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ABSTRACT: Through the optimization of the perovskite precursor
composition and interfaces to selective contacts, we achieved a p-i-n-type
perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE).
This is a new performance record for a PSC with an absorber bandgap of 1.63
eV. We demonstrate that the high device performance originates from a
synergy between (1) an improved perovskite absorber quality when
introducing formamidinium chloride (FACl) as an additive in the “triple
cation” Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink,
(2) an increased open-circuit voltage, VOC, due to reduced recombination
losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-
quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-
(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While
all devices exhibit a high performance after fabrication, as determined from
current−density voltage, J−V, measurements, substantial differences in device
performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the
introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition.
Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We
scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a
PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high
performance and stable large-area single junction and tandem modules based on PSCs.

KEYWORDS: self-assembled monolayer, interface modification, FACl additive, triple cation perovskite, p-i-n solar cell,
laser-interconnection, module

1. INTRODUCTION

Hybrid organic−inorganic lead halide perovskites solar cells
(PSCs) have been demonstrated to yield impressive power
conversion efficiencies above 25% for small area devices,1

enthralling high aspiration for next-generation solar cell
technology.2−9 The scalability and stability of high-performing
PSCs are challenges for the commercial prospects of this
technology. Therefore, great efforts have been made in process
optimization to make high-quality thin films,10,11 optimizing the
device structure,3,12 interface engineering,13−18 and the
incorporation of new potential transport materials as well as
perovskite materials.19,20 Efficient perovskite devices have been
successfully made with both p-i-n and n-i-p architectures. Here,
p and n denote a hole- and electron-selective contact layer, and
the perovskite layer is assumed to be an intrinsic “i”
semiconductor layer. The order of letters in these abbreviated

notations indicate the sequence of layers as deposited during
device preparation.
For perovskite solar cells of the p-i-n type, lower PCEs have

been achieved compared to those of n-i-p solar cells, which we
attribute to fewer research groups working on their optimiza-
tion. The p-i-n architecture becomes of increasing importance as
a top cell in 2-terminal tandem solar cells based on silicon for the
following reasons:21−23 p-i-n devices can be manufactured with
only low-temperature processing steps involved, which reduces
the risk of potential performance losses in the silicon bottom
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cell, charge-selective layers in p-i-n are comparatively less
absorptive, and p-i-n devices commonly exhibit low current-
density−voltage hysteresis.24 Lately, promising strategies to
reduce nonradiative recombination and improve the open-
circuit voltage, VOC, in PSCs including interface passiva-
tion6,25,26 and the use of inorganic additives in the perovskite
bulk material27−29 have been developed.
Albrecht and co-workers demonstrated the use of carbazol-

based phosphonic acid self-assembled monolayers to replace
polymer hole-selective in p-i-n solar cells, reaching PCEs of
>20%.23 At the electron-selective contact, introducing a thin
layer of LiF was shown to mitigate interfacial recombination
losses at the C60/perovskite interface, resulting in an improve-
ment of the VOC in PTAA-based PSCs.

6,30 The incorporation of
additives into the perovskite precursor solution is one of the
potential strategies to improve the crystallinity and quality by
positively affecting thin-film formation. A wide range of additives
has been studied, including metal halides salts,31,32 fullerene
derivatives,33,34 polymers,35 halide salts,36 and 2D materials.9

Among these, halide salt additives such as cesium iodide (CsI),37

rubidium iodide (RbI),38 andMACl36 have been studied. Kim et
al. reported that MACl as an additive acts as a stabilizer to
maintain the original perovskite crystal structure.36 Recently,
Tavakoli and co-workers utilized formamidinium chloride
(FACl) as an additive perovskite thin-film preparation and
observed the suppression of surface defects, as well as improved
crystallinity and grain size in n-i-p, configured PSCs.39

We here demonstrate the unique synergistic effect of utilizing
both FACl as an additive in perovskite thin-film preparation and
LiF as an interfacial layer in p-i-n perovskite devices on the basis
of a self-assembled monolayer (SAM) hole-selective contacts of
2PACz ([2-(9H-carbazol-9-yl)ethyl]phosphonic acid).23,40

