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ABSTRACT

Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation. Utilizing time-resolved scanning transmission
x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down
to <80 nm� 130 nm. At higher frequencies, spin wave dragonfly patterns formed by the demagnetizing structures of the antidot lattice are
excited. Evaluating their relative phase with respect to the propagating mode within the antidot channel reveals that the dragonfly modes are
not directly excited by the antenna but need the propagating mode as an energy mediator. Furthermore, micromagnetic simulations reveal
that additional dispersion branches exist for a tilted external field geometry. These branches correspond to asymmetric spin wave modes that
cannot be excited in a non-tilted field geometry due to the symmetry restriction. In addition to the band having a negative slope, these asym-
metric modes also cause an unexpected transformation of the band structure, slightly reaching into the otherwise empty bandgap between
the low frequency edge modes and the fundamental mode. The presented phase resolved investigation of spin waves is a crucial step for spin
wave manipulation in magnonic crystals.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045142

Magnonics, i.e., the manipulation of spin waves on the nanoscale,
is an advancing field of interest that is analogous to photonics, which
addresses the manipulation of light.1–3 What makes magnonics even
more fascinating is the intrinsic symmetry breaking in a uniformmag-
netic thin film due to the dipolar interaction depending on the relative
orientation of magnetization and wave vector of the spin wave.
However, this simultaneously enriches magnonic devices by allowing
for the coexistence of various magnetostatic spin wave modes with dif-
ferent k-vector orientations.4,5

While challenging to handle, this particular complexity also offers
unique possibilities to influence and observe spin waves on the scale of
their own wavelength.2 Modern nanostructring techniques allow to
engineer artificial magnonic structures in the sub-micrometer
regime,6–10 while time-resolved scanning transmission x-ray

microscopy (TR-STXM) offers high spatial and temporal resolu-
tion5,11–14 and hence allows for the direct observation of ultra-fast
dynamics on the nanoscale.

One type of artificial magnonic crystals is two dimensional anti-
dot lattices, i.e., periodic arrangements of holes in ferromagnetic thin
films that cause periodic variations of saturation magnetization and
demagnetization fields. Just like for electronic crystals, this periodic
spin wave potential leads to the formation of a band structure for spin
waves.2,3,15–19 A characteristic peculiarity of these systems is so-called
edge modes that are localized in the vicinity of the antidot edges. Here,
the magnetization exhibits the strongest perturbations caused by the
demagnetization fields.20–26

Such edge modes derive from magnetostatic spin wave modes
but are trapped in the potential wells created by the local minima of
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the effective field.27–30 Nevertheless, these modes were rarely experi-
mentally observed, since depending on the lattice constant, their lateral
confinement can exceed the resolution of optical measurement meth-
ods,2,16,20,31 and only a few measurements of edge modes have been
published so far.31–35 Thus, the description of antidot lattices relies
mainly on micromagnetic simulations.20,36 There are indications for
several types of these localized edge modes,20 however, their funda-
mental nature and coexitence with propagating modes remain experi-
mentally unexplored,20,25,33 but exist, as we will show.

In this article, we present a combination of STXMmeasurements
and simulations to investigate multiple modes existing in antidot latti-
ces. First, we will discuss the amplitude and phase distribution of prop-
agating modes and edge modes. Furthermore, dragonfly like modes
induced by the demagnetizing structure will be investigated.
Additionally, we illustrate higher order standing spin waves and com-
plement our findings with micromagnetic simulations allowing us to
analyze additional modes, which are only excited in a tilted field
geometry.

To observe the spin wave propagation in antidot lattices, 50 nm
thin Py films were deposited on Si3N4 membranes. The antidot lattice
includes holes of diameter d ¼ 450 nm with a center to center distance
a ¼ 900 nm. For radio frequency (RF) excitation, a 2lmwide antenna
was structured on top of the Permalloy. An example of the sample
design is sketched in Fig. 1(a).

