to compute a variety of
related thermodynamic observables, such as the energy per
spin and the heat capacity, also displayed in Fig. 3. We observe
good agreement at large enough temperatures. At intermediate
scales T � 0.5, the quality of the thermodynamic quantities
from the PMFRG decreases as can be seen most clearly from
the overestimation of the energy per spin or the underestima-
tion of the peak in the heat capacity. These inaccuracies likely
stem from the underestimation of the Majorana self-energy at
small frequencies, a known problem in pseudofermion FRG
approaches to spin systems of small dimensionality [32].

Analogous results are obtained for larger spin clusters such
as the Heisenberg hexamer, a hexagon of six equivalent spins
with nearest- and next-nearest-neighbor interactions J1 = 1
and J2 = 0.5, respectively. As shown in Fig. 4, the PMFRG
results are in good agreement with ED at not too small temper-
atures. The susceptibilities are generally more accurate than
the thermodynamic properties. The susceptibility obtained via
PFFRG shows large deviations from ED results at all tem-
peratures. We emphasize again that small spin clusters are
particularly challenging within the FRG framework since its
built-in mean-field limits are generally not expected to de-
scribe such systems accurately. On the other hand, mean-field
approaches perform better in higher-dimensional systems.
The FRG is, hence, expected to reach its full potential for
larger or even infinite systems to which we move on in the
following section.
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FIG. 5. PMFRG results (dots) for the J1-J2 square lattice Heisen-
berg model at J2/J1 = 0.5. The panels depict the single site
contribution to the interaction correction to the free energy, internal
energy, heat capacity, and uniform susceptibility (top to bottom). The
HTSE data (dashed line, up to ninth order) is taken from Ref. [82], its
4,5 Padé approximant is shown as a solid line. The iPEPS result for
the ground-state energy E0/N = −0.495 from Ref. [83] is indicated
as a dotted line.

IX. APPLICATION: FRUSTRATED SPIN SYSTEMS IN 2D

We now turn to the application of the PMFRG to two-
dimensional, frustrated, and translational-invariant Heisen-
berg spin models described by Hamiltonian (1). We first study
the J1-J2 Heisenberg model on the square lattice with the
parameter choice J2 = 0.5 (where the system is expected to
be nonmagnetic) and then turn to the triangular lattice model
with only nearest-neighbor interaction J2 = 0. We work at
finite temperature T > 0 throughout and directly in the ther-
modynamic limit. Thus, as a technical modification from the
previous section, we are required to limit the range of vertices
to |ri − r j | � L, measured in units of the nearest-neighbor
distance [22]. Beyond this distance, vertices (and thus con-
nected Green functions) are set to zero. We take L � 10 large
enough such that our results are converged in L. We study
the same observables as in the previous section but report the
uniform static susceptibility χ/N instead of χi j . In contrast to
the previous section, we plot these observables over β = 1/T .

Our PMFRG results for the square lattice are shown in
Fig. 5 (dots). We compare to the high-temperature series
expansion (HTSE, dashed line) [82] and its 4,5 Padé approx-
imant (solid line) with an extended range of stability β � 2
[84], to which our data are in reasonable agreement. We are
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FIG. 6. PMFRG results (dots) for the nearest-neighbor triangular
lattice Heisenberg model. The observables presented are analogous
to Fig. 5. The HTSE data (dashed line, up to 12th order) is taken from
Ref. [85], its 6,6 Padé approximant is shown as a solid line.

not aware of T > 0 tensor network results for the chosen
model, but depict the iPEPS ground-state energy E0/N =
−0.495 from Ref. [83] (dotted line). Finally, we remark that
when applied to the unfrustrated nearest-neighbor Heisen-
berg model (J2 = 0, data not shown), the PMFRG results
agree only to the first-order HTSE but deviate strongly from
higher-order and Monte Carlo data already for T = 1. The
likely reason is that for the current level of truncation of flow
equations, the FRG is known to violate the Mermin-Wagner
theorem [46], and does, hence, not accurately capture the on-
set of magnetic order at T = 0 in an unfrustrated Heisenberg
system.