These three strategies combined enabled us to demonstrate
record efficiencies for p-i-n perovskite solar cell devices of up to
22.3%. These results are the highest for SAM-based p-i-n
perovskite solar cells, on par with the recently published record
for p-i-n solar cells9 and the highest performance of a perovskite
solar cell with 1.63 eV in both polarities. Devices exhibited an
improved steady-state device performance of 22% using SnO2/
Cu as the counter electrode. The synergistic effect of the three
approaches combined to reach high-performance devices
became very apparent when comparing the longer-term device

performance during maximum power point (MPP) tracking for
>700 h under continuous simulated AM1.5G illumination in an
inert atmosphere. Having identified the device configuration
with the best long-term performance, we made some laser-
patterned series interconnected mini-modules with a 2.2 cm2

active area, reaching a maximum power conversion efficiency,
PCE, of 19.4%.We are highlighting the importance of evaluating
device architectures on the basis of longer-term performance
rather than the initial PCE derived from J−V measurements to
enable identifying device architectures and components that are
most viable to develop efficient perovskite device technology on
larger areas.

2. RESULTS AND DISCUSSION
2.1. Perovskite Solar Cell Performance. A cross-sectional

scanning electron microscopy (SEM) image is shown in Figure
1a, and a schematic picture in Figure 1b illustrates the p-i-n
perovskite solar cell devices (PSCs) with the layer stack glass/
ITO/SAM/perovskite/LiF/C60/SnO2/Cu investigated herein.
An estimated energy level diagram is depicted in Figure S1
derived from the valence and conduction band level energies of
each component. Figure 1c illustrates the three main
modifications that synergistically led to the high device
performance reported here: (1) adding FACl to precursor
solutions in perovskite layer deposition, (2) introducing LiF as
an interfacial buffer layer, and (3) utilizing SAM-based hole-
selective contacts.
The devices were built in a superstrate configuration on

conducting indium-doped tin oxide glass substrates (ITO, with
150 nm thickness). As a p-type-selective contact, self-assembled
monolayers (SAMs) of the carbazole-based phosphonic acid
2PACz, shown in Figure 1c, were deposited on glass ITO
substrates by spin-coating. These solutions form self-assembled
monolayers that act as a p-type-selective contacts and can be
assumed to be approximately 1−3 nm. As a photoabsorbing
layer, the “triple cation” perovskite was deposited as specified in
the Supporting Information (SI). The composition of the
p e r o v s k i t e l a y e r w a s e s t i m a t e d t o b e
Cs0.05FA0.79MA0.16PbBr0.51I2.49 from the ratio of precursor salts,
and the layer thickness was determined to be about 600 nm from
cross-sectional SEM images (Figure 1c-3). We here investigated
the effect of using formamidinium chloride (FACl) as an

Figure 1. (a) False-colored cross-sectional SEM image of the perovskite solar cell device architecture investigated in this work. (b) Schematic device
layout of p-i-n perovskite solar cells based on 2PACz as a hole-selective self-assembled monolayer. (c) Perovskite layer as
Cs0.05FA0.79MA0.16PbBr0.51I2.49 optionally with FACl as an additive studied herein together with the effect of lithium fluoride as an interfacial buffer
layer between the perovskite and C60 was investigated here.
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additive mixed-in with the perovskite precursor solution and
observed an improved layer crystallinity of the absorber layer
(Figure 1c-1). A 23 nm thick layer of the n-type-selective contact
C60 was deposited by thermal evaporation with the layer
thickness determined by the quartz microbalance in our
evaporation setup. A 20 nm thick SnO2 layer was deposited by
atomic layer deposition (ALD) with the layer thickness
measured by ellipsometry. Optionally, 1 nm of lithium fluoride
(LiF) was introduced as an interfacial layer between perovskite
and a C60 electron transport layer (ETL) by thermal evaporation
to reduce nonradiative losses (Figure 1c-2). Finally a copper
counter electrode with 100 nm thickness deposited via thermal
evaporation.
In the optimization of devices, we carried out several series of

solar cell batches. The statistical comparison of their photo-

voltaic performance metrics of short circuit current, JSC, open-
circuit voltage, VOC, fill factor, FF, and resulting power
conversion efficiency, PCE, obtained from the current
density−voltage, J−V, measurements are summarized in Figure
2a−d. We compared batches of devices using all three concepts
of device interface and perovskite layer modification outlined in
Figure 1c: (1) FACl as an ink additive, (2) LiF as a buffer layer,
and (3) 2-PACs as SAM. The pristine PSCs delivered an average
JSC of 21.8 mA·cm−2, VOC of 1.13 V, FF of 78.2%, and PCE of
19.0%. Here, we optimized a better performance with this
2PACz as a p-type-selective contact comparable to previously
published values.23 We introduced a LiF buffer layer between
the perovskite and C60 electron transport layer, ETL, which has
been previously shown to increase the VOC by reducing
nonradiative recombination.6 When introducing a LiF layer

