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ABSTRACT

A photoelectron gun cavity is an electron source that every Energy Recovery Linac (ERL) requires. Its charac-
teristics and precision determine the capabilities and performance of the ERL. Calibration of the electron gun is
a crucial part of its initial setup, which requires a lot of time and experience. We present the first steps towards
a tool that guides the electron gun operator, which knobs to turn in which position to achieve the desired prop-
erties. In this report, we determine the - typically difficult to identify - offsets between the simulation and the
real-world device. We accomplish this by using machine learning and a global optimization algorithm.
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1. INTRODUCTION

The Helmholtz-Zentrum Berlin (HZB) builds a new ERL demonstrator facility named bERLinPro (Berlin ERL
Linac Prototype). It will provide a continuous-wave (CW) electron beam of high current (up to 100 mA as a
single pass machine).1

A superconducting radiofrequency (SRF) photoelectron gun cavity is used as electron source.2 This gun
provides a direct pulsed electron beam and is crucial for the beam quality and the accelerator’s performance.
Even though the electron gun is only one part of the entire photoelectron injector of bERLinPro, its characteristics
are crucial for the performance of the whole system.3

Another essential element is a superconducting solenoid magnet that focuses the extracted beam into the
further accelerator elements and provides emittance compensation for the space charge dominated electron
beam.4 It is essential to align all elements of the photoinjector regarding the beam trajectory. Otherwise, the
beam quality and thus, the performance of the whole accelerator are adversely affected.5 The correct positioning
is even more critical in the case of cryogenic systems because of the thermal expansion of the holders and the
components themselves.2

The performance of the whole injector, including the alignment of all elements can be calculated numerically.
One possible tool is the ASTRA (A Space Charge Tracking Algorithm) algorithm,6 which is used in this survey.
Single-particle tracking algorithms play an increasing role in the analysis of electron injectors.3 They are used
for designing and optimizing electron guns for different targets.3,7, 8 All relevant injector parameters (cavity
and solenoid field values, offsets of the elements, and so on) are implemented in our simulation and result in a
detailed phase-space distribution of a single electron bunch downstream of the injector.

The initial setup usually takes a lot of time, even for experienced engineers, due to the complexity of an
electron gun. Sizeable effects on micrometer scales like small differences and errors can have huge impacts. Even
worse, the inner processes of a photoinjector electron gun are non-deterministic and prone to positive feedback.
The ultimate goal is to help the engineer finding the optimal settings of the electron gun required for the desired
results. We want to define what results we should get, and we want to know which parameters we have to
choose. In other words, we want to approximate the inverse of the simulation. One problem that occurs is that
a simulation can never entirely reproduce the real world. Even small mistakes, e.g., wrong positions, can have a
drastic impact on the results. As a first step, this study approximates the difference between the real world and
the simulation.

For the numerical simulation of the photoelectron injector, a single particle tracking for different setups
is performed, including the photocathode, the drive laser, the gun cavity with RF (radio frequency) and DC



(direct current) fields and the solenoid magnet (six general parameters: laser pulse length, laser spot size,
DC+RF field strength, emission phase, and solenoid focal strength). Additional settings in such a simulation
are the individually geometrical offsets of those elements which are not well known in the real world (nine
offset parameters: longitudinal cathode position, transverse laser offset, cavity field flatness, solenoid position,
and angle offsets). The tracking algorithm calculates the electron paths through such an injector setup up to
a virtual screen position downstream of the injector and outputs the phase-space distribution there. These
distributions will be used to calculate the four arithmetic beam parameters (mean transverse positions, root
mean square transverse beam size) and the average beam energy. All five values are also measurable in the real
world at this position.

2. DATA CREATION

To find the offsets between the real device and our ideal simulation (without offsets), we use an optimization
algorithm that frequently executes the simulation. However, one execution of an ASTRA simulation takes about
five minutes on a current CPU. Thus, we require a fast approximation of the electron gun simulation. For this,
an artificial neural network is used that will be described in section 3.

