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Abstract
The Ni self-diffusion in glass forming Pd40Ni40S20, Pd37Ni37S26 and Pd31Ni42S27 melts was
probed by incoherent, quasielastic neutron scattering over a temperature range between 773
and 1023 K. The Ni self-diffusion coefficients are on a 10−10 m2 s−1–10−9 m2 s−1 scale and
barely change with composition. Each composition exhibits an Arrhenius-type temperature
dependence of the Ni self-diffusion coefficients, which results in activation energies ranging
from EA = 348 ± 16 meV for Pd40Ni40S20 to EA = 387 ± 6 meV for Pd37Ni37S26. The
structural relaxation shows a stretched exponential behavior even far above the liquidus
temperatures. In addition, the viscosity of the Pd37Ni37S26 melt was measured under reduced
gravity conditions. The diffusion calculated from the viscosity reveals a significant deviation
from the measured Ni self-diffusion by a factor between 4 and 8. This may indicate a dynamic
decoupling between the atoms within the Pd–Ni–S equilibrium melts.

Keywords: self-diffusion, viscosity, metallic melts, bulk metallic glasses, sulfur, quasielastic
neutron scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

Ni–P-based alloys are very well explored bulk metallic glass
formers. Within the ternary Pd–Ni–P system, Pd40Ni40P20

represents the best glass former [1–4] and thus enables the
casting of glassy cylinders with 25 mm in diameter by flux-
ing in dehydrated B2O3 and subsequent water quenching [4].
As a result of its excellent glass forming ability, Pd–Ni–P
became a model system to study bulk metallic glass formation
[5–7]. In order to understand the glass formation in Ni–P-
based alloys, the melt dynamics were examined. The viscosity
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describes the flow behavior and therefore the melt dynamics on
a macroscopic scale, whereas the self-diffusion describes the
atomic motion and therefore the melt dynamics on a micro-
scopic scale. Within Ni, Ni–P, Pd–Ni–P and Pd–Ni–Cu–P
melts, a previous study shows that the Ni/(Cu) self-diffusion
barely changes with composition [8]. The same holds for the
packing fraction. Thus, the authors came to the conclusion
that the atomic motion is determined by the packing fraction
[8, 9]. This implies that these melts behave like monatomic
metallic melts above the critical temperature of mode coupling
theory [10]. In this case, the atoms can be approximated as
hard spheres with defined radii [11]. Thus, the atomic bonds
are non-directional and neglect all kind of chemical interac-
tions. Since the melt dynamics in Ni, Ni–P, Pd–Ni–P and
Pd–Ni–Cu–P barely change with composition, the enhanced
glass forming ability reveals no dynamic origin. It is rather
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related to thermodynamics, since the liquidus temperature
decreases with the number of elements [8].

It was recently found that the replacement of P by S leads
to bulk metallic glass formation as well [12, 13]. Within the
ternary Pd–Ni–S system, Pd37Ni37S26 represents the best glass
former with a critical casting thickness of 2 mm, whereas
Pd31Ni42S27 exhibits the best thermal stability against crystal-
lization upon heating from the glassy state [12, 13]. A recent
study on Ti–Ni–S melts reveals that S-addition affects the melt
dynamics differently [14] than element addition in Ni–P-based
melts [8]. Here the Ti/Ni self-diffusion and the packing frac-
tion decrease simultaneously upon S-addition. For this reason,
the reduced melt dynamics cannot be explained by a dense
packing of hard spheres. The decrease of the packing fraction
upon S-addition indicates the occurrence of directional bonds,
which may develop a pronounced chemical short-range-order.
This could be the origin for the improved glass formation in
Ti–Ni–S.

Besides the reduced packing fraction, the decoupling of the
self-diffusion coefficients indicates the occurrence of a chem-
ical short-range order. In Zr-based melts the self-diffusion
of the large Zr atoms and the smaller atoms diverges above
the liquidus temperature [15, 16]. The authors argue that
the decoupling is caused by a Zr-network, which contains
strong directional bonds [15]. In contrast, all atoms within
the Pd–Ni–(Cu)–P equilibrium melts exhibit similar self-
diffusion coefficients [17]. The decoupling in Pd–Ni–(Cu)–P
only occurs below the critical temperature of the mode-
coupling-theory [18]. Here the self-diffusion of the large Pd
atoms and the smaller Ni, Cu and P atoms start to diverge
[18, 19].