Simulations37 were performed with a damping coefficient of
a ¼ 1� 10�6 to extend the propagation distance of spin waves in
order to obtain high resolution dispersion relations. The saturation
magnetization and exchange constant were set to Ms ¼ 6� 105 A=m
and Aex ¼ 13� 10�12 J=m, respectively, to qualitatively match simu-
lations with experimental results. To keep the simulations as close to
the experiment as possible, the spin waves were excited by a locally
oscillating field to imitate a microstrip antenna. Periodic boundary
conditions were used in order to simulate a continuous thin film. In
order to calculate the dispersion relation, we used a temporal and
spatial fast Fourier transformation to obtain the amplitude for a given
frequency and k-vector. To obtain simulated real space images, the
inverse Fourier transformation was applied to all k-vector components
of a particular frequency.

Time resolved STXM measurements were conducted at the
MAXYMUS end station of the UE46-PGM2 beam line at the
BESSY II synchrotron radiation facility. The samples were illuminated
under perpendicular incidence of circularly polarized light in an
applied in-plane field of up to 240mT generated by a set of four rotat-
able permanent magnets.38 The photon energy was set to the absorp-
tion maximum of the Fe L3 edge to get optimal x-ray magnetic
circular dichroism contrast for imaging. A lock-in like detection
scheme allows for RF excitation at arbitrary frequencies at a temporal
resolution of 50 ps. This method allows for the pixel-wise recording of
spin wave movies in real space and time domain. A subsequent tempo-
ral fast Fourier transformation allows for frequency filtering. For more
information on TR-STXM for spin wave measurements, the reader is
referred elsewhere.5,11,12

The simulated dispersion relation shows characteristics of mag-
nonic crystal band structures and reveals that there are multiple modes
existing at different frequencies. As illustrated in the dispersion rela-
tion in Fig. 1(b), depending on the frequency either edge modes, the
fundamental Damon–Eshbach mode or higher order modes are

excited by the microstrip antenna. As seen in the dispersion relation,
the higher order modes at high frequencies experience hybridization
and exhibit multiple k-vectors coexisting at the same frequency within
a single Brillouin zone.

In the following discussion, we will start with lower frequencies’
edge modes and increase the excitation frequency as we advance in the
manuscript. First, we analyze the amplitude and phase of experimen-
tally measured edge modes. Increasing the frequency allows to observe
the fundamental mode and its interaction with demagnetizing struc-
tures formed by the lattice. In addition, micromagnetic simulations as
well as experiments will illustrate how a tilted external magnetic field
affects higher order spin waves in antidot lattices.

To excite low frequency edge modes in the antidot lattice, the
sample was excited with a 100 ps broadband pulse that allows to excite
multiple frequencies simultaneously. With a Fourier transformation of
the experimental data along the temporal axis, each frequency compo-
nent can be analyzed individually. The same transformation also yields
spatially resolved amplitude and phase profiles for each individual
frequency.

The spin wave edge mode is highly localized to an area
of< 80nm �130nm, which is illustrated by the spin wave amplitude

FIG. 1. (a) Sketch of an antidot lattice sample for x-ray microscopy. 50 nm of
Permalloy (gray) are deposited on top of the x-ray transparent Si3N4 membrane
(yellow). For spin wave excitation, a 2lm wide copper antenna (brown) is depos-
ited on top of the magnetic thin film. An external field is applied along the direction
of the microstrip antenna. (b) Simulated spin wave dispersion relation for an applied
field of 25mT.
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distribution in Fig. 2(a). The strong localization can be explained by
the reduction of the local effective field due to the demagnetizing field
formed by the antidot lattice. The reduction of the local effective mag-
netic field lowers the local resonance frequency,2 which traps the edge
mode inside of a potential well.20

