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Abstract. We demonstrate that the modulated surface photovoltage spectroscopy (modulated 

SPS) technique can be applied to investigate interface states in the bandgap, i.e. interface 

passivation, of crystalline silicon coated with a downshift layer such as hydrogenated aluminum 

nitride with embedded terbium ions by suppressing straylight with a cut-off filter. Different 

hydrogen contents influence the surface photovoltage spectra at photon energies below the 

bandgap of crystalline silicon. Modulated SPS reveals that at higher hydrogen content there is a 

lower signal and, thus, a lower density of surface defect states. Our experiments show that 

modulated SPS can become a powerful tool for characterizing defect states at interfaces which 

cannot be easily studied by other methods. 

1.  Introduction 

Hydrogenated aluminum nitride doped with terbium (AlN:H:Tb3+) has been recently studied for 

potential applications as a passivating, down-shifting material for silicon solar cells [1]–[4]. The 

luminescence properties of the Tb embedded in AlN:H and the optical properties of the layer [5],[6] 

have been studied thoroughly. However, little is yet known about the passivating properties of this thin-

film on silicon. Here, we employ the modulated surface photovoltage spectroscopy (SPS) to investigate 

passivating properties when using this type of luminescent coatings. 

SPS is a contactless technique for the characterization of semiconductor surfaces. It relies on 

illumination-induced changes in the surface potential measured as a surface photovoltage (SPV) [7]–

[10]. Previous works used SPS to analyze other materials and interfaces such as ZrO2/GaAs, SiO2/GaAs, 

GaP/GaAs, MAPbI3 Perovskite, CdSe quantum dot films and ZnO/GaP heterojunction [11]–[14] at the 

sub bandgap region. As remark, modulated SPS is extremely sensitive and has, compared to the 

measurements with a Kelvin probe, the advantage that it is sensitive only to those processes in a sample 

for which charge separation and relaxation can follow the modulation frequency, i.e. slow changes of 

the surface potential are suppressed. 

Here, we use modulated SPS to assess the impact of the hydrogen dilution conditions on the 

passivation of the crystalline silicon (c-Si) surface. We apply this technique to study p-type c-Si 
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passivated by a 80 nm thin layer of AlN:H:Tb3+ grown under different hydrogen flow conditions during 

the deposition process. 

Chemical passivation of silicon surfaces by hydrogenated thin-film layers is well known [15]-[17]. 

Hydrogen atoms react with silicon dangling bonds, thus, reducing the density of related defects at the 

surface. For example, hydrogenated aluminum nitride (AlN:H) thin layers are suitable for the 

passivation of crystalline silicon [18], [19].  

Studies revealed indirectly the improvement of the surface passivation by measuring the lifetime of 

the minority charge carriers in the bulk by quasi steady state photoconductance (QSSPC) measurements 

[20], [21] and the density of interface defect states (Dit) using the capacitance-voltage (C-V) method 

[22], [23]. Furthermore, it is also possible to estimate Dit from large signal transient SPV measurements 

by applying external potentials [24], [25]. However, numerous samples, as the sample investigated in 

this work, cannot be studied by QSSPC and C-V, for example, due to short lifetimes caused by high 

bulk or interface recombination rates, or due to leakage currents [26], [27], respectively. In contrast, 

modulated SPS measurements allow a very sensitive study of defect states below the bandgap of a 

semiconductor [28]. 

In the small signal case and for homogeneous absorption in the sensitive volume of a given sample, 

SPV signals are proportional to the generation rate, i.e. to the absorption coefficient of the 

semiconductor. It has been shown, that at sub bandgap photon energies the SPV signal can be more 

sensitive than optical absorption measurements [7], [9]. Therefore, a very interesting approach is the 

application of the modulated SPS method to investigate the impact of the hydrogen flow on the 

passivation properties of AlN:H:Tb3+ on c-Si. 

