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Direct 2D spatial-coherence measurements are increasingly
gaining importance at synchrotron beamlines, especially
due to present and future upgrades of synchrotron facilities
to diffraction-limited storage rings. We present a method
to determine the 2D spatial coherence of synchrotron radi-
ation in a direct and particularly simple way by using the
Fourier-analysis method in conjunction with curved grat-
ings. Direct photon-beam monitoring provided by a curved
grating circumvents the otherwise necessary separate deter-
mination of the illuminating intensity distribution required
for the Fourier-analysis method. Hence, combining these
two methods allows for time-resolved spatial-coherence
measurements. As a consequence, spatial-coherence
degradation effects caused by beamline optics vibrations,
which is one of the key issues of state-of-the-art X-ray
imaging and scattering beamlines, can be identified and
analyzed. ©2020Optical Society of America

https://doi.org/10.1364/OL.402264

Realizing the full potential of low-emittance synchrotron
facilities in terms of high coherent flux and diffraction-limited
focusing at beamlines imposes high standards on X-ray optics
design, stability, and quality [1,2]. The big challenge is to pre-
serve the high degree of spatial coherence of the X-ray beam
from the undulator source all the way to the user experiment.
Tools for beam-coherence diagnostics will play a key role in
this context, as the knowledge of the spatial-coherence prop-
erties is of vital importance for the preparation and operation
of coherence-based experiments, such as coherent diffractive
imaging (CDI) [3], Fourier-transform holography (FTH)
[4,5], and X-ray photon correlation spectroscopy (XPCS) [6].

Several advanced coherence-measurement techniques have
been developed to determine the two-dimensional spatial-
coherence properties of synchrotron radiation. Among these
techniques are the near-field speckle analysis [7], circular grating
interferometry [8], and the Fourier-analysis method [9].

In this Letter, we present the Fourier-analysis method with
an integrated curved-grating beam monitor, which allows
for a direct and time-resolved 2D spatial-coherence deter-
mination. Time-resolved means, in this context, that the 2D
spatial-coherence properties can be studied, e.g., at timescales
comparable to beamline optics vibrations (ms). As a conse-
quence, spatial-coherence degradation effects caused by optics
vibrations can be uncovered and investigated. In our previous
studies [9,10], the beam-intensity distribution required for the
Fourier-analysis method had to be determined separately by
scanning a 1µm pinhole in front of a photodiode, which makes
time-resolved spatial-coherence measurements feasible only
under certain conditions. Recently, it has been demonstrated
that a sample carrying a grating that forms an off-center zone-
plate segment can be used for photon-beam monitoring in X-ray
transmission experiments, allowing the detection of the photon-
beam position as well as its 2D intensity distribution [11,12].
Both the speckle pattern used for the Fourier-analysis method
and the photon-beam intensity distribution are recorded simul-
taneously on the CCD detector. Hence, the Fourier-analysis
method along with curved gratings circumvents the additional
determination of the required beam-intensity distribution, and
time-resolved spatial-coherence measurements become feasible.
As an additional benefit, the presented method can be easily
integrated in standard X-ray scattering and imaging setups for
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a quick optimization of the spatial-coherence properties of the
illuminating beam prior to or during the experiments.

The experiments reported here were carried out at the XUV
variable polarization beamline P04 at PETRA III [13]. The
beamline is equipped with an APPLE-II-type helical undula-
tor delivering photon energies in the range of 250–3000 eV.
The beam is first deflected in the horizontal direction by a
switching mirror unit 35 m downstream of the undulator and
subsequently monochromatized by a monochromator unit
(46 m) consisting of a vertical plane mirror and a varied-line-
spacing (VLS) grating. The VLS grating focuses the beam in
the vertical direction onto the exit-slit unit (71 m) defining the
energy resolution. For the experiments, a 30 µm exit-slit size is
used, resulting in a resolving power of 104 corresponding to a
longitudinal coherence length of lc = 10−20 µm, sufficient for
scattering experiments and the Fourier-analysis method. The
beam is focused to the experiment in the horizontal and vertical
directions using a horizontal (78.5 m) and vertical (79.1 m)
plane elliptical mirror pair in Kirkpatrick–Baez geometry. The
focal spot size at the sample position is 10× 10 µm2.