A dynamic representation of the 2.0GHz spin wave component
measured with TR-STXM is displayed in Fig. 2(b). The amplitude of
the spin wave is given by color saturation while the relative phase is
represented by the respective color. The edge mode does not have a
uniform temporal phase along the antidot edge but exhibits a phase
evolution. This indicates that the edge mode inherits its characteristics
from a propagating spin wave mode, which got trapped in a potential
well formed in the vicinity of the antidot. The phase gradient, shown
as white arrows in Fig. 2(b), represents the propagation direction of
the spin wave. This indicates that the wave vector~k is perpendicular to
the magnetization. Hence, the localized edge mode derives from a
Damon–Eshbach spin wave.25,39

The phase shift of the edge mode depends on both, the excitation
as well as the local resonance frequency. While the excitation fre-
quency does not vary as a function of position, the resonance fre-
quency depends on the magnitude of the local field, and hence on the
magnitude and direction of the demagnetizing field, which is highly
inhomogeneous in the vicinity of the antidot. Since the phase shift is a

function of the local resonance frequency, which in turn depends on
the position, the phase shift exhibits a spatial variation.

Figure 3(a) displays a propagating, Damon–Eshbach type spin
wave mode at 3.0GHz and 30mT, which carries significant amplitude
across the antidot lattice. Reducing the excitation frequency to
2.4GHz does not only result in quantitative but also qualitative
changes of the spin wave pattern. The more complex pattern is shown
in the enlargement in Fig. 3(b). It turns out, this pattern can be decon-
voluted into a propagating channel mode and a mode indicated by the
white lines. From now, we will refer to the latter one as a dragonfly
mode since the white overlay shows similarities to the shape of a drag-
onfly. A simulated illustration is displayed in the supplementary mate-
rial (Figs. S1 and S4).

The dragonfly mode starts with magnetization oscillations at the
edges and follows the demagnetizing structure. The phase of the prop-
agating channel mode continuously changes during propagation per-
pendicular to the magnetic field, as shown in Fig. 3(c). The dragonfly
mode lags approximately 3p=4 behind the channel mode at their
respective position. This suggests that the dragonfly mode acts as a
local oscillator that is driven by the propagating mode. Hence, the
energy is not transmitted directly from the RF-antenna to the dragon-
fly mode but needs the channel mode as a mediator that agrees well
with previous findings of spin waves interacting with antidots.5

FIG. 2. TR-STXM measurements of a localized edge mode below the microstrip antenna: (a) two-dimensional distribution of the spin wave amplitude at 2.0 GHz and 20 mT
after excitation with a 100 ps broadband pulse. The position of the antidot is shown as a gray overlay. Additionally, amplitude profiles through the maximum are displayed next
to the plot. (b) Two-dimensional distribution of the spin wave phase (shown as hue) and amplitude (shown as color saturation). The phase gradient is illustrated by white arrows
to indicate the propagation direction of the spin waves.
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Therefore, this represents a possible way to drive local oscillations by a
non-localized, propagating mode. Due to its driven nature, the drag-
onfly mode mimics a spatial phase variation and is sustained by a
propagating spin wave mode.

Micromagnetic simulations were performed to get a deeper
understanding of the nature of the system at small tilting angles of the
external magnetic field. Simulated dispersion relations are shown in
Figs. 4(a)–4(c) for three different angles between the external field and
the microstrip antenna (0�, 2�, and 4�).

As it turns out the dispersion relation of the system strongly
changes its behavior already for slight tilt angles. Due to the perturba-
tion of the magnetization caused by the antidot edges, the system is
massively influenced by the resulting demagnetization pattern. This
pattern continuously changes with increasing tilt angle (supplemen-
tary material Fig. S2) and drastically influences the dispersion relation.