2.  Experimental 

AlN:H:Tb3+ samples were produced by AC magnetron sputtering (LA440S VON ARDENNE) on 

polished c-Si wafer. The wafers were float-zone, p-type (100) with a resistivity of 1-3 Ωcm. The 

samples’ deposition was done by reactive sputtering with 20 sccm of nitrogen flow and with the 

aluminum target at 200 W of power. The target to sample distance was about 8 cm. The layers were 

deposited at different hydrogen flows of 1 sccm, 3 sccm and 5 sccm to obtain different hydrogen 

concentrations in the thin films. After the sputtering process the samples were treated by rapid thermal 

processing (RTP) at 850 oC for 300 seconds to activate the luminescent properties of the embedded Tb 

ions [1-3]. Such a thermal process can also activate fixed negative charges in the AlN layer for field-

effect passivation [16],[17],[29]. 

Modulated SPS measurements were performed using a MIS capacitor setup with a prism 

monochromator and a halogen lamp [30], as depicted in figure 1. At the MIS configuration the 

modulated SPS method is very sensitive to small SPV signals (up to the <100 nV) [7]. To reduce stray 

light effects, we included a cut-off filter between the exit slit of the monochromator and the mechanical 

chopper (modulation frequency 8 Hz). The SPV signals were detected with a double-phase lock-in 

amplifier (EG&G 5210). 

Any monochromator has “white” stray light which is usually suppressed by about 3 orders of 

magnitude at a given wavelength. First, stray light can cause SPV signals in spectral regions without 

any absorption, i.e. stray light can cause artefacts. Second, SPV signals caused by stray light very 

drastically reduce the sensitivity for signals related to very weak photogeneration as for defect states in 

the band gap. The purpose of the cut-off filters is to eliminate the stray light [30], [31], i.e. non-

monochromatized light originating from the monochromator. 

Figure 2 shows SPV spectra near the bandgap for the bare c-Si substrate without and with using cut-

off filters at 1000 and 1100 nm (1.24 and 1.13 eV, respectively). The shapes of the spectra were 

unchanged below the cut-off energies whereas the signal heights were reduced by additional optical 

losses and reduced straylight. Since the absorption coefficient of c-Si strongly increases between 1.13 

and 1.24 eV, the filter with the cut-off at 1100 nm has been used in the following. 
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Figure 1. Schematic setup for a MIS capacitor SPS measurements, from left to right: halogen lamp, 

prism monochromator, cut-off filter, chopper, optical guide, MIS capacitor array for sample, 

measurement resistance (Rm) and high impedance buffer, adapted from [30]. 
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Figure 2. Modulated SPV spectra near the band gap of c-Si measured 

for the bare substrate without and with cut-off filters (no filter, 1000 

nm, 1100 nm – black, red and blue lines, respectively). 

3.  Results and discussion 

Figure 3 shows the modulated SPV spectra of three AlN:H:Tb3+ layers deposited onto c-Si substrates 

with different hydrogen flows during deposition (1 sccm, 3 sccm, 5 sccm). The dashed lines show the 

SPV spectra without a cut-off filter (1.13 eV). The in-phase SPV signals were positive. This means that 

the modulated charge separation was dominated by drift across an inversion layer in the p-type doped 

silicon, i.e. a relatively large amount of negative charge was fixed in the AlN:H layers near the interface. 

For the measurements without the cut-off filter, the maxima of the SPV signals were reached at about 

1.35 eV and amounted to about 1 mV, 300 µV and 300 nV for 1, 3 and 5 sccm, respectively. Therefore, 

the interface conditions were extremely different for each sample. At sub bandgap energies and without 
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the cut-off filter, the SPV signals consisted of an only slightly changing background (about 2 – 4 µV for 

1 sccm, 0.7 – 1.4 µV for 3 sccm and within the noise level for 5 sccm).  

Using the cut-off filter, all SPV signals up to about 0.7 – 0.8 eV reduced to values in the order of the 

noise level, i.e. SPV signals related to photogeneration from electronic states around midgap could not 

be observed by SPV under the given conditions. For the sample grown with the hydrogen flow of 5 sccm, 

no SPV signals could be observed without the filter, i.e. the sensitivity was much too low for detecting 

defect states for this sample. The situation was different for the samples grown with the hydrogen flows 

of 1 and 3 sccm. For these samples, two well pronounced shoulders appeared between approximately 

0.8 and 1.05 as well as 1.05 and 1.1 eV, respectively. Additionally, the SPV signals amounted to about 

