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Abstract 

Understanding the oxygen evolution reaction (OER) activity and stability of the NiFe-based 

materials is important for achieving low-cost and highly efficient electrocatalysts for practical 

water splitting. Here, we report the roles of Ni and Fe on the OER activity and stability of 

metallic NiFe and pure Ni thin films in alkaline electrolyte. Our results support that the 

Ni(OH)2/NiOOH does not contribute to the OER directly, but it serves as an ideal host for Fe 

incorporation, which is essential for obtaining high OER activity. Furthermore, the availability 

of Fe in the electrolyte is found to be important and necessary for both NiFe and pure Ni thin 

films to maintain enhanced OER performance, while the presence of Ni is detrimental to the 

OER kinetics. The impacts of Fe and Ni species present in KOH on the OER activity are 

consistent with the dissolution/re-deposition mechanism we propose. Stability studies show that 

as long as Fe (both co-electrodeposited Fe and incorporated Fe) is present in the electrocatalyst 

film, the OER activity will degrade under prolonged continuous operation. Satisfactory stability 

can, however, be achieved with intermittent OER operation in which the catalyst cycles 

between a degraded and recovered state. Accordingly, two important ranges, i.e., the recovery 

range and the degradation range, are proposed. Prolonged continuous OER operation (i.e. in the 

degradation range) generates NiOOH in the electrocatalyst which likely enhances the formation 

of FeOOH and eventually leads to the OER deactivation. If the electrode works in the recovery 

range for a certain period, i.e., at a sufficiently low reduction potential, where the Ni3+ is reduced 

to Ni2+, the OER activity can be maintained (and even improved).   
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1. Introduction 

The generation of hydrogen through water splitting is considered a promising route for storing 

energy from intermittent renewable sources such as solar, wind, and tidal energy.1,2 Since one 

of the main energy losses in water splitting is the kinetic overpotential of the oxygen evolution 

reaction (OER),3,4 OER electrocatalysts have been extensively investigated in order to improve 

the efficiency of water splitting. Noble metal oxides, such as RuO2 and IrO2, have been proven 

to exhibit high catalytic activity toward the OER.3,5 However, the scarcity and high cost of these 

noble metals largely hinder their large-scale application. Thus, the development of earth-

abundant electrocatalysts with low cost and high efficiency is critical.   

Mixed Ni-Fe based materials have been reported as the most active earth-abundant 

electrocatalysts for OER in alkaline water electrolysis.6,7 Although it is widely accepted that 

the interaction between Ni and Fe is significant for enhancing the OER activity,8 their roles for 

the OER activity are still debated.9,10 Various forms of NiFe-based materials, such as alloys,11,12 

oxides,13 and oxyhydroxides,14,15 have been studied as OER electrocatalysts for alkaline water 

splitting. Among them, the alloys have attracted attention because of the simplicity of their 

preparation by electrodeposition and strong adhesion to the substrate.13,16 However, the as-

prepared structure of NiFe alloys is not the active phase for OER catalysis and therefore, an 

electrochemical activation step is usually required to convert the metallic/oxide phase to 

(oxy)hydroxide in order to achieve better OER activity.10,16,17 Unlike NiFe (oxy)hydroxides, 

which have been thoroughly investigated as OER electrocatalysts, few studies have been 

conducted on NiFe-based alloys.10,17,18 The electrochemical behavior and the surface structural 

evolution of NiFe-based alloys in alkaline media under OER operating conditions remain 

unclear and still need further investigations.16  

A concern about NiFe-based materials is their stability. Although significant effort has been 

devoted to developing highly active NiFe-based OER electrocatalysts, few studies have focused 

on the topic of stability,19–23 which is also important for practical water splitting. Recent studies 

show that degradation is a common issue among the NiFe-based electrocatalysts under 

prolonged OER conditions, but the causes are still not fully understood.19,20,22,24  For example, 

Speck et al. found that the Fe in the FeNiOx films (anode), which were synthesized via 

electrodeposition or near-infrared driven decomposition, leached into the KOH electrolyte and 

was deposited on the Ni-cathode during the OER, which is likely related to the OER degradation 

especially at high current densities.21 Obata et al. also observed the loss of Fe from 
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electrodeposited NiFeOx films (on an Au-coated FTO substrate) into the KOH electrolyte 

during the OER, which resulted in gradual OER deactivation with time.22 Additionally, the 

existing stability studies on NiFe-based OER electrocatalysts have mainly concentrated on 

NiFe-(oxy)hydroxides. Since NiFe alloys would experience a surface change from a 

metallic/oxide to a hydroxide/(oxy)hydroxide during the OER, which is different from pure Ni-

Fe (oxy)hydroxide because this is an active phase towards OER itself,25 further studies are 

needed to clarify the details about the OER stability of NiFe alloys. Specifically, what 

electrochemical/chemical conditions can cause degradation, how the structure changes during 

the degradation, and if and how the degradation can be restored/maintained.  

Recently, the dissolution/re-deposition of metallic species has been proposed to explain the 

dynamic metal ion exchange between the catalyst surface and the electrolyte during the OER 

process.26–29 Anantharaj et al. observed a change in faceting of crystallographic planes from 

(001) to (101) and (202) planes for nickel hydroxide after cyclic voltammetry (CV) treatment 

and they ascribed it to the re-deposition of nickel ions during OER.30 Ye et al. reported that 

Ni(OH)2/NiOOH film suffered from chemical dissolution, evidenced by the presence of  Ni(II) 

species in NaOH electrolyte observed with in situ UV-vis spectroscopy.31 Chung et al. reported 

that the surface Fe, regardless of its phase/oxidation state, is not stable in KOH and always 

dissolves in aqueous KOH during the OER operation, which leads to reduced activity of the 

electrocatalyst.26 They also found that to maintain the OER activity, certain amount of Fe in 

KOH is necessary to continuously compensate for the Fe dissolved from the electrocatalyst 

surface via a Fe dissolution/re-deposition process. Therefore, they suggested that the 

dynamically stable Fe is the active site for OER and keeping the balance between the dissolution 

rate and re-deposition rate is significant to maintain the OER activity and stability of Fe-MOxHy 

(M=Ni, Co, Fe). Kuai et al. recently studied the stability of the NiFe-hydroxide and suggested 

that the decay in catalytic activity under prolonged continuous OER is caused by phase 

segregation due to the Fe dissolution/re-deposition process.29 Therefore, operation at the 

reducing potential for Ni could mitigate the phase segregation and avoid the decay in OER 

activity. However, the details of the dissolution/re-deposition process remain unclear, e.g., how 

does the Fe and/or the Ni concentration in the alkaline electrolyte affect the dissolution and re-

deposition rate, and how do the operating conditions affect the OER activity and stability. 

In this contribution, we provide new insights into the roles of Fe and Ni in both metallic NiFe 

(and pure Ni thin) films and KOH electrolytes toward OER activity and stability. We first study 

the surface structural evolution and its influence on OER activity of the thin films in the 
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presence and absence of Fe in the KOH. We further perform a series of experiments by varying 

the concentration of the Ni and Fe species in the KOH electrolyte to understand the roles of Ni 

and Fe on the OER activity of the NiFe and pure Ni thin films. Based on the achieved results, 

we propose a dissolution/re-deposition mechanism for the Ni and Fe species present in KOH. 