The edge mode band located between 0.5 and 2GHz gets more
narrow for higher field angles, drastically reducing its frequency range.
The propagating modes change their frequency response by shifting to
higher excitation frequencies. When taking a closer look at the
4�dispersion, it can even be seen that the tilted field geometry not only
shifts existing modes but also causes a new mode to appear slightly
above 3GHz (black arrow). Not only is this mode not visible for lower
field tilts, it also possesses a negative slope at the Brillouin zone center,
typically seen for backward-volume-like spin waves. Nevertheless, this
spin wave mode does not directly correspond to a pure propagating
spin wave but to a combination of asymmetric channel and edge
mode. An example of this mode is displayed in Fig. 4(d). For this illus-
tration, all k-vector components are included in the illustration.

It can be seen that the amplitude of the mode located close to the
antidots (white arrow) is not in phase but experiences a phase shift

FIG. 3. Two-dimensional distribution of the spin wave phase and amplitude at (a) 3.0 GHz and (b) 2.4 GHz in a magnetic field of 30mT during continuous wave excitation
obtained from TR-STXM measurements. The magnetic field is applied parallel to the antenna. The position of the antidots is shown as gray overlay. The spin wave pattern can
be deconvoluted into a propagating Damon–Eshbach wave in each channel and a dragonfly mode, which is indicated by the white transparent overlay next to four of the
antidots. A simulated example of a similar mode is illustrated in the supplementary material (supplementary material Fig. S1). Furthermore, (c) displays the spatial phase varia-
tion during propagation. The channel mode is represented in blue and black (linear fit), while the dragonfly modes are represented by four green measurement points. The
dragonfly mode lags behind the propagating mode indicating its character of a driven oscillation.

FIG. 4. Changes of the magnonic band structure with slightly tilted magnetic field: (a)–(c) simulated spin wave dispersion relation for an applied field of 25 mT at tilt angles
between 0� and 4�. (d) Example plot of a spin wave pattern located within the emerging asymmetric branch at 4� field tilt. Amplitude is represented by color saturation,
whereas the relative phase is illustrated by the color.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 118, 232403 (2021); doi: 10.1063/5.0045142 118, 232403-4

VC Author(s) 2021

https://www.scitation.org/doi/suppl/10.1063/5.0045142
https://www.scitation.org/doi/suppl/10.1063/5.0045142
https://www.scitation.org/doi/suppl/10.1063/5.0045142
https://www.scitation.org/doi/suppl/10.1063/5.0045142
https://scitation.org/journal/apl


that is in contrast to conventional symmetric edge modes. This is due
to the phase of the channel mode being different on the left and the
right sides of the channel, causing a difference in the phase of the
driven oscillation at the antidot edges. This asymmetric mode is not
excited for smaller tilt angles since the microstrip antenna generates a
uniform magnetic field across the channels, which can only couple to
symmetric spin waves in the case of a horizontally aligned magnetic
field. Even slight tilting breaks the symmetry allowing for excitation of
asymmetric waves.

It should be noted that the field is rotated around the sample
while the antenna remains oriented along the horizontal axis.
Nevertheless, the tilted field makes the excitation of modes that are
quantized across the channel quite efficient, thus providing nonzero k-
components along the direction of the antenna.

The existence of such asymmetric modes is not obvious and rep-
resents an unexpected transformation of the band structure under a
tilted external field. In particular, their frequency decreases with
increasing k-vector, in contrast to other modes. Since they are located
just above a bandgap, this results in them reaching into the otherwise
empty bandgap between the symmetric edge modes and the funda-
mental mode. Although we do not have access to fully conclusive
experimental evidence, we have experimental results that strongly
indicate the existence of asymmetric oscillations. An illustration is
included in the supplementary material (Fig. S3).