1 µV (1 sccm) and 350 nV (3 sccm) and about 60 (1 sccm) and 12 µV (3 sccm) at 1.0 and 1.1 eV, 

respectively. Therefore, the sensitivity for the detection of defect states increased with increasing SPV 

signals for fundamental absorption. This correlation means that one mechanism dominated the 

modulated charge separation. 
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Figure 3. Modulated SPV spectra of samples with AlN:H:Tb3+ layers 

grown on c-Si with hydrogen flows of 1, 3 and 5 sccm (black, red and 

green lines, respectively) measured without (dashed lines) and with a 

cut-off filter at 1.13 eV (solid lines). 

 

The SPV responses in figure 3 indicated that a higher hydrogen content in the sample leads to a 

reduced SPV signal. These changes in response could be attributed to the interface defect passivation 

by the hydrogen. At higher hydrogen contents more defects near or at the interface are passivated, thus, 

reducing their charge and band bending in the c-Si. This may be translated into a reduced SPV signal. 

To discuss this hypothesis, in figure 4 a) we assign the SPV signals at different photon energies for 

the 1 sccm and 3 sccm samples (with filter) to possible electronic transitions as depicted in figure 4 b). 

For this interface (AlN:H:Tb3+ / c-Si) we propose three possible transitions: A) band to band transitions 

from valence (EV) to conduction band (EC) for Ehν ≥ Egap; B) from tail states or acceptor states (Ea) to 

conduction band for Ehν below but close to Egap. An exponential function in figure 4 a) estimates an onset 

of the fundamental absorption (Eon) around 1.02 eV [32]; and C) sub bandgap transitions from interface 

defect states, represented by Gaussian functions in figure 4 a), to conduction band when Ehν is smaller 

than Egap. In the latter case, we postulate that after the transition from an interface defect state to the 

conduction band (C), the promoted electron is repelled by the negative charge in the dielectric 



Peruvian Workshop on Solar Energy 2020 (JOPES 2020)
Journal of Physics: Conference Series 1841 (2021) 012003

IOP Publishing
doi:10.1088/1742-6596/1841/1/012003

5

 

 

 

 

 

 

(AlN:H:Tb3+), as depicted in figure 4 b). The resulting separation of charges induces a change in the 

band bending which gives rise to the SPV signal [8]. The amount of these transitions depends on the 

number of defects: a higher defect density results in a higher SPV signal. Hence, we can conclude that 

the sample deposited at 1 sccm of hydrogen flow has more defect states near or at the interface and, 

thus, a higher SPV signal. Whereas the 3 sccm sample has a lower defect state density and, thus, lower 

SPV signal. In the case of the 5 sccm sample, the defect state density is below the sensitivity of the 

modulated SPS technique. Therefore, in figure 3 only the signal from band-to-band transitions (A) can 

be observed without the filter. 
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Figure 4. a) SPV spectra with marked transitions A, B and C b) Schematic band diagram with transitions 

observed by modulated SPS: A: band to band, B: acceptor/tail states to conduction band, C: Interface 

defect states to conduction band. 

4.  Conclusions 

The present study shows that modulated SPS can be a suitable alternative or complementary technique 

to study the impact of hydrogen in novel downshift layers like AlN:H:Tb3+ used also as a surface 

passivators for crystalline silicon. Particularly, when high interface defect densities and leakage currents 

prevent the analysis via more traditional techniques, such as QSSPC and CV, modulated SPS can 

provide information about defect states. By efficiently suppressing straylight with a cut-off filter, the 

modulated SPS technique was highly sensitive to defect states in the bandgap and to demonstrate the 

enhanced passivation due to the increment of the hydrogen content in the sample under inversion 

condition. For higher hydrogen flow during deposition a lower SPV signal was detected due to a lower 

interface defect state density and/or reduced density of negative charge in the AlN:H:Tb3+ layer. 

Therefore, modulated SPS is a powerful technique giving access to the investigation of defect states at 

internal interfaces and opening in this way new opportunities for further optimization and control not 

only for passivation of interfaces in solar cells but also for the further development of materials for 

luminescence, photocatalysis and sensors. 
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