The holographic imaging (XHM) and small-angle X-ray scat-
tering (SAXS) setup [9], specifically designed for experiments
at the P04 beamline, has been used for the spatial-coherence
measurements. The sample membrane can be positioned with
respect to the beam using a piezoelectrically driven positioning
system. The SAXS patterns are recorded by a 16 Mpx CCD
camera with a pixel size of 15× 15 µm2, located 90 cm down-
stream of the sample. A 1 mm diameter beam stop protects the
CCD camera from the high-intensity direct beam.

The sample is a spatially disordered nanodot array fabricated
out of a homogeneous metallic multilayer (Co1.64 nm/Pt2 nm)2
via nanosphere lithography utilizing di-block copolymer
micelles [14]. The multilayer is deposited on the front side of a
200 nm thick Si3N4 membrane of 500× 500 µm2 size. The
nanodots have a diameter of ≈ 20 nm set by the core size, and
their distance distribution peaks at 110 nm, set by the shell
diameter. A 5 nm tantalum layer is deposited onto the back side
of the Si3N4 membrane using DC magnetron sputtering.

The curved grating is milled into the tantalum layer with a
nominal dose of 550 µC/cm2 using a focused ion beam (Ga+

ions, 30 kV acceleration voltage) [11]. For the milling proc-
ess, the grating with a total area of 25× 25 µm2 is generated
on a grid of 3500× 3500 points with a periodicity varying
from approx. 270 nm to 1900 nm. With the given detector
distance, this grating maps a 90-fold magnified image of the
entire photon-beam profile incident in the sample plane to two
centro-symmetric areas in Fourier space (±1st diffraction orders
of the grating). These are centered at a distance of 3 mm away
from the zeroth diffraction order, in both horizontal and vertical
directions. Note that we slightly modify the grating formula
given in Ref. [12] to yield segments of hyperbolic, rather than
Fresnel-type, zone plates. This is achieved by globally shifting
all grating orientation angles ϕ by π/2, i.e., by substituting
ϕ→ ϕ + π/2 in Eq. (1) of Ref. [12]. Compared to Fresnel-type
gratings, the hyperbolic variant yields significantly better res-
olution with respect to sharp intensity gradients in horizontal
and vertical directions, while having equivalent resolving power
in all other directions. They are, however, more prone to dis-
tortions when far-field conditions are not met and produce an
image of the illumination function that is rotated by 90◦ and
mirrored (see Fig. 1).
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Fig. 1. (a) Binary milling pattern for the hyperbolically curved
grating used for the experiments. Only the upper left corner of the
25× 25 µm2 area is shown. (b) Gaussian photon-beam profile
assumed for the calculation (σx,y = 4 µm and 6 µm). (c) Modeled
scattering signature of the curved grating (magnified image of the illu-
minating photon-beam profile at the+1st and−1st diffraction order).
The white-dashed rectangles mark the magnified curved-grating areas.

Figure 1(a) shows the upper left corner of the binary milling
pattern for the curved grating used in the experiments. The
scattering signature of the curved grating in Fourier space can
be modeled by means of the Fourier transform of the binary
curved-grating pattern [see Fig. 1(c)]. The binary pattern
is multiplied with the photon-beam profile, assumed to be
Gaussian [4× 6 µm2 (rms)] as shown in Fig. 1(b), in order
to simulate the imaging characteristics of the curved grat-
ing. In Fig. 1(c), the +1st and −1st diffraction orders of the
curved grating show the magnified photon-beam profile. The
magnified curved-grating area is marked with a white-dashed
rectangle. The zeroth order in the center is blocked by the beam
stop in the experiments, and the diffraction pattern of the
nanodots is located outside of the shown Fourier space range.

Partially spatial coherent X-ray illumination on the dis-
ordered nanodot array with electron density ρ(r ) results in
a far-field intensity distribution on the CCD detector given
by [15]

I (q)=
∫∫

J(r1, r2)ρ(r1)ρ(r2)e−q(r1−r2)dr1dr2, (1)

where r= (x , y ) is a 2D vector in the sample plane, q is a 2D
scattering vector with |q| = 4π sin(θ)/λ, λ is the wavelength,
and 2 · θ is the scattering angle. J (r1, r2) is the mutual optical
intensity (MOI) and describes the spatial coherence of the
illuminating field in the quasi-monochromatic approximation.
It can be written, within the Gaussian Schell model (GSM)
[16], as