Using continuous and intermittent OER operation, we show that two potential ranges can be 

distinguished for the OER stability, apparently divided by the Ni(OH)2/NiOOH redox potential. 

Lastly, a simple but reasonable hypothesis is proposed to explain the OER degradation and 

preservation with respect to the existing form of Fe in the film which is likely linked with the 

Ni valence state that affects the stability.  

2. Experimental 

2.1  Chemical and materials 

NiSO4·6H2O (≥99.99%, Carl Roth GmbH + Co. KG), nickel nitrate (99.9985%, Alfa Aesar), 

Na3C6H5O7·2H2O (≥99.0%, Sigma-Aldrich), iron(II) sulfate heptahydrate (99.999%, 

ALORICH), iron(III) nitrate nonahydrate (99+%, Acros Organics), potassium hydroxide pellets 

(EMPLURA®, Merck KGaA), and 20% ammonia solution (analytical reagent, VWR 

International) were used without any further purification. All electrolyte solutions were 

prepared with 18.2 MΩ cm de-ionised (DI) water obtained from a water purification system 

(Barnstead Smart2Pure 3 from ThermoFisher Scientific). For all depositions and analytical 

experiments, glass substrates coated with SnO2:F (FTO) of ~8.6 Ω/sq sheet resistance were 

used as the working electrode.  

2.2  Preparation of KOH electrolytes  

All electrolytes used in this work for catalytic study are 1.0 M KOH. The unpurified KOH was 

prepared by using the KOH pellets listed in section 2.1. For this KOH, the Fe and Ni 

concentrations are 1.38 and 0.31 μmol L-1, respectively, determined by inductively coupled 

plasma-optical emission spectroscopy (ICP-OES, Table S1). The purified KOH was obtained 

by purifying the unpurified KOH according to the procedure described by Trotochaud et al.32 

and the resulting Fe and Ni concentrations were determined as 0.45 and 16.43 μmol L-1, 

respectively. In addition, two groups of KOH solutions containing various Ni and Fe 

concentrations were prepared by adding a certain amount of nickel nitrate and iron(III) nitrate 

solutions, respectively.  

2.3  Electrodeposition of NiFe alloy films on FTO  
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Typically, a 500 mL electrochemical bath for electrodeposition consisting of 0.024 M 

NiSO4·6H2O, 0.006 M FeSO4·7H2O and 0.030 M Na3C6H5O7 was used. The pH of the bath was 

adjusted to 10.0 using 20% ammonia solution. The electrodeposition was done in a three-

electrode configuration. A 6 × 5 cm2 nickel foil (thickness: 0.5 mm, Alfa Aesar, 99.94%) and 

an Ag/AgCl electrode (METTLER TOLEDO) filled with 3.0 M KCl were employed as the 

counter electrode and the reference electrode, respectively, while 1 × 3 cm2 FTO substrates 

were used as working electrodes. All the FTO substrates were masked off with Kapton tape to 

expose a 1 × 1 cm2 area for deposition.  

Electrodeposition of NiFe films was performed at a current density of –12 mA cm–2 for 20 s at 

room temperature (~25°C) using Biologic potentiostat (SP-150). After the deposition, the 

obtained NiFe films were rinsed several times with DI water and then dried with nitrogen gas. 

The electrodeposition of pure Ni films was prepared on the same sized FTO substrate in a 

similar electrolyte but without the addition of iron(II) sulfate heptahydrate. The 

electrodeposition was conducted at –12 mA cm–2 for 40 s.  

2.4  Characterization methods 

2.4.1 Material characterization 

The structure of the as-prepared electrocatalysts on FTO was characterized by grazing incidence 

X-ray diffraction (GIXRD) using a Bruker AXS D8 Advance X–ray diffractometer with Cu Kα 

radiation (λ = 0.15406 nm). The angle of incidence for the GIXRD measurement was controlled 

to be 0.25° and the step size was 0.02 with step time of 2 s. The surface morphology of the films 

was characterized by field emission scanning electron microscopy (FESEM) using a LEO 

GEMINI 1530 instrument from ZEISS at 50 k magnification and 5 kV acceleration voltage. 

The surface composition of the film surface was determined by X-ray Photoelectron 

Spectroscopy (XPS) in the CISSY-set-up at the BESSY II synchrotron in Berlin, details of 

which can be found elsewhere.33 For all measurements performed in this study, Mg Kα 

excitation with an energy of 1253.6 eV was used. XPS fine spectra were recorded with a pass 

energy of 20 eV, with the exception of the Fe 2p, which was recorded with Epass = 50 eV to get 

a better signal-to-noise ratio. The corresponding change in the Fe sensitivity was taken into 

account for the quantitative analysis. The Raman spectra were recorded using a custom-made 

system from S&I components (Germany) equipped with a frequency-doubled Nd:YAG laser 

emitting light at a wavelength of λ = 532 nm. During the measurement, the exposure time was 

set to be 60 s and 10 exposures were accumulated per spectrum. The thicknesses of the NiFe 
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and pure Ni films on FTO after deposition were determined with a stylus profilometer (Dektak 

XT, Bruker).  

2.4.2 Electrochemical characterization 

The electrochemical characterization was conducted in an H-cell with the two chambers 

separated by a Zirfon membrane (Provided by AGFA) in order to avoid the crossover of H2 and 

O2. The working and reference electrodes were placed in one chamber and the counter electrode 

in the other. An Hg/HgO (Fisherbrand™ accumet™) electrode filled with 1.0 M KOH was 

employed as the reference electrode while a 3 × 4 cm2 graphite plate (Alfa Aesar) was used as 

the counter electrode. All electrochemical measurements were carried out using Biologic SP-

150 potentiostat at room temperature, and in all measurements the stirring rate was controlled 

to be 600 rpm.  

Cyclic voltammetry (CV) was performed in the potential range of 0–0.8 V vs Hg/HgO at a scan 

rate of 100 mV s-1 or 20 mV s-1. The activation procedure consisted of 3 CV cycles at 20 mV s-

1 followed by 200 CV cycles at 100 mV s-1 and finally 3 CV cycles at 20 mV s-1. The 

electrochemical impedance spectroscopy (EIS) measurements were conducted in the frequency 

range of 100 kHz–0.1 Hz with 10 mV amplitude under an applied potential of 0.6 V vs Hg/HgO. 

Before each EIS recording, the working electrode was held at 0.6 V vs Hg/HgO for 60 s to 

ensure a stable current.  