Figure 2. Statistical comparisons of the photovoltaic parameters of (a) short circuit current density together with antireflective coating, (b) open-
circuit voltage, (c) fill factor, and (d) resulting power conversion efficiency (JSC, VOC, FF, and PCE) derived from current density−voltage (J−V)
measurements of perovskite solar cells (ITO |2PACz |CsMAFAPb(Br, I)3 (+FACl opt.) |(LiF opt.)|C60|SnO2|Cu) (i) using FACl as an additive in
perovskite absorbing layer, (ii) introducing LiF as an interfacial layer between perovskite and C60 layer, (iii) and SAM-based hole-selective contacts as a
pristine measured under simulated AM 1.5G illumination. (e) Current density−voltage (J−V) characteristics of best-performing perovskite solar cells
with different integrations of FACl and LiF layers. (f) External quantum efficiency (EQE) spectra of perovskite solar cells with corresponding
integrated current densities. (g) Maximum power point tracking (MPPT) measured for 100 s at the fixed voltage near the maximum power point
(MPP) derived from J−V measurements.
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between the perovskite absorber and C60 layer, we found that the
average performance of 2PACz-based PSCs increased due to an
increased VOC improvement (average 1.16 V) to 19.7%.
Nevertheless, this improvement in VOC was offset by the
reduction of other PV parameters like FF and JSC, leading to no
substantial increase in the PCE.
PSCs utilizing only FACl as an additive in the perovskite

precursor solutions improve the average FF up to 79%, which led
to an improved PCE of 19.7%. The VOC and JSC remain
unchanged compared to the pristine device. The most
significant improvement in PSC performance was obtained
when both FACl was added in the perovskite precursor solution
and the LiF interlayer was introduced at the interface of the
perovskite absorber and C60 layer. PSCs comprising both
showed an average PCE of 20.5% due to improvements in both
average values of the FF (80%) and VOC (1.17 V), as
summarized in Table 1. For all devices, a negligible current
density voltage (J−V) hysteresis between forward and reverse
scan directions at a scan rate of 330 mV/s (calculated from the
settings of 40 ms delay time, 20 ms integration time, and 20 mV
voltage step size) was observed.
The J−V curves of best-performing 2PACz-based PSCs

including pero+FACl, pero|LiF, and (pero+FACl)|LiF along
with the pristine device, measured under simulated AM 1.5G
illumination, are shown in Figure 2e. As discussed above, the
(pero+FACl)|LiF-based PSCs delivered a maximum PCE of
22.3% compared to the pristine device with a PCE of 20.4%, as
given in Table 1. The external quantum efficiency (EQE) spectra
of pero+FACl and (pero+FACl)|LiF-based champion PSCs are
shown in Figure 2f. The JSC, EQE, calculated by integrating the
EQE spectrum with respect to the AM1.5G reference solar
spectrum, yielded a negligible difference (<1%) compared to the
JSC derived from the J−V scan under AM 1.5G illumination.
The PCEs reported here are among the highest published for

p-i-n perovskite devices and present a record for a perovskite
solar cell with an absorber bandgap of 1.63 eV,1,9,23,41−47

irrespective of device architecture, as summarized in Figure S2
and Table S1 in the Supporting Information. These results are of
particular interest for tandem devices based on silicon, for which
the optimal bandgap of a top cell absorber was calculated to be
1.62−1.68 eV.48
The steady-state maximum power point efficiency for best-

performing (pero+FACl)|LiF-based PSC, measured for 100 s,
was about 22% for an active area of 0.105 cm2 (masked), as
shown in Figure 2g, in comparison with the MPP of other
representative PSCs of different device architecture investigated
here.