J (r1, r2)=
√

I (r1)
√

I (r2)µ(r1 − r2), (2)

where µ(r1 − r2) is the complex degree of coherence (CDC),
and I (r1,2) are the intensity values of the illuminating beam at
positions r1,2. Both the CDC and intensity I (r) are Gaussian.
The rms width of the CDC gives the transverse coherence length
ls . The Fourier-analysis method provides the full 2D spatial-
coherence properties and hence the transverse coherence lengths
of the illuminating beam in all angular directions. It is based
on the analysis of the inverse Fourier transform of the far-field
intensity distribution, given in Eq. (1), expressed by [9,10]
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IF(1r)= |P(1r)| |9(1r)| |µ(1r)| , (3)

where 1r= r1 − r2, P(1r) is the Patterson function of ρ(r ),
and 9(1r) is the autocorrelation function of the illuminating
beam-intensity distribution I (r). P(1r) is a constant in the case
of the disordered nanodot array, except in the vicinity of the cen-
ter, and contributes to IF(1r) only by a constant multiplicative
factor. In order to determine the CDC using Eq. (3), and hence
ls in 2D, the knowledge of I (r) is required.

In our experiment, the Fourier-analysis method combined
with a hyperbolically curved grating is used for a direct 2D
spatial-coherence determination. A SAXS pattern from the
nanodot sample and the photon-beam profile imaged via the
curved grating are recorded simultaneously in a single exposure
(500 ms) of the CCD detector at a photon energy of 500 eV.
To image the whole beam, the sample was aligned such that the
beam was centered on the grating. Figure 2 shows the elliptical
ring-shaped speckle pattern of the sample and the scattering
signature of the curved grating close to the center of the CCD
detector. In the left half of Fig. 2(a), the central part is masked
out, and it shows the speckle signature of the SAXS pattern at
higher contrast. For the Fourier-analysis method, the entire
center of the SAXS pattern is masked out. The right half shows
the scattering signature of the curved grating, and hence the
magnified illuminating photon-beam profile, as demonstrated
above. The curved grating has been specifically designed so that
the photon-beam profile appears and fits into the central region
of the detector. In this case, the photon-beam profile is not
distorted by the SAXS pattern. Additionally, the groove depth
of the curved grating has been tailored such that the diffrac-
tion signal fits to the dynamical range of the detector and such
that the image of the photon-beam profile and the scattering
pattern of the sample both can be detected with sufficient inten-
sity simultaneously. Figure 2(b) shows the 2D photon-beam
profile in real-space coordinates (sample plane), which is well
described by a 2D Gaussian function. Due to the fact that both
the photon-beam profile and the SAXS pattern are recorded in
the same image, no additional photon-beam characterization is
required. As a consequence, the 2D spatial-coherence properties
of the illuminating beam and hence µ(1r) can be deduced
directly and in a particularly easy way.
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Fig. 2. (a) SAXS pattern of the partially coherent illuminated nan-
odot array together with the scattering signature of the curved grating.
In the left half, the central part is masked out. The right half is shown
with seven times reduced contrast to show the scattering signature of
the curved grating, which is masked out on the left. (b) Beam intensity
distribution extracted from (a) in real-space coordinates and correct
orientation.
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Fig. 3. Horizontal and vertical line profiles of the photon-beam
intensity distribution obtained from the scattering signature of the
curved grating (CG) (gray dots) and from scans using a 1 µm pinhole
(red dots). The blue lines are Gaussian fits to the curved-grating data.
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Fig. 4. (a) 2D transverse-coherence length (gray circles) and an
ellipse fit to the data (red line). The blue line shows the rms widths
of the beam-intensity distribution obtained from a 2D Gaussian fit
to the 2D curved-grating data. (b) Horizontal (x ) and vertical (y )
photon-beam positions (gray circles) obtained from 2D Gaussian fits
to 2D photon-beam intensity distributions. The blue- and red-shaded
areas represent the standard deviations of the data in horizontal and
vertical directions, respectively, being only a fraction of the beam size.

To validate the performance of the grating, the extracted
photon-beam profile is compared to one measured scanning the
beam with a 1 µm pinhole on a photodiode downstream of the
sample (see Fig. 3). The horizontal and vertical line profiles of
the 2D photon-beam profile shown in Fig. 2(b) are extracted
by averaging over 1 µm in width across the beam center. The
line profiles using the 1 µm pinhole (red lines) are in very good
agreement with the ones obtained from the 2D photon-beam
profile [see Fig. 2(b)] (gray lines). A Gaussian fit to the latter
profiles results in a beam width of 11 µm and 13 µm (FWHM)
in horizontal and vertical directions, respectively.