The stability measurements were conducted using the chronoamperometry technique by three 

different protocols: (1) fixing the applied potential at 1.725 VRHE for 48 hours; (2) fixing the 

potential at 1.725 VRHE for 10 min and then at 1.225 (or 1.445) VRHE for another 10 min, and 

cycling between these two potentials for 48 h (144 cycles); (3) controlling the potential in a 

cycle between 1.725 VRHE for 10 min, 10 min at the potential of 1.575 VRHE, and then the open 

circuit potential (OCP) for another 10 min, with a total duration of 96 hours (192 cycles). The 

purpose of the first protocol was to perform a continuous OER operation while the second and 

third ones were used to mimic the varying, cyclic operation of an intermittent renewable energy 

supply.  

3. Results and discussion 

3.1  Morphology and structure of as-prepared NiFe and pure Ni films 

Electrodeposition was used to prepare electrocatalytic NiFe and pure Ni thin films for the OER. 

The films show strong adhesion to the FTO substrates (Figure S1) and provide a suitable 
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platform to investigate the OER activity and stability. The SEM images (Figure 1a) show that 

the NiFe films consist of uniform small particles of ~40 nm diameter and that the particles 

homogeneously cover the FTO substrate, while the Ni film in Figure 1b is also very uniform 

and its surface consists of smaller particles (diameter ca. 10 nm). The phase structure of the 

freshly prepared thin films was characterized using grazing incidence X-ray diffraction 

(GIXRD) and Raman spectroscopy. As shown in Figure 1c, the diffraction peaks marked with 

the hash symbol “#” are indexed to tin oxide, SnO2, with crystalline tetragonal structure (ICDD, 

PDF No. 00-041–1445). The appearance of diffraction peak positioned at 44.7° (marked with 

the asterisk symbol “*”) for NiFe film is attributed to the (111) plane of crystalline NiFe.34,35 

Similarly, there is only one characteristic peak located at 44.7° for the pure Ni film, indicating 

that the film is phase-pure (ICDD, PDF No. 00-001–1258).36 The Raman spectra of the NiFe 

and pure Ni films were collected in the wavenumber range of 100 cm-1 to 900 cm-1 (Figure 1d). 

The appearance of a characteristic signal at 533 cm-1 for the Ni film can be ascribed to the 

stretching mode of the Ni-O bond and is generally considered to be evidence for oxide film 

formation on metallic Ni-alloys.37,38 The shift of the wavenumber of the Ni-O bond to 552 cm-

1 for the NiFe film is likely caused by the presence of co-deposited Fe due to the co-deposited 

Fe. The GIXRD and Raman results indicate that the surface of the NiFe and pure Ni films have 

been oxidized to some extent although the bulk of the films remains in the metallic phase.  
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Figure 1. (a, b) SEM images of NiFe and pure Ni films; (c) GIRXD patterns and (d) Raman 

spectra of NiFe and pure Ni films. 

3.2 CV activation and surface evolution 

It has been reported that the surface of pure Ni is very sensitive to alkaline electrolyte and can 

be easily oxidized to Ni(OH)2 even without applied potential.39,40 Under OER operation, the Ni0 

and Fe0 in NiFe will be oxidized into high-valence Ni/Fe oxides and (oxy)hydroxides.18 Unlike 

NiFe (oxy)hydroxides, which have been proven to be OER-active, metallic NiFe will first 

experience a surface phase evolution in alkaline media under OER conditions. Furthermore, Fe 

is important for achieving enhanced OER activity for Ni-based electrocatalysts,41 although how 

it affects the OER activity remains unclear. Herein, we first electrochemically analyzed the 

NiFe and pure Ni thin films in unpurified and purified KOH electrolytes. In this work, the 

unpurified KOH refers to the freshly prepared 1.0 M KOH by using KOH pellets, while the 

purified KOH refers to 1.0 M KOH which was treated according to Trotochaud et al. (see 

Section 2.2).32 Due to the redox feature of Ni, the cyclic voltammetry (CV) measurement 

contains information about also the phase change in addition to the OER activity of the films.42   

  

 

Figure 2. CVs of NiFe films (a) and pure Ni films (b) collected in unpurified KOH and purified 

KOH at the scan rate of 20 mV s-1. 

Figure 2 shows the CV curves of the NiFe and pure Ni films before and after 200 CVs. Both in 

unpurified or purified KOH, the size of the Ni redox feature for both films is very small in the 

first cycles, indicating that only a small fraction of the films is oxidized/reduced initially.43 This 

is in accordance with the GIXRD and Raman results in Figure 1, in which only the metallic and 

oxide phases were detected. After 200 CVs, the height of the redox feature in all the KOH 
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electrolytes has significantly increased, suggesting that more metallic Ni was oxidized to 

Ni2+/Ni3+, which can be described as:44  

                                                        Ni0 ↔ Ni2+ + 2e-                                    (1) 

Ni(OH)2 + OH-
 ↔ NiOOH + H2O + e-       (2) 

It is noted that the oxidation peak of the films in unpurified KOH is located at a ~60 mV more 

anodic potential, i.e., 1.45 VRHE, than for films in purified KOH (1.39 VRHE). This can be 

explained by the partial charge transfer effect due to the incorporation of Fe from unpurified 

KOH.32 This is supported by the smaller size of redox feature in unpurified KOH compared to 

that in purified KOH, because the presence of Fe partially suppressed the oxidization of the 

Ni.45 The CV results of pure Ni films also exhibit the same trends in terms of Ni redox feature 

size and position (Figure 2b), with about 20–30 mV less anodic peak positions as for NiFe. The 

appearance of the feature at 1.54 VRHE in purified KOH (black curve) is ascribed to the 

formation of Ni4+.32  

Regarding the OER activity, the improved OER activity of NiFe and pure Ni films in unpurified 

KOH after the CV cycling could be due to the incorporation of Fe.46 Surprisingly, the OER 

activity of pure Ni reaches that of NiFe after 200 CVs (overpotential of 290 mV at 8 mA cm-2). 

This result indicates that an enhanced OER activity can be obtained by modifying the surface 

of the pure Ni film with Fe-containing KOH. It is noticeable that the increase in 

Ni(OH)2/NiOOH content after 200 CVs does not directly contribute to the OER because the 

overpotential of the pure Ni sample in purified KOH does not decrease (although after the CV 

treatment the size of the redox feature increases significantly). This is consistent with the 

incorporation of Fe being the main cause of the improved activity.43,47 Even so, the increased 

Ni(OH)2/NiOOH content still plays an important role in improving the OER activity. As shown 

in Figure S2, after one hour of OER (@10 mA cm-2) or OCP operation in unpurified KOH, the 

size of redox feature has only slightly increased, as did the OER activity. However, after cycling 

for one hour (=200 CV cycles) in unpurified KOH, the size of the redox feature has increased 

significantly (i.e. more Ni(OH)2/NiOOH generated) and the OER activity has greatly improved. 

These results suggest that the Ni(OH)2/NiOOH mixed phase is a better host for Fe incorporation 

than the nickel oxide/metallic Ni structure. In addition, the OER activity of NiFe in purified 

KOH decreases with CV cycling, while that of the pure Ni is poor and remains almost 

unchanged. Pure NiOx has already been proven to be a very poor OER electrocatalyst.48 The 

poor OER activity of pure Ni in purified KOH proves the importance of Fe for the OER. The 

deactivation of NiFe in purified KOH after 200 CVs indicates that even for a NiFe film, the 
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presence of additional Fe ions in the electrolyte is essential in order to maintain the OER activity. 

