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The concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was
recently proposed and experimentally demonstrated for quantum systems. Here, we transfer this concept to
magnons and experimentally demonstrate a driven STC at room temperature. The STC is realized by strong
homogeneous microwave pumping of a micron-sized permalloy (Py) stripe and is directly imaged by
scanning transmission x-ray microscopy (STXM). For a fundamental understanding of the formation of the
STC, micromagnetic simulations are carefully adapted to model the experimental findings. Beyond the
mere generation of a STC, we observe the formation of a magnonic band structure due to back folding of
modes at the STC’s Brillouin zone boundaries. We show interactions of magnons with the STC that appear
as lattice scattering, which results in the generation of ultrashort spin waves (SW) down to 100-nm
wavelengths that cannot be described by classical dispersion relations for linear SW excitation. We expect
that room-temperature STCs will be useful to investigate nonlinear wave physics, as they can be easily
generated and manipulated to control their spatial and temporal band structures.
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Magnons, which are the quanta of SWs, were intensely
discussed in the past decade, revealing new fundamental
phenomena in magnetism [1–4]. Especially intriguing is the
analogy to other bosonic quanta, like photons and the
corresponding photonics applications. From a fundamental
point of view, emerging quantum phenomena are of great
interest. Here, artificial magnonic crystals, i.e., systems
with periodically modulated magnetic properties, are espe-
cially alluring as they allow one to generate and manipulate
SW band structures [4–7].
Recently, the concept of periodic modulation was

extended from space into time, leading to the idea of a
time crystal by Wilczek [8]. A review of the physics of
these time crystals can be found in Ref. [9]. Watanabe and
Oshikawa already noticed that the existence of time crystals
should be a logical consequence of Lorentz-invariant
space-time and long-range order in spatial directions
[10]. Indeed, the definition of a time crystalline structure
is deduced from ordinary space crystals. The most impor-
tant criterion for formation of a crystal is the breaking of

continuous spatial translation symmetry into a discrete
translation symmetry. Equivalently, a time translation sym-
metry break (TTSB) is essential for time crystals. However,
quantum equilibrium states have time-independent
observables that basically forbid TTSB in the ground state
[11]. Only with long-range interactions was a Hamiltonian
found to bypass the no-go theorem of Watanabe and
Oshikawa. Thus, time crystalline phases can be generated
within closed quantum systems, showing resilience to local
perturbations [12]. Yet, nonequilibrium states, like peri-
odically driven many-body Floquet systems, can also
possess a time translation symmetry governed by the
external frequency input [13,14]. Several experiments
confirmed a TTSB in quantum Floquet systems, revealing
observables with subharmonic responses [15–17].
The combination of both of these symmetry breakings

defines a so-called space-time crystal that exhibits perio-
dicity in space and time. This combination was realized by
Smits et al. as a direct observation of space-time crystal-
linity in a superfluid quantum gas [18]. Additionally, Kreil
et al. recently proposed a STC at room temperature
in a Bose-Einstein condensate (BEC) of magnons [19].
However, these experiments were limited to quantum
systems and only showed the general existence of STCs.
In this work, we unite the fundamental STC concept

within the quantum regime with the world of magnonics
and present an exceptional case for nonlinear wave physics
in a comparatively large structure. While the existence of
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STCs has been shown in the literature, lattice scattering
processes have not yet been observed [18,19]. To this end,
we generate a driven STC in a Py waveguide and directly
image it by time-resolved STXM with x-ray circular
dichroism (XMCD) contrast (20-nm spatial and 50-ps
temporal resolution) [2,20]. We use this technique to show
the formation of a driven STC and investigate its interaction
with magnons at room temperature. Thereby, we observe
lattice scattering into higher Brillouin zones and the
generation of ultrashort SWs that cannot be explained
by conventional dispersion theory. Additionally, we
carefully employ micromagnetic simulations to model
the experiment and to gain a fundamental understanding
of the experimental observations [21] (cf. Supplemental
Material (SM) [22]). Time-resolved STXM measurements
were performed at the MAXYMUS end station (UE46-
PGM2 beamline) at the BESSY II synchrotron radiation
facility. Further details regarding the experimental realiza-
tion and setup are described in the SM [22].
The magnonic waveguide consists of a 30-nm-thick,