To mimic a magnetic field rotation, the sample was mounted
slightly tilted with respect to the magnetic field. The tilt of the external
magnetic field affects the spin wave dynamics drastically. As seen in
Fig. 5, the tilting of the applied field (20mT) breaks the symmetry of
the system, which causes the spin wave to lose its symmetry axis along
the propagation direction (cf. Neusser et al.31 for large tilt angles).
Instead the spin waves tend to form tilted zones of maximum ampli-
tude along the channel connecting two opposite antidots as illustrated
by the dashed white lines in Figs. 5(a) and 5(c). The amplitude max-
ima and node-like behavior indicate that the spin waves tend to form
standing spin waves between the antidots. For increasing frequency,
the amount of nodes increases until the resolution of the measurement
does not succeed at resolving individual nodes anymore (6.1GHz).
Increasing the frequency leads to standing spin waves only underneath
the antenna. Almost all spin wave energy is now channeled into stand-
ing spin waves located between the antidots, outside of the guiding
channel.

The experimental results are a nice illustration of the rich nature
of spin waves trapped in antidot lattices. The spin wave behavior con-
tinuously changes with increasing frequency, while different frequency
ranges emphasize different aspects of the wave. It also nicely displays
that for some frequencies, the spin waves can only be represented by a
superposition of traveling waves with a continuous phase gradient as
well as standing spin wave patterns between the individual holes.

The simulations, performed at a tilt angle of 4� and an external
field of 25mT, are able to reproduce the experimental results almost
perfectly over a large range of frequencies (Fig. 5). The slight field dis-
crepancy is caused by a non-perfect magnetic field calibration in the
experiment. The simulation does not only match the spin wave shape
but also operates at almost the same frequencies as the experiment. In
the simulations, we find that some modes existing in the lattice cannot
be represented by single mode profiles but instead consist of a super-
position of multiple individual modes.

FIG. 5. Comparison of experiment (20 mT, left column) and simulations (25 mT,
right column) over a large range of frequencies with the external field direction
slightly tilted by 4�. The slight field discrepancy is caused by a non-perfect mag-
netic field calibration (few mT) in the experiment.
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In particular, as shown in Figs. 5(a)–5(d), the simulation is able
to capture the tilt of the spin wave modes and reproduces the standing
spin wave pattern between the antidots. The dashed white lines indi-
cate the mode tilt angle that matches well for experiment and simula-
tion. The simulation is also able to recreate the amount of nodes
between two neighboring antidots.

Although the simulation overestimates the spin wave amplitude
within the spin wave channel for higher frequencies, the overall shape
of the spin wave pattern is well-captured. Examples of the most domi-
nant features are highlighted by white dashed lines in Figs. 5(e)–5(h).

In summary, we reported on three different types of propagating
modes and edge modes near nano-scaled antidots by means of time-
resolved scanning transmission x-ray microscopy and micromagnetic
simulations. The combination of magnetic resolution paired with time
resolved imaging allows observing edge modes that are confined to an
area of< 80nm �130nm. The phase sensitivity of STXM enables us
to visualize the edge mode phase propagation, which indicates a
Damon–Eshbach-like character.

Increasing the excitation frequency allows us to excite propagat-
ing modes traveling down the spin wave channel. High resolution
movies reveal that the demagnetization structures near the antidots
result in dragonfly like modes. Their fixed phase relation to the chan-
nel mode suggests that the oscillation of the dragonfly mode is a driven
oscillation fed by the propagating channel mode. This demonstrates a
possibility to excite localized modes by a non-local, propagating spin
wave.

Rotating the external magnetic field by only 4� reveals asymmet-
ric modes in the simulations, which cannot be excited at smaller tilt
angles. This asymmetric branch is an additional feature in the disper-
sion relation due to the broken symmetry. We illustrated that the sim-
ulations are able to recreate the tilted standing spin wave pattern
between antidots while also reproducing predominant features of the
experiment over a large range of frequencies. We expect the presented
results to be an important step toward utilization and manipulation of
a rich family of spin wave modes in magnonic crystals.

See the supplementary material that includes an illustration of a
simulated dragonfly mode (Fig. S1), simulated magnetization patterns
for different field angles (Fig. S2), experimental indications for
asymmetric spin wave modes (Fig. S3), and simulated results of the
dragonfly and asymmetric mode for different geometrical parameters
(Fig. S4).
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