J−V curves of devices under dark conditions, measured in
both forward and reverse, are shown in Figure S3. We observed
that the J−V curves of PSCs with FACl show negligible
hysteresis under dark conditions compared to the J−V of devices
prepared without the additive. We calculated the ideality factors
for both the device prepared without and with FACl additive
from their dark J−V curves (see Figure S4), showing that the
latter exhibits a lower ideality factor of 1.25 compared to the
former (1.45). This demonstrates that the addition of FACl in
the perovskite precursor ink leads to devices with better charge
extraction and therefore higher FF values.
To assess differences in the transient response of the device,

we performed transient analysis during maximum power point
tracking (TrAMPPT) measurements of samples with and
without FACl additives. This methodology was described
elsewhere29,49 and allows us to extract the time constants and
amplitudes of the transient current response upon a voltage
perturbation as well as the steady-state current density (ΔJSS)
during maximum power point tracking. As summarized in the SI
(Figure S5c) the p-i-n devices investigated all exhibit a fast
response, in agreement with negligible hysteresis indices of <0.1
even at fast scan rates (Figure S5d) and J−V curves in different
delay times, as in Figure S6. We find that the addition of FACl
suppresses the amplitude of current transients, which we
interpret as passivation of ion vacancies that else give rise to
capacitive effects. Additional short-term MPP traces are shown
in Figure S7 for devices with and without FACl additive in the
precursor solution but with a LiF interlayer; also, the medium-
term MPP efficiency was measured for 11 h, as shown in Figure
S7b. These measurements indicate the substantially higher
stability of devices comprising both the FACl additive and LiF
interlayer, as further discussed in Section 2.4.
By carrying out J−V measurements under different illumina-

tion conditions, we found that solar cell samples prepared with
the FACl additive in the precursor solution and a LiF layer
exhibited a higher VOC for all illumination intensities and a
higher FF in particular at higher illumination intensities, as
shown in Figure S8.

2.2. FACl Additive in Perovskite Thin-Film Fabrication.
To rationalize the dramatic differences observed in the devices
upon adding FACl to the precursor solutions, we investigated
the differences between the perovskite thin films. From the EQE
onset shown in Figure 2f, the absorption onset does not seem to
change dramatically for samples prepared with additional FACl
in the precursor solution. This becomes even clearer when
looking at the derivative of the EQE shown in Figure S9. To
analyze differences in the sample morphology, scanning electron

Table 1. Photovoltaic Parameters Obtained from J−V Scans under Simulated 1 Sun Illumination along withMPP-Tracked Values
of CsMAFA Perovskite Solar Cells Comparing a LiF Interlayer and FACl Additive

perovskite layer additive 5 vol% FACl 5 vol% FACl

buffer layer 1 nm LiF 1 nm LiF
ETM/top contact SnO2/Cu SnO2/Cu SnO2/Cu SnO2/Cu
JSC (mA cm−2)_average 21.8 ± 0.50 21.7 ± 0.6 21.8 ± 0.19 21.9 ± 0.48
JSC (mA cm−2)_max 22.3 22.4 22.0 22.7
VOC (V) _average 1.13 ± 0.01 1.138 ± 0.01 1.16 ± 0.02 1.17 ± 0.03
VOC (V) _max 1.15 1.15 1.18 1.18
FF (%)_average 78.2 ± 2.8 79.0 ± 2.2 78.9 ± 2.1 80.0 ± 1.82
FF (%)_max 79.5 82.7 80.2 83.3
PCE (%)_average 19.0 ± 1.37 19.7 ± 1.11 19.7 ± 1.46 20.5 ± 1.56
PCE (%)_max 20.4 21.2 20.9 22.3
PCEMPP (%) 20.3 21.1 20.6 22.0
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microscope (SEM) and grazing-incidence wide-angle X-ray
scattering (GIWAXS) measurements were carried out. The
analysis of the SEM images showed the surface morphology of
the perovskite film prepared with and without FACl in the
precursor solution, as shown in Figure 3a,b. Figure 3c shows the
statistics of the grain size derived from the SEM image analysis,
showing that the average grain size is significantly higher (309
nm) for samples prepared from a precursor solution with the
FACl additive compared to samples prepared without it (238
nm). The addition of 5 vol% FACl has a definitive effect on grain
size. Analogously, GIWAXS measurements were performed on
samples without and with the FACl additive in the perovskite
processing. The 2D GIWAXS scattering images are shown in
Figure S10. As we did not observe a substantial difference in
sample orientation and texture, in Figure 3d, we compared the
integrated diffraction pattern with respect to the diffraction
angle. The FACl additive leads to a very slight increase in lattice
spacing, indicated by a shift in the peak positions of the main
peaks attributed to the cubic perovskite phase. We hypothesize
that this is likely due to some substitution of methylammonium
(MA)with the larger formamidinium cations and thatMAmight
be leaving the thin film as MACl during annealing as reported
elsewhere.50 In previous reports, it was found that a reduction in
the amount of the MA-cation in perovskite composition led to
better stability of the perovskite solar cells measured under AM
1.5G illumination.51 Chloride ions have been postulated to
passivate defects at the grain boundaries, and growth from
halide-rich conditions may prevent ion migration. We observed
that the intensity of the α-phase perovskite peaks exhibits higher
values, indicating a better crystallinity of the perovskite. The full-
width at half-maximum (FWHM) values for the (100)
perovskite peaks were 0.22 and 0.26 for samples prepared with