1.4-μm-wide, 11-μm-long Py (Fe20Ni80) stripe deposited
below a coplanar radio frequency (rf) waveguide (copper).
Figure 1(a) shows a sketch of the sample with the signal
line (shown in dark gray) and the magnonic structure
(shown in yellow). A static bias field Bext is applied along
the signal line, and SWs are excited by a continuous wave
(cw) rf field. As the signal line is much larger than the
magnonic waveguide, the rf field can be considered as
uniform. Since the magnetic moments are rotated by

approximately 90° at the short edges of the stripe
(cf. Fig. S1 in SM [22]), SWs are excited by the combi-
nation of oscillations of Néel-type domain walls with the
nonuniform dynamic demagnetizing field generated by
precessing magnetization at the edges [23–25].
Figure 1(b) shows a snapshot of the reduced magnetization

component mz ¼ Mz=Ms with the saturation magnetization
Ms and the z component of the magnetization Mz from a
time-resolved STXM movie with cw excitation at fcw ¼
4.2 GHz and an applied field Bext ¼ 8 mT. A periodic SW
pattern is clearly visible. For further analysis, we use a
temporal FFT algorithm to access the amplitude and relative
phase of the SW, which is depicted in Fig. 1(c), where the
amplitude is encoded as brightness and the phase as color.
Subsequently, a spatial FFT allows transition into

k-space, where the wave vector is k ¼ λ−1. The k-space
transformation of the SWs in Fig. 1(c) is shown in Fig. 2(c).
Further details on the data evaluation procedure can be
found elsewhere [26]. Next to the dc peak (kx;y ¼ 0 μm−1)
in Fig. 2(c), two additional peaks are observed, represent-
ing distinct SW modes. These peaks occur at k1 ¼ 5 μm−1

and k2 ¼ 10 μm−1, corresponding to wavelengths of
λ1 ¼ 200 nm and λ2 ¼ 100 nm, respectively. Selective
back transformation allows visualization of the real-space

(a)

(b)

(c)

FIG. 1. (a) Sketch of the sample with one magnonic Py stripe
(yellow) and a coplanar waveguide (gray). (b) Snapshot of a time-
resolved STXM movie. The gray scale represents the mz
component. (c) Phase and amplitude map at fcw after FFT in
time through each pixel of the STXM movie. The color code
shows the amplitude and phase information.

(c) 

(a) 

(b) 

(d) 

FIG. 2. (a) Phase and amplitude map of k1. (b) Phase and
amplitude map of k2. (c) k-space retrieved from the spatial FFTof
the phase and amplitude map in Fig. 1(c). Next to the dc peak in
the middle, peaks at k1 ¼ 5 μm−1 and k2 ¼ 10 μm−1 can be
observed. (d) Dispersion relation fðkxÞ (red line) and an
excitation frequency fcw ¼ 4.2 GHz. The calculated dispersion
describes mode k1 (blue arrow) but fails to capture k2 (green
arrow).
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mode profiles of the individual modes shown in Figs. 2(a)
and 2(b), respectively.
SW dispersion theory for infinite films was extended by

Guslienko et al. and Brächer et al. to consider lateral
confinement in magnonic waveguides [27,28]. Figure 2(d)
shows the theoretical dispersion relation for the confined
geometry discussed here. The parameters for these
calculations were also used for micromagnetic simulations
and can be found in the SM [22]. While we find good
agreement for the first mode (k1 ¼ 5 μm−1), the second
mode (k2 ¼ 10 μm−1) cannot be described using linear
theory and cannot be attributed to higher-order modes (cf.
SM [22], Fig. S2 [28,29]). To explain an allowed mode at
k2 ¼ 10 μm−1 and its efficient excitation, in the following,
we discuss the formation of a magnonic STC and SW
scattering at the STC Brillouin zone boundary.
The cw rf field leads to the formation of a periodic

magnetization pattern and essentially realizes a driven
Floquet system with TTSB. While the pattern resembles
a standing SW at first sight, it cannot be described as such,
as all oscillations are spatially in phase as revealed in

Figs. 3(a) and 3(b) in experiment and simulation, respec-
tively (see extended discussions in the SM [22], Figs. S5–
S7). Figures 3(a) and 3(b) show the evolution of the out-of-
plane magnetization component mz over time. The results
of the simulation show that the perpendicular component of
the magnetization is deflected by 0.04, where 1 means a
90-degree deviation from the static configuration. This
value is large, especially considering that the magnetization
vibrates mainly in the plane. For the my component, this
deviation from the x axis reaches over 0.3 (cf. SM [22],
Figs. S5 and S7). We observe that all antinodes are spatially
in phase, excluding a simple standing SW and reinforcing
our interpretation as driven STC. Here, it is important to
note that the space periodicity is found at k1 and not at 2k1,
which would be a logical consequence of a simple stand-
ing-wave structure. While we observe a perfect STC in
simulations [Fig. 3(b)], experimentally, we only detect
condensation of a STC in the center of the waveguide
[Fig. 3(a)], as one can see within the marked region. In the
experiment, slight misalignments of the sample with
respect to the external bias field lead to the formation of