The 2D spatial-coherence properties of the illuminating
beam can be determined using the 2D photon-beam pro-
file [see Fig. 2(b)], Eq. (3), and the procedure presented in
Ref. [9]. Figure 4(a) shows the extracted transverse coherence
lengths in all angular directions using the Fourier-analysis
method and hence the spatial-coherence area of the illuminat-
ing beam. Using the obtained transverse coherence lengths
in horizontal and vertical directions ls,x = (1.18± 0.04) µm
and ls,y = (5.95± 0.53) µm, respectively, global degrees
of coherence of ζx = (13± 1)% and ζy = (50± 3)% are
determined. This results in a total degree of coherence of
ζt = ζx ζy = (6.5± 2)%, which reflects mainly the large
horizontal source size of PETRA III when using the full
beam [10].
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Vibrations of the photon beam caused by beamline optics
vibrations could cause a spatial-coherence degradation,
e.g., due to a smearing of the speckles within the SAXS pat-
tern. This applies not only to the Fourier-analysis method, but
also to typical X-ray imaging experiments. In order to probe
coherence-degradation effects, time-resolved spatial-coherence
measurements are required. In the here-presented experiments,
the spatial-coherence properties are determined within a time
frame of 500 ms. This lower limit is set by the sensitivity of the
detector and the scattering efficiency of the sample at the chosen
photon energy. Below 500 ms exposure time, the scattered
intensity of the sample is insufficient for the spatial-coherence
determination. However, other diagnostic samples can be easily
tailored in order to circumvent this limitation. However, direct
observation of the photon-beam’s spatial jitter in the sample
plane is possible on shorter time scales owing to the stronger
diffraction signal from the curved grating. We separately record
100 diffraction images with exposure times of 5 ms and obtain
the center positions of the beam profiles by 2D Gaussian fits
[see Fig. 4(b)]. Due to the detector read-out time of 4 s, this
yields only the the amplitude of the spatial jitter, but not the
corresponding frequency. The analysis of the amplitudes results
in a standard deviation of the beam movement of 200 nm in
the horizontal and 680 nm in the vertical directions (one pixel
=̂53 nm). This result is in very good agreement with a beam-
vibration analysis performed using a beam-diagnostic tool
specifically designed to map out the full photon-beam caustic.
The beam-vibration analysis using this tool revealed vertical
beam-vibration amplitudes of around 125 nm in the horizontal
and 500 nm in the vertical directions [10]. From simulated
SAXS experiments using the disordered nanodots, we found
that vibrations of 680 nm do not have any effect on the extracted
spatial-coherence properties using the Fourier-analysis method.
Hence, indirect spatial-coherence degradation is not present in
the here-presented experiments.

In conclusion, we have demonstrated a direct 2D spatial-
coherence measurement at the P04 beamline at PETRA III
using the Fourier-analysis method in conjunction with a curved-
grating beam monitor. We have shown that this combination is
an ideal photon-beam diagnostics tool for a direct and simple
2D spatial-coherence determination. The photon-beam profile
illuminating the sample and the SAXS pattern of the sample are
recorded simultaneously on the same detector exposure so that
the only limiting time factor for the coherence analysis is the
exposure time, which is 500 ms in the presented case. Further
improvements to the nanodot sample in terms of material,
thickness, and spatial distance distribution allow for coherence
measurements on single-digit millisecond time scales as well as
at tender X-ray photon energies due to the resulting higher scat-
tering efficiency. Due to the particularly simple data analysis, the
computational effort is low. Hence, the presented method can
be used for a time-resolved spatial-coherence analysis as well as
shot-to-shot-based measurements at free-electron laser sources,
especially when high-frame-rate soft X-ray detectors become
available. Particularly at fourth-generation synchrotron sources
[17] offering extremely high spatial coherence, this method will
help to identify possible sources of spatial-coherence degrada-
tion. As the Fourier-analysis method can be easily carried out

in standard CDI, FTH, or XPCS experimental setups, it can
be used for a quick 2D spatial-coherence determination and
as a photon-beam optimization tool prior to or during X-ray
scattering and imaging experiments.

Funding. Bundesministerium für Bildung und Forschung
(FSP 301/05K10GU4); Deutsche Forschungsgemeinschaft
(EXC 1074, EXC 2056, SFB 668, SFB 925).