and without FACl perovskite, respectively, suggesting that FACl
improves the crystallinity of the perovskite layer. Opposite to
our expectations, samples prepared with the FACl additive
exhibited an increased peak attributable to a crystalline PbI2
phase, which might be one of the reasons for the higher PCE as
PbI2 has been postulated to passivate grain boundaries.

52 We are
currently conducting more in-depth work to illuminate the role
of FACl and other ink additives in perovskite absorber growth
kinetics, the stoichiometry, and the crystallinity of resulting thin-
film composition on the performance and stability of perovskite
devices.
We performed time-resolved and absolute photolumines-

cence measurements with and without the FACl additive in the
synthesis of perovskite films deposited on quartz substrates
(shown in Figure 3e and Figure S11). The photoluminescence
quantum yield (PLQY) for samples prepared with the FACl
additive is 1.4% and that without is 1.2%, which is comparable.
The quasi Fermi level splitting (QFLS) values were calculated to
be 1.22−1.23 eV, showing that the FACl additive in thin-film
fabrication is not expected to increase the VOC of the PSCs.
Time-resolved PL measurements (as shown in Figure S11)
showed negligible differences in the PL decay kinetics
comparing samples prepared without and with FACl in the
perovskite precursor solution. This is in accordance with the
device performance metrics summarized in Table 1, showing
that the addition of FACl does not change the VOC dramatically
but seems to positively affect the FF.

2.3. Effect of FACl Additive and LiF Interlayer. Figure 4a
shows the QFLS values of the perovskite films sandwiched
between glass|ITO|2PACz and a C60 layer system using only
FACl, only LiF, both FACl and LiF (pero+FACl)|LiF, and
pristine perovskite film. We have also merged the average values

Figure 3. (a and b) Top view SEM images of 2PACz-based Cs-MAFA perovskite layer with and without FACl additive, and (c) grain size distribution
of 2PACz-based Cs-MAFA perovskite layer with and without FACl additive. (d) GIWAXS patterns of intensity versus 2θ of 2PACz-based Cs-MAFA
perovskite layer with and without the FACl additive. (e) Optical images captured under blue light emission of 2PACz-based Cs-MAFA perovskite films
with and without FACl deposited on quartz substrates.
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of the VOCmeasured from the J−V curves for each system on the
same left axis, as shown. Here, we can correlate the average
QFLS values with the VOC for each system. Glass|ITO|2PACz|
perovskite|C60 showed a mean QFLS of 1.14 eV for 1 sun-
equivalent illumination intensity. The utilization of FACl in
perovskite (glass|ITO|2PACz|(perovskite+FACl)|LiF|C60) im-
proved the QFLS up to 1.165 eV. Figure 4b shows the absolute
photoluminescence (PL) signal measured on perovskite thin
films sandwiched between glass|ITO|2PACz and a C60 layer for
the four different cases of the perovskite thin film with and
without the FACl additive as well as with and without the LiF
interlayer. While the FACl additive does not exhibit a systematic
effect, the absolute PL is certainly increased when including a
LiF interlayer, consistent with a higher observed open-circuit
voltage due to a higher quasi Fermi level splitting calculated
from the absolute PL measurement. All the results can be
directly correlated to the perovskite solar cell devices. LiF is
necessary to mitigate interface recombination with C60;
however, LiF leads to devices being unstable under continuous
MPP tracking. Our data demonstrate that the recombination
properties of the absorbers do not change with FACl, but it
suppresses the degradation induced by LiF.