In this study, we examined how S affects the melt dynamics
in Pd–Ni–S and compared our results to the melt dynamics in
Ni–P-based systems and Ti–Ni–S. Therefore, we probed the
Ni self-diffusion and its temperature dependence by incoher-
ent, quasielastic neutron scattering [20]. This method is not
affected by fluid flow, since it measures on atomic time- and
length-scales. Thus, accurate Ni self-diffusion coefficients can
be obtained on an absolute scale. In order to estimate whether
a dynamic decoupling occurs in Pd–Ni–S melts above the
liquidus temperature like in Zr-based melts, the viscosity of
Pd37Ni37S26 was measured under reduced gravity conditions
by electromagnetic levitation. Furthermore, the sample vol-
ume was determined from the reduced gravity data, which
enabled the calculation of the packing fraction. With this,
the correlation between self-diffusion and packing fraction in
Pd37Ni37S26 melts was crosschecked.

2. Experimental

To produce the Pd–Ni–S master alloys the raw elements Pd
(99.999 wt.%), Ni (99.95 wt.%) and S (99.9995 wt.%) were
inductively melted in silica tubes under a high purity Ar-
atmosphere [13]. Subsequently, the alloys were remelted and
fluxed in dehydrated B2O3 in order to remove oxide impurities
[13]. To prepare the samples for the quasielastic neutron scat-
tering experiments in Al2O3 containers, they were suction cast
into Cu-molds with 4 mm in diameter.

Figure 1. Scattering law S(q,ω) of liquid Pd31Ni42S27 for
q = 0.6 Å−1 and q = 1.4 Å−1 at 823 K.

The liquid samples were measured in 0.5 mm thick Al2O3

containers with 5 mm in diameter and 40 mm in height at the
neutron time-of-flight spectrometer NEAT [21, 22] located at
the BER-2 neutron source (Helmholtz-Zentrum Berlin, Ger-
many). The setup with a neutron wavelength of λ = 6 Å
gives an accessible wavenumber range of q = 0.5 to 1.7 Å−1

at zero energy transfer and an instrumental energy resolution
of 63 μeV at full width half maximum. During the experi-
ments the samples were annealed under vacuum in a Nb elec-
trical resistance furnace that provides a temperature stability
of better than ±0.5 K. The time-of-flight spectra were taken
above the liquidus temperatures (TL (Pd40Ni40S20): 744.0 K,
TL (Pd37Ni37S26): 730.8 K, TL (Pd31Ni42S27): 756.0 K [13])
between 773 and 973 K in steps of 50 K and with an expo-
sure time of 120 min at each temperature. For Pd37Ni37S26 an
additional measurement was performed at 1023 K. The sam-
ples mass loss after the experiments was well below 0.1%. A
measurement of the samples at room temperature served as the
instrumental energy resolution of the time-of-flight spectrom-
eter. In order to obtain the scattering law S(q,ω), the measured
time-of-flight spectra I(2θ, tof) were normalized to a vanadium
standard, interpolated to constant wavenumbers and corrected
for empty container scattering. For precise description of the
evaluation procedure, the reader is referred to [20]. Figure
1 shows the scattering law S(q,ω) of liquid Pd31Ni42S27 for
q = 0.6 Å−1 and q = 1.4 Å−1 at 823 K. At small wavenumbers
the scattering signal is governed by the incoherent scattering
cross section of Ni (σinc. (Ni) = 5.2(4) barn [23]), whereas
the incoherent cross sections of Pd (σinc. (Pd): 0.093(9) barn
[23]) and S (σinc. (S): 0.007(5) barn [23]) can be neglected.
Within the examined q-range two coherent contributions need
to be considered [20]: (1) the coherent part that results from
thermal diffusion, which appears as a Rayleigh line within
the scattering law S(q,ω). Since the thermal diffusion is much
faster than the self-diffusion in metals, the Rayleigh line
appears as a flat background within the examined energy range.
(2) The coherent part that results from phonons, which appears
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Figure 2. Normalized coupling frequency f / f 0 as a function of
time t for the oscillation decay in liquid Pd37Ni37S26 during cooling
between 871 and 842 K. This data set was recorded by the SCE
during a parabolic flight with TEMPUS. The red, solid line
represents a fit with f (t) = f 0 + A exp(−t/τ )sin(ωt + δ0), where f 0
is the initial coupling frequency, A is the oscillation amplitude, τ the
decay constant, ω is the circular frequency and δ0 is the phase shift.