In Fig. 6, we show the PMFRG results for the triangular
lattice nearest-neighbor Heisenberg model (dots). Agreement
to the HTSE data [85] (dashed line, up to 12th order) and its
6,6 Padé approximant is similar as in the J1-J2 square lattice
Heisenberg model of Fig. 5. In the temperature range for
which the Padé HTSE is shown, its accuracy was confirmed
by recent experiments [86] and tensor network results [87].

X. CONCLUSION AND OUTLOOK

In this work, we proposed a FRG approach to spin- 1
2

quantum magnets with spin operators rewritten in the SO(3)
Majorana representation. Compared to the established PFFRG
based on representing spins by complex fermions, our PM-
FRG method comes with a number of important conceptual
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differences, both on a technical level as well as regarding
the scope for applications. First, as the Majorana nature of
the spin representation is essential, we derived general FRG
flow equations for generic interacting Majorana Hamiltonians.
These could potentially be useful for other applications [88].
Second, the SO(3) Majorana representation avoids the un-
physical states inherent in the complex fermion representation
and instead features a redundant description of spin states
reflected in a fixed artificial degeneracy. As a consequence,
the truncation of flow equations is the only physical approxi-
mation made in the PMFRG. This explains why the PMFRG
yields reasonably accurate results for finite temperatures, be-
ing out of reach for the PFFRG. In particular, we showed
how the PMFRG can be used to compute thermodynamic
quantities which are of great experimental relevance. On the
downside, the PMFRG’s precision at low temperatures suffers
from a divergence of the T = 0 flow, which we showed to be
closely related to the (ground-) state degeneracy inherent in
the SO(3) Majorana representation, but ultimately caused due
to inaccuracies introduced through the truncation of the hier-
archy of flow equations. We thus conclude that, at the current
stage, the PMFRG should be regarded not as a competitor
to the PFFRG, but rather a complement in the practitioners
toolbox tailored for finite and not too small temperatures.

Further work should investigate the potential of the
recently proposed multiloop extension of the (PF)FRG
[62,63,72] to mitigate the unphysical divergence mentioned
above. Moreover, while this paper has focused on Heisenberg
systems with global spin-rotation symmetry, generalization
towards different classes of systems with reduced symmetries,
i.e., Kitaev models and their variants, should be straight-
forward. Finally, we emphasize that the SO(3) Majorana
representation is only one out of several Majorana-based
spin representations [66]. Based on our results, we believe
that these are promising but relatively underexplored venture
points for the application of many-body methods in the study
of spin systems.
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APPENDIX: DETAILS ON THE NUMERICAL
IMPLEMENTATION

The flow equations presented above can be solved using
standard, error-controlled Runge-Kutta schemes, such as the
fifth-order Dormand-Prince method. In our case, we found
little dependence of our results on the choice of the integration
method used upon decreasing the relative and absolute accu-
racy to ∼10−2 or lower. In equivalence to implementations
of the PFFRG, the maximum distance treated in four-point
vertices �i j is limited to |ri − r j | � L � 10 for translation-
invariant systems.

At finite temperatures, we treat the frequency dependence
by generating a set of Nω = 32 positive Matsubara indices
such that our results are converged in Nω. The indices were
chosen according to the following scheme such that the small-
est frequencies are included exactly, while larger indices are
more sparse and require for linear interpolation in-between
them:

ni = round
[
z sinh

( i

z

)]
, i = 0, 1, . . . , Nω. (A1)

The parameter z is then fully determined upon specifica-
tion of the temperature, the number of frequencies, and the
maximum frequency. Since the according (fermionic) fre-
quencies are given by ωn = πT (2n + 1), one needs to be
careful when implementing fermionic symmetries such as
γ (−nω ) = −γ (nω − 1). Furthermore, the Matsubara integers
corresponding to sums and differences of fermionic frequen-
cies are

ω1 + ω2 ↔ nω1 + nω2 + 1,

ω1 − ω2 ↔ nω1 − nω2 . (A2)

As a result, only those sets of Matsubara integers that sum up
to odd integers ns + nt + nu = 2nω1 + 1 are physical within
energy conservation and will be evaluated in vertices. For the
less robust implementation at T = 0, we choose a logarithmic
frequency mesh consisting of Nω = 96 positive frequencies
to avoid numerical errors from the finite-frequency grid. The
frequency integral in the Katanin contribution is then carried
out numerically using a trapezoidal method.
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