These results are consistent with the recent report by Halaoui et al. where they found the Fe 

presence in electrolyte to be critical for the superior OER activity of NiFeOxHy.
28  

In some articles,42,49 the integrated area of the Ni redox peak is considered to be proportional to 

the concentration of active surface sites (or electrochemically active surface area, ECSA). Our 

results show that although the area of the Ni redox peak for a pure Ni film increases significantly 

after 200 CVs in purified KOH, the OER activity remains almost unchanged. Thus, the 

integrated area of the Ni redox peak does not have a direct relationship with the OER activity 

and should not be used to calculate the concentration of OER-active surface sites.  

In order to understand how the cyclic voltammetry experiments affect the surface 

phase/structure of the NiFe and pure Ni films as well as the OER activity, Raman spectroscopy 

was employed to track the phase change of the films ranging from the 1st CV to 200th CV (Figure 

3). Note that the Raman spectra were collected immediately, i.e., within minutes, after the CV 

cycling. Song et al. reported that the NiOOH phase has a one hour life time under OCP 

conditions.50 In the present work we found that the surface phase of NiFe film after the CV 

treatment can be stable in air for at least four hours (Figure S3). Therefore, the Raman spectra 

collected immediately after electrochemical tests should reflect the true surface condition of the 

films in KOH.  

As shown in Figure 3, at the beginning of the cyclic voltammetry  (i.e. after the 1st CV), two 

characteristic modes positioned at 480 and 557 cm-1 are observed for NiFe and pure Ni films 

due to the formation of NiOOH.39,40 These two modes are ascribed to the depolarized Eg mode 

and the polarized A1g stretch vibration of the NiO2 framework, respectively.51 Also, the peaks 

in the Raman spectra of the films treated in the purified KOH solution are generally narrower 

and sharper than those of the corresponding films treated in the unpurified KOH, indicating 

fewer crystalline defects and consistent with a smaller number of incorporated impurities. It is 

noticeable that the intensities of both I480 and I557 increase with increasing number of CV cycles. 

Note that the I557/I480 ratio in this work is calculated based on the peak intensities of I557 and 

I480. Since these two modes are associated with the NiOOH phase, the increase in intensity must 

be related to the formation of NiOOH deeper in the films.40 This result is indeed consistent with 

the CV results in Figure 2, where the size of Ni redox peak, which is due to the formation of 

NiOOH (Eq. (2)), increases with the number of CV cycles. It is also observed that I480 increases 

faster with CV cycling compared to I557, indicating a gradual structure change of the film. After 

200 CVs the I557/I480 ratio for NiFe and pure Ni films in unpurified KOH is higher than that for 
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the films treated in purified KOH. It has been reported that the I557/I480 ratio has a close 

relationship with the Fe content in the film,39,48 i.e., the increase in Fe content results in the 

increasing structural disorder of the film.52,53 Normally the higher the Fe content, the higher 

value of the I557/I480 ratio.  

 

Figure 3. Raman spectra collected after various CV cycles for NiFe (a, b) and pure Ni films (c, 

d) in unpurified and purified KOH electrolytes; I557/I480 ratio as a function of CV cycle number: 

(e) NiFe and pure Ni films in unpurified KOH and (f) NiFe and pure Ni films in purified KOH. 

The I557/I480 ratios as a function of CV cycle number are shown in Figure 3e and 3f. In unpurified 

KOH, the I557/I480 value decreases within the first 100 CV cycles for both NiFe and pure Ni 

films, indicating that more NiOOH has formed on the film surface. The I557/I480 value stabilizes 

after 100 CV cycles, suggesting that the Fe content on the catalyst surface has reached an 

equilibrium. However, in purified KOH, the I557/I480 ratio continues to decrease with CV cycling, 
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indicating less Fe incorporation and more NiOOH formation on the surface. The GIXRD data 

for both NiFe and pure Ni films after 200 CV cycles was also collected. However, metallic 

phase still remains as the main structure of both (Figure S4), indicating that the CV treatment 

only transforms the surface of the films while the bulk remains metallic.54 This is different from 

the NiFe-oxy(hydroxide) film, where the whole film is highly accessible to the electrolytes due 

to their layered-double hydroxide (LDH) structure which allows the intercalation of anions.16 

The comparison of the unpurified and purified KOH results suggests that Fe incorporated from 

KOH onto the catalyst surface during CV cycling not only affects the structure of the films 

(more disordered) but also the OER activity. 

 

  

Figure 4. XPS spectra of Ni 2p3/2, Fe 2p3/2 and O 1s of freshly prepared NiFe and NiFe after 

200 CV cycles in unpurified KOH. 

XPS was used to study the chemical changes at the surface of the NiFe before (fresh NiFe) and 

after the 200 CVs in unpurified KOH (Figure 4) to understand the surface evolution caused by 

the CV treatment. For a freshly prepared NiFe film, the XPS peak derived from the high-

resolution scan of Ni 2p3/2 (Figure 4a) can be resolved into three peaks located at 851.9 eV, 

854.3 eV and 855.4 eV, which correspond to the metallic Ni, NiO and Ni(OH)2 phases, 

respectively.55 It is noted that the assignment of Ni 2p peaks to the valence states of Ni is always 

difficult due to the possible interference from the multiple contributions from Ni oxides and the 

satellite structures.55,56 After 200 CVs, the peak corresponding to Ni0 at 851.9 eV disappears, 

while a new peak at 856.2 eV is observed and can be ascribed to the formation of NiOOH, 

which is consistent with the Raman results where the characteristic peaks at 480 and 557 cm-1 

are observed (Figure 3a). These results indicate the transformation of Ni0/NiO/Ni(OH)2 into 

Ni(OH)2/NiOOH during the CV cycling. The XPS spectra of Fe 2p3/2 (Figure 4b) show that for 
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freshly prepared NiFe, the surface of the film contains a FeO (709.8 eV) phase.57 However, 

after 200 CV cycles it disappears and a new peak at 711.2 eV appears, which can be attributed 

to the presence of Fe3+ in the form of Fe2O3 and/or Fe-oxy(hydroxide).58 The characteristic 

binding energy at 715.8 eV belongs to the Sn 3p3/2 signal of the FTO substrate (Figure S12).59 

The XPS spectra of O 1s can be deconvoluted into four peaks at 528.7, 529.8, 530.5, and 531.3 

eV. The peak at 528.7 eV is located at lower binding energies than normally found in NiO, but 

Hu et al. found a similar peak for a selenide-derived NiFe oxide that exhibited a layered 

structure.60 The 529.8 eV peak can be ascribed to lattice oxygen in polycrystalline NiO, further 

confirming the existence of NiO.61 The peak features positioned at 530.5 and 531.3 eV can be 

attributed to oxide and hydroxy groups of the NiFe alloy, respectively.62 From the Ni and Fe 

spectra (Fig. 4a and 4b), we calculated that the Fe content (molar ratio of Fe/(Fe+Ni)) in 

unpurified KOH before CV cycling was 9.7 at.% and increased to 18.7 at.% after 200 CV cycles. 