as two Brillouin lines within the scattering law S(q,ω). How-
ever, these Brillouin lines are located outside the examined
energy range. Thus, the coherent contribution can be neglected
compared to incoherent contribution of Ni. Fourier deconvo-
lution of the scattering law S(q,ω) and normalization to 1 for
t = 0 gives the intermediate scattering function S0(q, t).

The viscosity of liquid Pd37Ni37S26 was measured within
reduced gravity cycles of about 22 s. This was realized by
container-less processing during parabolic flights with the
TEMPUS facility [24]. In contrast to ground-based electro-
magnetic levitation, magnetic fields in TEMPUS are small
enough to permit viscosity measurements by the oscillation
drop technique [25–27]. Here the surface oscillation decay of
liquid Pd37Ni37S26 was recorded during cooling. The decay
constant provides information on the viscosity (η = ρR0

2/5τ
[28], where ρ is the melt density, R0 is the initial radius and
τ is the decay constant) over a certain temperature range,
as shown in figure 2. The decay curves were recorded by a
newly installed infrared (IR) camera (frame rate: 1000 fps),
which enables the detection of melts with low liquidus temper-
atures. At the same time, the decay curves were recorded by
sample coupling electronics (SCE) (frame rate: 400 fps),
which additionally provide information on the sample volume
[29]. In order to obtain absolute values for the sample volume,
a calibration with a Zr sphere was performed.

3. Results and discussion

The intermediate scattering functions S0(q, t) were fitted by the
Kohlrausch–Williams–Watts stretched exponential function
within the α relaxation regime:

S0(q, t) = A exp [− (t/τ )β ] , (1)

Figure 3. Intermediate scattering function S0(q, t) of liquid
Pd37Ni37S26 for q = 1 Å−1 at different temperatures between 773
and 1023 K. The solid lines are fits with the
Kohlrausch–Williams–Watts stretched exponential function
(equation (1)). The insert shows the self-diffusion coefficients
calculated from the relaxation times as a function of the
wavenumber.

where A is the structural relaxation amplitude, τ is the
structural relaxation time, and β is the stretching exponent.
The onset of glassy dynamics results in a deviation from
an exponential decay (β < 1.0) [30–32]. The best fit results
in a q- and temperature-independent stretching exponent
β = 0.82. Figure 3 shows the intermediate scattering func-
tion S0(q, t) of liquid Pd37Ni37S26 for q = 1 Å−1 at six dif-
ferent temperatures. The solid lines correspond to fits with
the Kohlrausch–Williams–Watts stretched exponential func-
tion (equation (1)). The inset in figure 3 shows the self-
diffusion coefficients (D = 1/(τq2)) calculated from the relax-
ation times as a function of the wavenumber [33]. For all
temperatures the self-diffusion coefficients are constant over
the entire q-range, which confirms the diffusive nature of the
melt dynamics. Since the incoherent scattering cross section
of Pd–Ni–S melts is dominated by Ni, D represents the Ni
self-diffusion coefficient.

Figure 4 shows the Ni self-diffusion coefficients of the
Pd40Ni40S20, Pd37Ni37S26 and Pd31Ni42S27 melts probed by
incoherent, quasielastic neutron scattering as function of
inverse temperature. The Ni self-diffusion coefficients range
from (5.0 ± 0.2) ×10−10 m2 s−1 for Pd40Ni40S20 at 773 K to
(2.16 ± 0.12) ×10−9 m2 s−1 for Pd37Ni37S26 at 1023 K and
barely change with composition. In contrast, the Ti/Ni self-
diffusion coefficients in Ti–Ni–S are much more sensitive to
the S-content [14]. For comparison, the Ni self-diffusion coef-
ficients of Pd40Ni40P20 [8] and the Ni/Cu self-diffusion coef-
ficients of Pd40Ni10Cu30P20 [34] are shown in figure 4. Here
it becomes clear that the Ni/(Cu) self-diffusion in the melts
with P is one order of magnitude slower. The temperature
dependence of the Ni self-diffusion is similar for all Pd–Ni–S
melts and can be described by an Arrhenius-type temperature
dependence:

D(T) = D0 exp(−EA/kBT), (2)

3



J. Phys.: Condens. Matter 33 (2021) 435101 J Wilden et al

Figure 4. Ni/(Cu) self-diffusion coefficients in Pd40Ni40S20,
Pd37Ni37S26, Pd31Ni42S27, Pd40Ni40P20 [8] and Pd40Ni10Cu30P20
[34] melts probed by quasielastic neutron scattering. The black lines
are Arrhenius fits (equation (2)) for Pd37Ni37S26 and Pd40Ni40P20
[8]. In addition, the diffusion coefficients calculated from the
measured viscosities (IR camera and SCE) in Pd37Ni37S26 are
shown. The error bar indicates the range in which the diffusion
coefficients calculated by the Stokes–Einstein and the
Sutherland–Einstein relation can scatter.

Table 1. Parameters obtained from Arrhenius fits of the Ni
self-diffusion in Pd40Ni40S20, Pd37Ni37S26, Pd31Ni42S27 and
Pd40Ni40P20 [8] melts.

Composition D0 (10−7 m2 s−1) EA (meV)

Pd40Ni40S20 0.98 ± 0.20 348 ± 16
Pd37Ni37S26 1.74 ± 0.12 387 ± 6
Pd31Ni42S27 1.31 ± 0.61 355 ± 37
Pd40Ni40P20 2.39 ± 0.56 551 ± 27

with the prefactor D0, the activation energy EA and the Boltz-
mann constant kB = 8.617 × 10−2 meV K−1. The Arrhenius
fit parameters are presented in table 1. In order to compare
the activation energies for self-diffusion to Pd40Ni40P20 [8], the
quasielastic neutron scattering data was fitted by equation (2)
and the Arrhenius fit parameters are also presented in table 1.
The activation energy for self-diffusion in Pd40Ni40S20 cor-
responds to 348 ± 16 meV and is thus 203 meV smaller
than the one for Pd40Ni40P20. This reflects the more fragile
nature of Pd–Ni–S (D∗ (Pd31Ni42S27) = 8.31 [35]) compared
to Pd–Ni–P (D∗ (Pd40Ni40P20)) = 18.1 [36]). The activation
energy in Pd–Ni–S melts corresponds to about the half of the
activation energy in Ti75Ni20S5 melts with EA = 657 meV [14].

The sample coupling electronics data set from the reduced
gravity experiments provides information on the sample vol-
ume. Together with the sample mass, the melt density was
calculated. This enabled the determination of the packing frac-
tion ϕ according to ϕ = 4π/3 × ((0.37rPd)3 + (0.37rNi)3 +
(0.26rS)3) × ρNA/M̄, where rPd = 1.28 Å, rNi = 1.15 Å and
rS = 1.04 Å [37] are the covalent atomic radii, ρ is the melt
density, NA the Avogadro constant and M̄ is the average molar

mass. For the measured temperature interval an average pack-
ing fraction of 0.52 at 859 K was determined. This packing
fraction was compared to the one of Pd40Ni40P20 at the same
temperature, which corresponds to 0.54. The increase in pack-
ing fraction upon S replacement by P correlates with the pre-
vious observed decrease in melt dynamics. Although S has a
smaller atomic radius than P, it decreases the packing fraction
and thus indicates the occurrence of a pronounced chemical
short-range order.

We determined the viscosity of liquid Pd37Ni37S26 during
one parabola. Thus, we obtained a viscosity of 40 ± 4 mPa s
between 859 and 856 K and a viscosity of 46 ± 5 mPa s
between 855 and 852 K from the IR camera data set. From the
sample coupling electronics data set we obtained a viscosity of
40 ± 3 mPa s between 871 and 842 K. In order to compare our
data to literature values [30], we calculated the diffusion from
the viscosity according to the Stokes–Einstein relation [38]:

D = kBT/(6πrη), (3)

where kB is the Boltzmann constant, T is the average tem-
perature and r the covalent radius of Ni = 1.15 Å [37]. The
calculated diffusion coefficients correspond to (1.37 ± 0.15)
×10−10 m2 s−1 at 857 ± 2 K (IR camera), (1.18 ± 0.13)
×10−10 m2 s−1 at 853 ± 2 K (IR camera) and to (1.35 ±
0.14)×10−10 m2 s−1 at 857± 15 K (sample coupling electron-
ics), as presented in figure 4. According to the Arrhenius-type
temperature dependence the measured Ni self-diffusion coef-
ficients correspond to 8.99×10−10 m2 s−1 at 853 K and to 9.22
×10−10 m2 s−1 at 857 K. Thus, the measured Ni self-diffusion
coefficients are underestimated by a factor between 7 and 8.
In Pd–Ni–Cu–P the deviation from the Stokes–Einstein rela-
tion does not exceed the factor of 2 within the equilibrium melt
[18, 30].

Even under the consideration of the Sutherland–Einstein
relation (4π instead of 6π) [39], as well as under the consider-
ation of the covalent radius of Pd = 1.28 Å [37] the measured
diffusion coefficient is underestimated by a factor between 4
and 8 (figure 4). This deviation suggests that the diffusion
calculated from the viscosity is rather governed by the Pd
or the S self-diffusion. In contrast to Ni–P-based alloys, the
dynamic decoupling in Pd–Ni–S seems to initiate above the
liquidus temperature. However, it is not so pronounced as the
dynamic decoupling in Zr-based melts. In order to understand
the dynamic decoupling in Pd–Ni–S above the liquidus tem-
perature, shear cell experiments in microgravity are planned to
determine the self-diffusion of 108Pd, 62Ni and 34S.

4. Conclusion

In conclusion, we determined the Ni self-diffusion in
Pd40Ni40S20, Pd37Ni37S26 and Pd31Ni42S27 equilibrium melts
by incoherent, quasielastic neutron scattering. The Ni self-
diffusion coefficients were derived from the structural relax-
ation times and correspond to 3.75–5.60 ×10−10 m2 s−1 at
the liquidus temperature, which is about one order of magni-
tude slower than for monatomic metallic melts (e.g. Ni [8]).
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Furthermore, the structural relaxation is stretched exponen-
tial and best described by a q- and temperature-independent
stretching exponent β = 0.82. The Ni self-diffusion barely
changes with composition, as well as the Arrhenius-type tem-
perature dependence. Thus, the activation energies vary only
between 348± 16 and 387± 6 meV. Compared to Ni–P-based
melts, Pd–Ni–S melts reveal faster melt dynamics, which is
in accordance with the lower packing fraction. Furthermore,
the viscosity in the Pd37Ni37S26 equilibrium melt was probed
within reduced gravity cycles. The diffusion calculated from
the viscosity reveals a deviation from the diffusion measured
in neutron scattering experiments by a factor between 4 and
8. This indicates a dynamic decoupling above the liquids tem-
perature. Further shear cell experiments in microgravity are
demanded to determine the individual Pd, Ni, S self-diffusion
coefficients and thus the origin of dynamic decoupling.
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Appendix.

See table A1.

Table A1. Ni self-diffusion in Pd40Ni40S20, Pd37Ni37S26 and
Pd31Ni42S27 melts probed by incoherent, quasielastic neutron
scattering.

Composition T (K) D (10−9 m2 s−1)

Pd40Ni40S20 773 ± 0.5 0.50 ± 0.02
823 ± 0.5 0.72 ± 0.04
873 ± 0.5 0.96 ± 0.05
923 ± 0.5 1.27 ± 0.06
973 ± 0.5 1.51 ± 0.06

Pd37Ni37S26 773 ± 0.5 0.51 ± 0.03
823 ± 0.5 0.73 ± 0.02
873 ± 0.5 1.04 ± 0.03
923 ± 0.5 1.36 ± 0.04
973 ± 0.5 1.72 ± 0.05
1023 ± 0.5 2.16 ± 0.12

Pd31Ni42S27 773 ± 0.5 0.58 ± 0.03
823 ± 0.5 0.82 ± 0.02
873 ± 0.5 1.30 ± 0.04
923 ± 0.5 1.49 ± 0.04
973 ± 0.5 1.86 ± 0.04
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