Acknowledgment. We acknowledge DESY (Hamburg,
Germany), a member of the Helmholtz Association HGF,
for the provision of experimental facilities. The research was
carried out at the P04 beamline at PETRA III. We thank Frank
Scholz, Jörn Seltmann, and Jens Buck for support during the
experiments.

Disclosures. The authors declare no conflicts of interest.

REFERENCES
1. Y. Wang, T. Xiao, and H. Xu, J. Synchrotron Rad. 7, 209 (2000).
2. S. Goto, Proc. SPIE 9588, 95880G (2015).
3. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature 400, 342

(1999).
4. S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W.

Eberhardt, and J. Stöhr, Nature 432, 885 (2004).
5. D. Stickler, R. Frömter, H. Stillrich, C. Menk, C. Tieg, S. Streit-

Nierobisch, M. Sprung, C. Gutt, L.-M. Stadler, O. Leupold, G. Grübel,
and H. P. Oepen, Appl. Phys. Lett. 96, 042501 (2010).

6. D. L. Abernathy, G. Grübel, S. Brauer, I. McNulty, G. B. Stephenson,
S. G. J. Mochrie, A. R. Sandy, N. Mulders, and M. Sutton,
J. Synchrotron Rad. 5, 37 (1998).

7. M. D. Alaimo, M. A. C. Potenza, M. Manfredda, G. Geloni, M. Sztucki,
T. Narayanan, andM. Giglio, Phys. Rev. Lett. 103, 194805 (2009).

8. X. Shi, S. Marathe, M. J. Wojcik, N. G. Kujala, A. T. Macrander, and L.
Assoufid, Appl. Phys. Lett. 105, 041116 (2014).

9. K. Bagschik, R. Frömter, L. Müller, W. Roseker, J. Bach, P. Staeck,
C. Thönnißen, S. Schleitzer, M. H. Berntsen, C. Weier, R. Adam, J.
Viefhaus, C. M. Schneider, G. Grübel, and H. P. Oepen, Opt. Express
24, 23162 (2016).

10. K. Bagschik, J. Wagner, R. Buß, M. Riepp, A. Philippi-Kobs, L. Müller,
J. Buck, F. Trinter, F. Scholz, J. Seltmann, M. Hoesch, J. Viefhaus, G.
Grübel, H. P. Oepen, and R. Frömter, Opt. Express 28, 7282 (2020).

11. M. Schneider, C. M. Günther, C. von Korff Schmising, B. Pfau, and S.
Eisebitt, Opt. Express 24, 13091 (2016).

12. M. Schneider, C. M. Günther, B. Pfau, F. Capotondi, M. Manfredda,
M. Zangrando, N. Mahne, L. Raimondi, E. Pedersoli, D. Naumenko,
and S. Eisebitt, Nat. Commun. 9, 214 (2018).

13. J. Viefhaus, F. Scholz, S. Deinert, L. Glaser, M. Ilchen, J. Seltmann, P.
Walter, and F. Siewert, Nucl. Instrum. Methods Phys. Res. A 710, 151
(2013).

14. A. Neumann, N. Franz, G. Hoffmann, A. Meyer, and H. P. Oepen,
Open Surf. Sci. J. 4, 55 (2012).

15. I. A. Vartanyants and I. K. Robinson, J. Synchrotron Rad. 10, 409
(2003).

16. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University, 1995).

17. C. G. Schroer, I. Agapov, W. Brefeld, R. Brinkmann, Y.-C. Chae, H.-
C. Chao, M. Eriksson, J. Keil, X. Nuel Gavalda, R. Röhlsberger, O.
H. Seeck, M. Sprung, M. Tischer, R. Wanzenberg, and E. Weckert,
J. Synchrotron Rad. 25, 1277 (2018).

https://doi.org/10.1107/S0909049500004234
https://doi.org/10.1117/12.2191933
https://doi.org/10.1038/22498
https://doi.org/10.1038/nature03139
https://doi.org/10.1063/1.3291942
https://doi.org/10.1107/S0909049597015835
https://doi.org/10.1103/PhysRevLett.103.194805
https://doi.org/10.1063/1.4892002
https://doi.org/10.1364/OE.24.023162
https://doi.org/10.1364/OE.382608
https://doi.org/10.1364/OE.24.013091
https://doi.org/10.1038/s41467-017-02567-0
https://doi.org/10.1016/j.nima.2012.10.110
https://doi.org/10.2174/1876531901204010055
https://doi.org/10.1107/S0909049503017114
https://doi.org/10.1107/S1600577518008858