These results further prove that the NiFe film absorbs Fe from the unpurified KOH electrolyte 

during CV cycling.  

3.3 Impact of concentration of Fe and Ni species and dissolution/re-

deposition mechanism 

So far, we have studied the NiFe and pure Ni films in unpurified and purified KOH electrolytes. 

The results indicate that the surface evolution and the change of OER activity during the 

electrochemical activation are closely linked with the Fe species in KOH. This raises the 

question of how exactly the presence of Fe species in the KOH affects the as-prepared metallic 

thin film and the OER activity. Although the roles of Fe in alkaline media have been thoroughly 

investigated, few studies have systematically evaluated the impact of the Fe concentration on 

the OER activity.26,27,31 More importantly, no mechanism has yet been proposed that explains 

how Fe is incorporated into the film from the alkaline electrolyte and how it is dissolved from 

the film into the electrolyte. Additionally, we are also curious about the impact of Ni species in 

the KOH, because it has been reported that the Ni(OH)2/NiOOH suffers from chemical 

dissolution in alkaline conditions and the presence of Ni species deteriorates the OER activity.31 

This suggests that the existing studies in the literature on NiFe-based OER electrocatalysts 

under alkaline conditions might be (to a greater or lesser extent) affected by the Ni species in 

electrolyte.  

Based on above considerations, we intend to study how the concentrations of the soluble Ni and 

Fe species in the KOH affect the OER activity of the thin films and the possible interaction 

between them. Thus, we prepared a series of 1.0 M KOH electrolytes with various Ni and Fe 
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concentrations and conducted the CV activation on the pure Ni thin films. Here, the use of pure 

Ni films instead of NiFe is to eliminate the impact of co-electrodeposited Fe.  

Figure 5a shows the impact of various Ni concentrations in unpurified KOH on the OER activity. 

At low Ni concentration (1.0 μmol L-1), the obtained CV curves before and after the 200 CVs 

almost overlap those in unpurified KOH (i.e. without the addition of Ni), indicating that such a 

low Ni concentration has almost no effect on the OER activity. However, as the Ni 

concentration is increased to 10 μmol L-1, the OER activity drops significantly, even though it 

still improves during cycling (solid vs. dashed curves in Figure 5a). Our results prove that the 

presence of Ni in KOH indeed reduces the OER activity, probably by occupying the Fe sites. 

As the Ni concentration increases to 15 μmol L-1, the OER activity reduces further and remains 

unchanged after 200 CVs, indicating that the dissolution/re-deposition between the Ni and Fe 

has reached a dynamic equilibrium. From the OCP-OES results (Table S1, Supporting 

Information), we know that the Fe concentration in unpurified KOH is 1.38 μmol L-1. Since the 

Ni concentration needed to achieve a dynamic Ni/Fe equilibrium is ~10 higher, we deduce 

that the dissolution/re-deposition rate of Fe is around 10-fold that of Ni. Further increasing the 

Ni concentration (to 35 μmol L-1) resulted in a worse OER activity (with little difference before 

and after cycling), suggesting that a high Ni concentration increases the deposition rate of Ni 

on the Fe sites, which suppresses the OER activity. This again indicates that the dissolution/re-

deposition rate of Ni is much lower than that of Fe, which is consistent with some reports that 

the corrosion rate of Ni is low in KOH under OER operation.29 
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Figure 5. (a) CV curves of pure Ni films collected before and after 200 CV cycles in unpurified 

KOH with different Ni concentrations; (b) CV curves of pure Ni films collected before and after 

200 CV cycles in purified KOH with different Fe concentrations.  

The impact of the Fe concentration on the OER activity was also studied by varying the Fe 

content in the purified KOH (Figure 5b). Note that for purified KOH (without the addition of 

Fe) the original Fe and Ni concentrations are 0.45 and 16.43 μmol L-1, respectively (Table S1, 

supporting information). By adding 0.1 μmol L-1 Fe to the purified KOH, the OER activity 

improves slightly. Even so, such Fe concentration (i.e. 0.55 μmol L-1 in total) is still too low to 

eliminate/offset the suppressive effect of the Ni species in the purified KOH. As the Fe 

concentration is increased by 1 μmol L-1, the OER activity significantly improves, with further 
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improvement after cycling. Increasing the Fe concentration by 7.5 μmol L-1 further improved 

the OER activity. However, increasing the concentration by 25 μmol L-1 did not lead to further 

changes in the OER activity. It is noted that the OER activity achieved (overpotential of 292 

mV at 8 mA cm-2) in purified KOH with an added Fe concentration of 7.5 or 25 μmol L-1 after 

200 CVs is close to that of pure Ni in unpurified KOH (overpotential of 290 mV at 8 mA cm-2, 

Figure 5a). These results imply that the suppressive effect of Ni species in purified KOH can 

be completely eliminated by Fe species at a sufficiently high Fe concentration. The influence 

of the Fe concentration in KOH has been studied by Chung et al., who reported that the OER 

enhancement by adding Fe to KOH saturates at around 0.1 ppm  (~1.8 μmol L-1, in purified 

KOH).26 This value is different from our results and we assume that it should be determined for 

specific conditions such as the initial Ni/Fe ratio, the structural phase and specific surface area 

of the NiFe electrocatalyst, the applied potential, etc. In addition, compared to purified KOH 

with 7.5 μmol L-1 Fe, the smaller size of the anodic feature in the CV for purified KOH with 25 

μmol L-1 Fe indicates that although more Fe is incorporated in the film from the KOH with high 

Fe concentration, the additional Fe does not increase the OER activity. These results suggest 

that not all the incorporated Fe from the KOH contributes to the OER. In other words, there 

must be a finite concentration of Fe active sites on the surface that should be determined by the 

film morphology, porosity, composition, etc.  

 

Figure 6. (a) The potential at 1 mA cm-2 current density and (b) Tafel-slope as function of the 

Ni/Fe concentration ratio in unpurified and purified KOH before and after 200 CVs. 

Further quantification of the results in Figure 5 indicates that the concentration ratio of Ni/Fe 

(or Fe/Ni) is a very good descriptor for the OER activity. As shown in Figure 6, the data from 

both the purified and unpurified electrolytes essentially falls on the same curve when plotted as 
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a function of the concentration ratio, despite an order of magnitude difference in the absolute 

Fe and Ni concentrations for Ni/Fe ratios less than 2. Both the potential at 1 mA cm-2 and the 

Tafel slope exhibit the same general trend. The current density 1 mA cm-2 was chosen, because 

it was low enough that accurate potential could be determined for all measured CV curves. The 

highest performance is achieved with Ni/Fe ratio less than 2, and in those cases the OER 

performance appears nearly independent of the ratio. This matches the aforementioned 

observations of Chung et al. that increasing the Fe concentration of the electrolyte beyond a 

certain value had no additional benefit (they did not report Ni concentrations).26 With increasing 

Ni/Fe ratio, the performance gradually becomes worse until there is a large deterioration at a 

value of around 30. This (and the results in Figure 5) indicates that the Fe dissolution/re-

deposition rate is much faster than the corresponding rate of Ni, and the enhancing effect seems 

to saturate when the Fe concentration reaches about half of the Ni concentration. Conversely, 

the effect of Fe species can also be suppressed by Ni species, but only when the Ni concentration 

is much higher (over ~7-fold) than the Fe concentration. 