Further, we performed modulated surface photovoltage
(SPV) spectroscopy measurements to determine the electronic
disorder of the perovskite thin films53 with and without
incorporation of the FACl additive and a LiF layer. Figure 4c
shows the spectra of modulated SPV amplitude versus photon
energy for different perovskite layers on glass|ITO|2PACz|(pero
+FAClopt.)|LiFopt.|C60 substrates. The tail energy (ET) was
calculated from the slope of the SPV spectra near the band
energy for each substrate.54 As shown in Figure 4d, we obtained
average ET values of 26, 21.7, 22.5, and 20 meV for pristine
(neither FACl nor LiF), CsMAFAmixed with the FACl additive
only, perovskite and a LiF buffer layer, and both with FACl and a
LiF layer, respectively. The small tail energy values represent
lower sub-bandgap defect densities near the band edge, which
allow for reducing the recombination losses at the interface, and
consequently, these lead to improving the performance of the
respective PSCs.55

2.4. Stability Assessment. To assess the steady-state
performance of devices, we carried out maximum power point
tracking on representative devices manufactured without and
with the FACl additive in the perovskite precursor ink. On each
substrate, six pixels constituting single small area test devices

Figure 4. (a) Quasi Fermi level splitting (QFLS) of perovskite films sandwiched between glass/ITO/2PACz and a C60 layer system using only FACl,
only LiF, both FACl and LiF, and pristine perovskite film along with the mean value of VOC from the J−V scans. (b) Photoluminescence spectra of the
respective sample variations. (c and d)Modulated SPV (surface photovoltage) measurements of 2PACz-based Cs-MAFA perovskite film utilizing with
and without FACl and a LiF layer.
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were defined by the pattern of the ITO substrate and evaporated
Cu contacts, as described in the Experimental Section (see the
Supporting Information). The average maximum power point
(MPP) of these PSCs device measured under continuous 1 sun
illumination at 25 °C temperature for more than 700 h, as shown
in Figure 5a,b. The plots include the standard deviation of
measurement values. The JSC, VOC, and FF values were also
evaluated during themaximumpower point (MPP) tracking and
are shown in Figure 5c. The J−V scans as a function of
illumination time are shown in Figure S12 of the Supporting
Information. The device made without FACl additive
(pero_LiF) showed a dramatic performance drop during the
first 100−200 h with a high degradation rate dominated by a loss
in current and FF (see Figure 5c). The boost in the PCE in first
0−20 h is mainly due to an increase in VOC, which might be
attributed the insertion of ultrathin layer of LiF. While stressing
the device over a longer time (>20 h), LiF facilitates charge

carrier extraction at the interfaces. The devices prepared without
FACl in the precursor solution only maintained ∼30% of their
initial PCE after 700 h of continuous testing. In contrast, the
efficiency of the PSCs prepared using FACl as an additive in the
Cs-MAFA precursor solution and utilizing the LiF buffer layer
maintained ∼80% of initial PCE after 700 h of aging. This
discrepancy becomes even clearer when comparing the integral
lifetime energy yield, LEY, of the devices, as shown in Figure
S14. The SEM image of the aged perovskite device with FACl
additive employed in thin-film fabrication appears more
analogous to the fresh device. Thus, FACl plays an important
role in the long-term stability of perovskite solar cells. We also
performed a shelf life test for our best encapsulated device (pero
+FACl)|LiF. We recorded the MPP for one hour before and
after storing the encapsulated device for 80 days in air and
observed no loss in the PCE. We conclude that the combination
of using FACl as an ink additive in perovskite deposition and LiF