(f)(e)

(c) (d)

(a) (b)

FIG. 3. Spatiotemporal evolution of themz component of the magnetization from the experiment (a) and the angle θOOP ¼ arcsinðmzÞ
made by the magnetization with the x axis along the out-of-plane direction from a simulation (b). The results show good qualitative
agreement of a periodic magnetization pattern that is spatially in phase, which indicates condensation of a STC. In simulation, all
antinodes are spatially in phase, excluding a simple standing SW that would show a checkerboardlike pattern. In experiment, the STC
signature is only observed in the center due to a slight misalignment with respect to the external field (marked area). (c) Experimental
and (d) micromagnetic landscape of the static magnetization of the STC under microwave excitation, revealing a spatial periodicity of
200 nm (shown in blue). The high amplitude of the periodic magnetization pattern results in an alternating demagnetization along the
bias field direction. (e) Dispersion relation fðkxÞ considering the spatial periodicity of 200 nm that defines the Brillouin zone. Hence,
mode folding occurs at k1 ¼ 5 μm−1. Thereby, a (f) band structure is formed that allows SW excitations at high k vectors, like
k2 ¼ 10 μm−1 shown in Fig. 2.
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standing SW signatures at the edges. The detection of a
STC in the center, albeit this misalignment, hints at the
robustness of STC formation. It is noteworthy that the
periodic magnetization pattern expands into the waveguide
—first, in a different way (from the sides to the center,
instead of from the center to the sides) and, second, at a
faster speed than would be expected from the phase
velocity of the SWs and their interference (cf. SM [22],
Fig. S8). It confirms the nonlinear origin of the STC and
further excludes an interference effect and thus a standing
SW which can be excited within a confined geometry with
a Dzyaloshinskii-Moriya interaction (DMI) and an induced
nonreciprocity as reported in Ref. [30]. The present system
exhibits neither DMI nor a broken reciprocity. Hence, the
periodic magnetization pattern can be considered as driven
STC with the SW’s wavelength as spatial periodicity
(λ1 ¼ 200 nm) and a temporal period equal to the driving
frequency.
In contrast to quantum systems, like quantum gases or

BECs, we do not experimentally confirm spontaneous
TTSB and subharmonic oscillations, although spontaneous
TTSB might occur due to stochastic fluctuations caused by
Suhl instabilities at high power levels [31]. However, the
system presented here still shows spontaneous space
symmetry breaking and poses the same periodic modula-
tion in time and space as these STCs. Such a TTSB and,
accordingly, a STC are forbidden in thermodynamic
equilibrium [11]. In contrast, the STC’s ground state
is a flux equilibrium [19]. Here, this flux equilibrium
dD=dt ¼ 0 of the magnon density D is achieved by
continuous creation of magnons by the driving field and
damping of magnons. Indeed, our simulations show that
nonzero damping and sufficient pumping power levels, as
discussed later, are crucial for the formation of a driven
STC. As a result, the emergence of the space-time periodic
texture can be categorized as a subgroup of the conven-
tional established STC structures, which is more focused on
the impact of the space-time periodicity, e.g., the generation
of a band structure and self-scattering processes, than on
the formation phase of a STC itself.
To gain further insight into the formation of the STC, a

micromagnetic simulation of a simplified system is per-
formed (cf. SM [22], Fig. S9). Therefore, a narrower
(200 nm wide) but infinitely long Py waveguide is simulated
in a spatially uniform rf field at a frequency near the FMR.
We find that for high amplitudes of the rf field, the
precession within the whole sample is uniform. However,
a small perturbation, like minor variations of the rf field on
the order of 10 nm, leads to the creation of a periodic
magnetization pattern equivalent to the one measured
experimentally. Thus, it is possible that such an extremely
small perturbation of the rf field causes an injection of large k
vectors. In turn, these magnetization patterns lead to a
change of the system’s properties so that they are similar
to spontaneous translational symmetry breaking.