 

Figure 7. Schematic diagram of dissolution/re-deposition of Ni and Fe in unpurified and 

purified KOH electrolytes for NiFe and pure Ni films. 

Based on above results and the discussions, we propose a dissolution/re-deposition mechanism 

for the NiFe and pure Ni films in alkaline conditions (Figure 7). First, the Raman and GIXRD 

results described above clearly show that only the surface of the films experiences structural 

transformations during the CV cycling, the bulk of the films remains unchanged. Secondly, 

both the soluble Fe and Ni species present in the electrolyte affect the OER activity. Specifically, 

the availability of Fe in electrolyte is important and necessary for both NiFe and pure Ni to 
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obtain (and also to maintain) enhanced OER activity, while the presence of Ni in the electrolyte 

is detrimental to the OER.31 Thirdly, the impacts of soluble Fe and Ni in the KOH on the OER 

activity are determined by their relative concentrations (i.e. Ni/Fe, or Fe/Ni ratio). For NiFe 

films in unpurified KOH, both the Ni and Fe on the surface of NiFe dissolve into the electrolyte 

during the CV cycling or OER. However, since the unpurified KOH itself contains Fe, the 

surface concentration of Fe can be maintained via the Fe re-deposition process. In purified KOH, 

however, there are almost no Fe impurities in the electrolyte, hence the empty lattice sites from 

the dissolved Fe ions are occupied by the Ni ions via the Ni re-deposition. This explains the 

relatively poor OER activity and lower I557/I480 ratio value of NiFe in the purified KOH 

electrolyte. For the pure Ni film in unpurified electrolyte, Fe from the electrolyte is deposited 

on the surface, which explains why the corresponding I557/I480 ratio and OER activity of the 

pure Ni films after 200 CV cycles is similar to that of the NiFe films in unpurified KOH. Finally, 

the pure Ni films exhibit poor OER performance in purified KOH due to the very low Fe 

impurity concentration in the KOH. 

3.4 Stability under continuous and intermittent OER operations 

The stability of the electrocatalysts is one of the most important practical concerns for water 

splitting. The stability measurement was first conducted on the NiFe and pure Ni films under 

continuous OER operation. The previous results indicate that the CV activation could improve 

the OER activity due to the incorporation of Fe from the KOH. Therefore, in order to eliminate 

uncertainties, all the stability measurements were performed after 200 CV cycles.  
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Figure 8. Stability results of NiFe film (a–c) and pure Ni film (e–f) in unpurified and purified 

KOH under continuous OER operation (1.725 VRHE). 

Figures 8a–c show the stability results of the NiFe film collected under continuous OER 

operation at an applied potential of 1.725 VRHE for 48 h. We selected this bias potential because 

it generates around 10 mA cm-2 current density with the NiFe film. The figure shows that the 

NiFe film in unpurified KOH is not stable under these conditions and the obtained current 

density decays by 1.3 mA cm-2 during the 48 h, i.e., from 9.1 mA cm-2 to 7.8 mA cm-2. This 

observation is consistent with the literature that NiFe-based electrocatalysts are not stable under 

prolonged continuous OER operating conditions.20,22,43 Compared to unpurified KOH, NiFe 

films in purified KOH degraded more severely, from 7.4 mA cm-2 to 5.2 mA cm-2 (black curve 

in Figure 8a). Based on the dissolution/re-deposition mechanism described above, we propose 

that during the OER operation the surface Fe sites of the NiFe film are gradually replaced by 

Ni species in the purified KOH (due to relatively low Fe concentration and relatively high Ni 

concentration). The electrochemical impedance spectra (EIS) and CV results in Figure 8b–c as 

well as Table S2 further confirm the catalyst deactivation (details about the EIS fitting can be 

found in Supporting Information). The fitted charge transfer resistance (Rct, Ω cm2) and time 

constant (τ, s) values for both conditions significantly increased, indicating that the barrier for 

the electron transfer increased greatly.63 The derived double-layer capacitance (Cdl) values 

reduced almost by half, suggesting a decrease in the number of active surface sites. However, 

the change in the surface Fe content in the NiFe film is unlikely to be the reason for the OER 

deactivation. The XPS results show that after 48 h continuous OER operation in unpurified 

KOH, the Fe composition (Fe/(Fe+Ni)) increases from 18.7 at.% to 26.5 at.% (Figure S8). It is 

noticeable that the size of the redox feature for both cases (unpurified and purified KOH) before 

and after 48 h OER operation remains almost unchanged, indicating that the total 

Ni(OH)2/NiOOH content did not change during this period. These results imply that the 

increase in Fe content during the continuous OER operation does not improve the OER activity. 

In addition, the GIXRD data (Figure S6) collected after 48 h continuous OER for NiFe in 

unpurified KOH show that the bulk of the film still remains present as a metallic phase.  

As a comparison, the stability of the pure Ni film in unpurified KOH and purified KOH 

electrolytes was also measured by the same protocol as NiFe film (Figures 8e–f). Similarly to 

NiFe film in unpurified KOH, the current density of the pure Ni film decayed over time. The 

corresponding EIS and CV exhibit the same trend as observed for NiFe film in unpurified KOH. 

The similarity between the NiFe and Ni films is not unexpected, since the surface of the pure 
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Ni film is also expected to contain Fe after prolonged cycling in the unpurified electrolyte. In 

contrast, the behavior in purified KOH is very different, with no degradation occurring for the 

pure Ni films. Note that the OER activity of these films is poor due to the absence of Fe in both 

the film and the electrolyte.64 Surprisingly, the OER activity slightly increases after the 48 h 

stability measurement. Table S2 demonstrates that in purified KOH the Cdl decreases from 2.4 

to 1.7 mF cm-2, with the Rct value simultaneously decreasing from 2339 Ω cm2 to 377 Ω cm2. 