Figure 5. Stability evolution of pero|LiF- and (pero+FACl)|LiF layer-based perovskite solar cells carried out in the inert atmosphere. Average
maximum power point tracking with the standard deviation of five best-performing pixels of solar cells of each combination measured under
continuous 1 sun illumination at 25 °C temperature (without using any filter) showing the (a and b) PCE and (c) JSC, VOC, and FF photovoltaic
parameters for more than 700 h. (d) Cross-sectional SEM images of fresh devices compared to aged devices. (e) MPP tracking of encapsulated cells in
air.
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as an interfacial layer results in PSCs with a high efficiency and
stability. We postulate that the additional FACl compensates for
cation and anion deficiencies that negatively affect device
stability.
2.5. Perovskite Mini-Modules. Perovskite solar mini-

modules (PSMs) with the device structure of glass|ITO|2PACz|
(pero+FACl)|LiF|C60|SnO2|Cu were fabricated. A photograph
of the mini-module is depicted in Figure 6d. The PSM was
designed with three interconnected cells in a series enabled by
multiple scribing including P1, P2, and P3 via laser scribing
techniques56 (see details in the Supporting Information). We
tested approximately 30 modules with the PCE distribution, as
shown in Figure 6c. Most mini-modules performed with a PCE
in the range 17−18%, as summarized in Figure 6c. The J−V
characteristics for the best-performing module measured in both
forward and reverse directions under 1 sun illumination are
shown in Figure 6a. The photovoltaic parameters such as VOC,
ISC, FF, and PCE values are summarized in the inserted table in
Figure 6a. The PSM in a reverse scan delivered a VOC of 3.50 V,
indicating that each sub cell contributes an average VOC of 1.16
V. The current was 15.76 mA. The maximum power point
efficiency for the best-performing (pero+FACl)|LiF-based PSM,
measured for 200 s, was about 19.2%, as shown in Figure 6b. We
also tested mini-modules under continuous 1 sun illumination at
25 °C for more than 6 h (as shown in Figure S15) and realized
no loss in the PCE.

The module PCE of 19.4% on 2.2 cm2 achieved here is the
record for a perovskite solar cell mini-module reported in the
literature. Li et al. reported record efficiencies for 21 cm2 area
perovskite modules with a PCE of 18.1% .57 Microquanta has
also shown one of the highest certified mini-module with an
efficiency of 17.3% on a 17.3 cm2 area. Toshiba has achieved the
highest certified module PCE of 11.6% on an area of 802
cm2.58,59 Further improvements of our mini-module perform-
ance can be achieved by further reducing the geometrical fill
factor, which for this module was calculated to be ∼91%. After
introducing a robust device architecture and perovskite thin film
deposition strategy, we now focus on scalable deposition
strategies for all active layers in the perovskite device stack to
manufacture larger area perovskite devices.

3. CONCLUSION

Using the combination of three different strategies to optimize
the performance of perovskite solar cells, the addition of FACl
into the perovskite precursor solution, introducing LiF as an
interfacial layer, and using a self-assembled monolayer of a
carbazol phosphonic acid as a hole-selective contact, we
achieved high solar cell power conversion efficiencies. On
average, the highest device performance was achieved when
combining the FACl additive with the LiF interlayer resulting in
a record power conversion efficiency of 22.3%. This is a record
for a p-i-n perovskite solar cell with a bandgap of 1.63 eV. This is

Figure 6. (a) Current−voltage curves of perovskite solar cell module with an active area of 2.20 cm2 measured in both forward and reverse directions.
(b) Maximum power point tracking (MPPT) of module measured for 200 s at a voltage of 2.95 V. (c) Statistics of efficiency distribution achieved for
mini-modules. (d) Photograph of a perovskite solar mini-module captured from the glass side.
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of particular importance for the realization of efficient tandem
solar cells based on silicon. The synergistic effects of combining
these strategies became very apparent when considering the
long-term performance of devices. Devices with both the FACl
additive and LiF interlayer exhibited >80% of their initial steady-
state performance after >700 h of MPP tracking. In comparison,
devices prepared without the FACl additive maintained only
30% PCE after 700 h under continuous full illumination of
simulated AM1.5G in a nitrogen atmosphere. Samples made
with the FACl additive in the precursor solution resulted in thin
films with better crystallinity and larger grain size, and FACl
seems to counteract instability effects introduced with the LiF
interlayer. We scaled the most promising device configuration to
a mini-module device area with 2.2 cm2 active area and achieved
19.2% power conversion efficiency. Evaluating devices on the
basis of their longer-term performance and not on their initial
performance becomes important when deciding which device
architectures and components to prioritize in scaling the device
technology to larger areas.
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