Above a critical driving power, the high amplitude of the
periodic magnetization pattern leads to a demagnetizing
effect, reducing the magnetization along the in-plane bias
field [32]. This result is shown experimentally and from
micromagnetic simulations in Figs. 3(c) and 3(d), respec-
tively, and elaborated on in the SM [22], Fig. S3. Through
this imprinting of a modulation of the in-plane magneti-
zation, the STC effectively acts as a magnonic crystal that
forms a band structure for SWs [6,33]. As a comparison to
the necessity of high power levels, Fig. S4 in the SM [22]
shows a phase and amplitude map below the critical power
threshold. No formation of the periodic magnetization
pattern can be observed. Only the SW modes predicted
theoretically by the linear dispersion relation are visible.
The high input power in this study constitutes a necessary
condition to observe space-time periodic effects but does
not serve as a variable parameter.
The first Brillouin zone of this magnonic STC is shown

in Fig. 3(e). The zone boundary is given by the fundamental
SW vector k1 ¼ 5 μm−1 at the driving frequency
fcw ¼ 4.2 GHz. However, as the STC extends over the
full sample, higher Brillouin zones and folding of the
modes at zone boundaries also need to be considered. The
resulting extended band structure is shown in Fig. 3(f), and
it becomes evident that higher k modes are also allowed.
Figures 4(a) and 4(b) show the observation of such a mode
at k2 ¼ 10 μm−1 from experiment and simulation, respec-
tively. While the field and frequency were varied exper-
imentally, this behavior is only observed for this specific
resonance condition, suggesting that the nucleation of a
STC is a prerequisite for the emergence of SWs at k2.
Magnons with k2 ¼ 10μm−1 are generated by scattering

on the periodic magnetization pattern at k1 within the STC.
It is noteworthy that this pattern at k1 ¼ 5 μm−1 forms the
magnonic crystal where magnons can scatter. Thus, this is a
self-scattering process, and mode k2 in the second Brillouin
zone is only significantly populated at large magnonic
densities. However, this scattering process is allowed as
both energy and momentum are conserved because the
FMR mode also lies close to fcw, which leads to efficient rf

(a) 

(b) 

FIG. 4. (a) Experimental phase and amplitude map of mode
k2 ¼ 10 μm−1, corresponding to a SW wavelength of 100 nm.
The inset illustrates an enlarged area of the mode profile.
(b) Comparison of mode k2 from micromagnetic simulations.
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field absorption in the form of uniform in-phase magneti-
zation precession serving as a k ≈ 0 magnon reservoir. It
has been confirmed by micromagnetic simulations that the
FMR mode as an energy and momentum reservoir is a
requirement for efficient STC generation, scattering, and
population of k2 (cf. SM [22], Fig. S3). In principle, this
procedure can be considered as a four-magnon scattering
process, yet one magnon is provided by the STC lattice
[34]. Thus, this process can also be considered as lattice
scattering of a magnon, where the loss of STC magnons
into the FMR is compensated by the continuous pumping.
To exclude the mere presence of a Suhl instability, we

also perform the experiment and simulations at excitation
frequencies below or above the FMR frequency. In these
cases, high k modes originating from Suhl instabilities
should still emerge at large power levels because the Suhl
instability does not rely on the FMR as a momentum
reservoir for scattering. However, we do not observe the
periodic magnetization pattern or the additional mode k2
(cf. SM [22], Fig. S3) in these conditions. Nevertheless, the
broadening of the FMR facilitates meeting the resonance
condition to create a driven STC. From a theoretical point
of view, it is obvious that space-time crystallinity can only
exist near the FMR. However, the experimental confirma-
tion shows the validity of our analysis and provides a robust
foundation for further experimental studies of interactions
with a STC.
In conclusion, we have directly observed a driven STC

and the formation of its magnonic band structure in a
Py waveguide experimentally by STXM and by micro-
magnetic simulations. The room-temperature STC is
formed by a periodic magnetization pattern that also leads
to dynamic demagnetization at nonlinear power levels.
Furthermore, we have shown the interaction of quasi-
particles with such a STC as we observed in lattice
scattering of SWs. Folding of the dispersion relation at
the STC Brillouin zone boundaries results in a rich band
structure. Thus, lattice scattering processes result in the
generation of ultrashort SWs beyond the classical
dispersion relation and are observed down to 100 nm.
As driven magnonic STCs can be easily manipulated,

this is a unique route to reconfigure magnonic crystals
without the need for nanoscale patterning [4,6].
Furthermore, the reconfigurable STC band structure allows
for efficient SW generation at ultrashort length scales,
well below the limits of the classical dispersion relation.
However, the observation of interactions with a STC is even
more intriguing and is readily accessible by STXM and
micromagnetics. In general, we have shown that STCs form
band structures at room temperature and that quasiparticles
interact with these lattices like in regular crystals, thus
promising outstanding new opportunities in fundamental
research in nonlinear wave physics.
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