These results imply that the slight OER improvement for the pure Ni film in purified KOH after 

48 h was not due to an increase in the active surface area (it actually decreases). Figure 8f shows 

that the Ni2+/Ni3+ redox peak shifts to slightly more anodic potentials after cycling. All these 

observations are consistent with the presence of trace Fe impurities in the purified KOH, which 

can enhance the OER activity but also block part of the Ni surface sites.65 

The Raman spectra for NiFe and pure Ni films before and after the 48 h continuous operation 

in unpurified and purified KOH were also measured and compared (Figure S7). The I557/I480 

ratio increases slightly after the stability tests in unpurified KOH (Figures S7a and S7c), from 

0.92 to 0.99 for NiFe and 0.96 to 0.99 for pure Ni. This small increase hints at increased 

structural disorder, likely caused by an increased surface Fe content (see the XPS results in 

Figure S8). In purified KOH electrolyte, however, the I557/I480 ratio of NiFe remained almost 

unchanged after 48 h continuous OER operation (Figure S7b). This is because the Fe has 

already leached out before the start of the 48h measurement, and is not re-deposited in the 

purified KOH electrolyte. The slight decrease of the I557/I480 ratio from 0.71 to 0.65 can be 

ascribed to the increased NiOOH content. The difference between the NiFe and pure Ni in 

purified KOH is that the pure Ni film does not contain any Fe originally; therefore, the NiOOH 

content increases with the continuous OER operation.  
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Figure 9. Stability results of a NiFe film in unpurified 1.0 M KOH (a) and purified 1.0 M KOH 

(c) under intermittent operating conditions (cycling between 1.725 VRHE (10 min) and 1.225 

VRHE (10 min)) for 48 h; stability results of NiFe film in unpurified 1.0 M KOH (b) and purified 

1.0 M KOH (d) under intermittent operating conditions (cycling between 1.725 VRHE (10 min) 

and 1.425 VRHE (10 min)) for 48 h; (e) Proposed explanation to the OER degradation.   

The above results indicate that the NiFe films are not stable under prolonged continuous OER 

conditions. We were curious about their stability under fluctuating OER operations, since 

photoelectrochemical (PEC) devices and PV-driven electrolysers (PV-EC) would inevitably 

operate under intermittent conditions.54,66 Figure 9a illustrates the results of a further stability 

test in an unpurified electrolyte using a slightly different testing protocol to imitate intermittent 



23 
 

operating conditions. First, the potential was fixed at 1.725 VRHE for 10 min and 1.225 VRHE for 

another 10 min, and then repeating this process for 48 h. Interestingly, no obvious OER 

degradation is observed. The corresponding CVs (see Figure 11) show that the OER activity 

after the 48 h has improved. However, if the potential is cycled to 1.425 VRHE instead of 1.225 

VRHE (Figure 8b), the OER degradation occurred again (1.5 mA cm-2 decrease in 48 h). Notably, 

both 1.225 and 1.425 VRHE are negative of the OER on-set potential (~1.50 VRHE), but 1.225 

VRHE is less anodic while 1.425 VRHE is more anodic than the reduction potential of 

NiOOH→Ni(OH)2 (~1.35 VRHE). These results suggest that the conversion of NiOOH to 

Ni(OH)2 is conducive to maintaining the OER activity. We also conducted a stability 

measurement on the NiFe film in purified KOH under intermittent OER operating conditions 

(Figure 8c). During the first 15 h, the NiFe film suffers from deactivation, which could be due 

to the Fe sites on the film surface being replaced by the Ni ions during the dissolution/re-

deposition process, as discussed related to Figure 7. However, after 15 h the OER performance 

of NiFe film does not decrease further, similar to the observation in Figure 8d. Figure 9d shows 

the stability results of NiFe film by using the same test protocol as Figure 9b, but performed in 

purified KOH. Unlike the results in Figure 9c, NiFe film undergoes a continuous OER decay 

over time, which is similar to the results in Figure 8a and further demonstrates the importance 

of converting NiOOH to Ni(OH)2 for maintaining OER stability.  

Based on the stability results above, it seems that there are two important potential ranges which 

determine the OER stability of the NiFe, i.e. the ranges cathodic and anodic of the Ni reduction 

potential (called here “recovery range” and “degradation range”, respectively, as shown in 

Figure 9e). When the NiFe-based electrocatalysts are exposed to OER conditions for a period 

of time, it is important to periodically change the applied potential to the recovery range, where 

the catalyst can recover its lost OER activity. The border between these two ranges is 

determined by the Ni redox profile of the electrocatalysts, i.e. the applied potential should be 

low enough to reduce the NiOOH to Ni(OH)2.  

To verify the mechanism proposed above, the NiFe film was measured under accelerated stress 

test (AST) conditions, i.e., 10 min at the potential of 1.725 VRHE, then 10 min at the potential 

of 1.575 VRHE, and then the OCP for another 10 min. The total duration time for the 

measurement was 96 h. This AST protocol has been employed to evaluate the stability of 

electrocatalysts in proton exchange membrane (PEM) water electrolyzers.67,68 It is useful also 

for testing NiFe-based electrocatalysts, because its operating conditions are closer to real-life 

operation in PEC and PV-EC devices than simple chronopotentiometry or chronoamperometry. 
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As shown in Figure S10a and Table S3, the NiFe film does not show any OER performance 

deactivation during the 96 h measurement period. Actually, its OER activity improves a little 

after the stability tests, which is further confirmed by EIS and CV results in Figure S10b and 

S10c. We notice that during the stability measurements the OCP value was located within the 

range 1.125–1.325 VRHE, which corresponds to the recovery range. Thus, the key for 

maintaining the OER performance seems to be intermittent OCP operation. This explains the 

long-term stability of the film and further supports the proposed mechanism.   

3.5 Explanations to the OER degradation and preservation 

To understand the surface change of the NiFe film, we also collected and compared the XPS 

spectra after the 48 h continuous and intermittent OER operations (Figure 10). The XPS spectra 

of Ni 2p3/2 for both cases can be fitted with two characteristic peaks at 855.1 and 856.2 eV, 

which are associated with the formation of Ni(OH)2 and NiOOH, respectively.69 Such results 

are consistent with the Raman spectra in Figure S6 in which the NiOOH phase is present. It is 

noticeable that the surface NiOOH content (25.1%) after the continuous operation is much 

higher than that after intermittent operation (7.7%). These results confirm the hypothesis that a 

high content of NiOOH is unfavorable to maintaining the OER activity. However, it must be 

pointed out that the high content of NiOOH is unlikely to be the direct cause for the OER 

degradation because the pure Ni film did not show any OER deactivation in purified KOH after 

48 h continuous OER operation (Figure 8d).  

 

 

Figure 10. XPS spectra of Ni 2p3/2 (a), Fe 2p3/2 (b) and O 1s (c) of NiFe films in unpurified 

KOH after 48h under continuous OER operating conditions and after 48h under intermittent 

OER operating conditions.  
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The characteristic Fe 2p3/2 peak located at 711.2 eV indicates the generation of iron oxides 

and/or (oxy)hydroxides.70 Due to the partial overlap with Sn 3p3/2 (715.8 eV) and the complexity 

of iron phases, it is difficult to assign the signal at 711.2 eV  to any single phase of iron.71 Still, 

the surface Fe content after the prolonged OER operations can be calculated. As shown in 

Figure S8, the relative Fe content (i.e., Fe/(Fe+Ni)) after 48 h continuous and intermittent OER 

operations increases from 18.7 at.% to 26.5 at.% and 22.5%, respectively. These results indicate 

that the NiFe film continuously incorporates Fe species from the unpurified KOH during the 

OER catalysis, which increases the Fe/Ni ratio on the film surface. However, several articles 

report that Fe leaches from the parent NiFe-based electrocatalysts into the alkaline electrolyte 

during the OER catalysis.21,22,26 For example, Görlin et al. observed, via reflection X-ray 

fluorescence spectroscopy, a great loss of Fe from a Ni-Fe oxy-hydroxide film after 2 h OER 

operation in purified KOH.72 We note that the OER measurements on the NiFe-based 

electrocatalysts in these references (i.e.21,22,26,72) were conducted in purified KOH. Therefore, 

the loss of Fe is likely due to the Fe dissolution and the high content of Ni species in purified 

KOH, which occupy the Fe sites, as explained by the proposed mechanism in Figure 7. This 

eventually results in the deactivation of the OER activity. In contrast, we observe an increase 

in Fe because the Fe content exceeds the Ni content in our unpurified electrolyte (Table S1). 

Figure 10c compares the XPS spectra of O 1s of NiFe film collected after the 48 h continuous 

and 48 h intermittent operations in unpurified KOH. The peaks at 530.4 eV and 531.3 eV can 

be ascribed to the oxide and hydroxyl groups of the NiFe alloy, respectively.62 Additionally, 

the appearance of the bond at 532.7 eV after continuous OER operation can be attributed to 

chemically adsorbed water molecules,10 which could originate from the intercalation of H2O 

molecules into the layers of γ-NiOOH.44 The peak at 528.7 eV for the intermittent conditions 

is ascribed to the lattice oxygen (O2-) in the layered structure.60 These results further indicate 

that continuous operation enhances the formation of NiOOH.    

The CV curves of the NiFe film recorded for both continuous and intermittent operation are 

also compared. As shown in Figure 11, the area of the Ni2+/Ni3+ redox peaks for continuous 

OER operation did not change significantly after operation, but the anodic peak slightly shifted 

towards more positive potentials. For intermittent operation the area of the redox peak increased 

greatly and both the cathodic and anodic peaks shifted to more anodic potential, implying that 

more Ni(OH)2/NiOOH was generated and that the NiFe film was further activated under the 

intermittent OER operation. Therefore, the potential shifts between the “degradation” and 

“recovery” ranges during the 48 h intermittent operation are similar to the CV cycling, which 

further improves the OER activity. Since we previously showed that the increase in 
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Ni(OH)2/NiOOH content alone does not have a direct relationship with the OER activity, the 

improvement after intermittent operation is caused by the increased Fe content. However, it is 

noticeable from XPS that the surface Fe content after the continuous OER operation also 

increased but its OER performance degraded. This result contradicts several previous 

observations that the Fe content in the NiFe-based electrocatalysts decreases.20–22 Therefore, 

we propose that during OER operation Fe is converted likely to FeOOH, and its accumulation 

in continuous operation reduces the OER activity, while under intermittent operation the 

FeOOH is removed periodically, so the catalyst activity remains more stable.29 In addition, the 

SEM images (Figure S9) collected before and after the 48 h continuous OER operation (applied 

potential 1.725 VRHE) show that the morphology of the NiFe film remained almost intact, 

indicating the good stability of the film.  

 

Figure 11. CV curves of a NiFe film recorded before and after the 48 h continuous (black 

curves) and intermittent (red curves) OER operations in unpurified KOH.  

Previously Mellsop et al. studied the OER stability of Ni oxy-hydroxide in 30 wt.% KOH.73 

They attributed the OER degradation under prolonged continuous OER operation to the 

increasing ratio of Ni(IV) to Ni(III). To prevent the formation of Ni(IV), they proposed a 

rejuvenation operation by holding the electrode at a lower potential range of 0.5–0.36 V vs 

Hg/HgO (~1.4–1.5 VRHE) and argued that it is key to avoid the reduction of Ni(III) to Ni(II). 

However, these conclusions conflict with our results which indicate that, in fact, the reduction 
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of Ni(III) to Ni(II) is the key to maintaining the OER activity. Furthermore, they did not mention 

the KOH purity, which is important to the stability, as illustrated by pure Ni film in purified 

KOH not showing activity degradation after prolonged OER operation, while in unpurified 

KOH its activity was degraded (Figure 8d). Kaui et al. recently found that the formation of 

FeOOH caused by the Fe segregation is responsible for the OER degradation of the mixed Ni-

Fe hydroxide under prolonged continuous OER operation.29 They proposed that the phase 

segregation can be alleviated by holding the electrode at a reduction state intermittently. 

Although we were not able to identify the FeOOH phase in our current study, our results suggest 

that the increase in NiOOH content under prolonged continuous OER is likely related to the 

formation of FeOOH. Obviously, the reduction of the NiOOH to Ni(OH)2 by CV cycling or 

intermittent operations are conducive to maintaining (and even improving) the OER activity.   

4. Conclusions 

In summary, we have reported the effects of Fe on the surface structure evolution and the OER 

activity of metallic NiFe (and pure Ni) films in alkaline electrolyte. The film surface evolves 

from metallic Ni0/NiO/Ni(OH)2 to Ni(OH)2/NiOOH during electrochemical activation and the 

presence of Fe in KOH alters the film surface by increasing the structural disorder. Although 

the generation of Ni(OH)2/NiOOH does not directly contribute to the OER activity of NiFe and 

pure Ni films, its presence enhances the Fe incorporation from the Fe-containing KOH 

electrolyte. In addition, the co-electrodeposited Fe in the film is not necessary because it is the 

surface Fe rather than the bulk Fe that is responsible for the enhanced OER activity. The 

analysis of the Fe and Ni species present in the KOH shows that the availability of Fe in KOH 

is necessary for both pure Ni and NiFe films to obtain enhanced OER activity, while the 

presence of Ni in the electrolyte is detrimental to the OER. The specific impacts of soluble Fe 

and Ni species in the electrolyte on the OER activity depend on their relative concentrations. 

Since the Fe dissolution/re-deposition rate is much faster than that of Ni, the effect of Ni in the 

KOH electrolyte on NiFe or pure Ni electrocatalysts is quite easy to eliminate by increasing the 

Fe concentration in the KOH. The enhancing effect of Fe saturates when its concentration 

reaches about half of the Ni concentration. The investigation of the OER stability shows that 

the OER degradation occurs as a common feature for NiFe-based materials under prolonged 

continuous OER operation. Surprisingly, the OER activity can be maintained for at least 48 h 

under intermittent OER operation. The comparison of the stability results of 48 h continuous 

and intermittent OER operation indicates that the increase in surface Fe content does not 

necessarily improve the OER activity. Two potential ranges, apparently divided by the 
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Ni(OH)2/NiOOH redox potential, that we call OER degradation range and recovery range, are 

proposed to explain the OER degradation and recovery. Compared to the prolonged intermittent 

OER operation, the prolonged continuous OER operation generates more NiOOH that likely 

enhances the formation of FeOOH, eventually leading to the OER deactivation. Importantly for 

the application in solar driven devices, the electrode works in the recovery range for a period 

of the daily cycle, i.e., at night the electrode operates at a sufficiently low reduction potential to 

reduce Ni3+ to Ni2+, the OER activity can be maintained (and even improved).   
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