A sufficient amount of data is required to train a neural network. For this, the simulation is run 1 million
times with a variation of the 15 input parameters shown in Table 1. Some of these parameter combinations
result in non-trackable start-to-end simulations and are discarded. All these events are regarded as outliers and
are left out of the training set. As a normalization method, feature scaling (min-max normalization) is used for
input and simulation output.

Also, all simulation output values yielding output values outside acceptable parameter ranges (see Table 2)
are not taken into account. The finally used dataset contains 546689 samples.

Table 1: Parameters and their ranges for the ASTRA simulations. All values are chosen from a uniform dis-
tribution of the specified interval. Fixed values: Bunch charge scale: 0.1 pC, solenoid position to cavity z-axis:
0.4625 m, stop position of tracking: 1.737 m, longitudinal offset of the input distribution like gun peak field but
multiplied with 10−4.

Parameter Interval Unit

Laser pulse length [0.6, 4] ∗ 10−3 ns

Laser spot size on cathode [0.2, 0.8] mm

Gun peak field [9, 18] MV/m

Gun DC bias field [3, 5] kV

Cathode position [−20,−5] 0.1 mm

Field flattnes [−0.5, 0.5]

Laser horizontal position [−1.5, 1.5] mm

Laser vertical position [−1.5, 1.5] mm

Solenoid horizontal position [−4, 4] ∗ 10−3 mm

Solenoid vertical position [−4, 4] ∗ 10−3 mm

Solenoid angle y-axis [−30, 30] ∗ 10−3 rad

Solenoid angle x-axis [−30, 30] ∗ 10−3 rad

Emission phase [−10, 70] deg

Solenoid strength [−0.1, 0.1] T

The resulting beam values at the virtual view screen variate over a wide range and can exceed the measurable
range in the real world. For a better comparison between simulation and the real world, only those setups with



beam parameters in the same range as the dimension of the actual view screen are used for further steps. These
limits can be seen in Table 2.

Table 2: Calculated simulation or measured real-world output values.

Measured value Acceptable parameter range Unit

Average horizontal beam size [−30, 30] mm

Average vertical beam size [−30, 30] mm

Horizontal beam position [−30, 30] mm

Vertical beam position [−30, 30] mm

Average beam momentum - MeV/c
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Figure 1: On the y-axis, the predicted values are shown; the x-axis shows the real simulation values. Ideally, all
blue dots would lie on the red line. There is always shown a random subset of 1000 samples. If all samples were
plotted, few outliers would conceal a lot of very accurately approximated samples.

3. APPROXIMATION OF THE SIMULATION

For the approximation of the simulation, we train a neural network. The training set is split into 60 % training
data, 20 % test data, and 20 % validation data (for early stopping criterion). We use a simple five hidden
layer network going up to 2002 neurons first, decreasing logarithmically to 447, 100, 22, and finally returning
5 outputs. A ReLU activation layer is used except for the output layer, and batch normalization is used in every



layer (except for the output layer). As an optimization method, Adam (an adaptive learning rate optimization
algorithm by Kingma et al.9) is used, the loss function is MSE (mean squared error). The hyperparameters that
turned out to be best for training are a batch size of 2048 and a learning rate 0.001. In Figure 2 is shown a
comparison of three different learning rates. This batch size is chosen for fast convergence. With a smaller batch
size and learning rate, the approximation accuracy could likely be increased further. The MSE achieved on the
test set with this network is about 1.13 ∗ 10−5.

-2e-5

0

2e-5

4e-5

6e-5

8e-5

1e-4

1.2e-4

1.4e-4

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k 220k 240k 260k

Figure 2: Comparison of the MSE (y-axis) of the validation set of three different learning rates: The light blue
graph shows the MSE with learning rate 0.001, the orange graph with 0.01, and the magenta graph with 0.0001.
The x-axis shows the time step (every batch is counted as one time step).

The results are depicted in Figure 1. The average beam sizes and beam positions are predicted very well, the
average beam momentum acceptably well. The outliers might result from an insufficient particle amount during
dataset creation. Thus, these points would be unpredictable.

4. APPROXIMATION OF OFFSETS

To approximate the offsets, we first add randomly generated offsets that we want to predict later. We define the
inputs in our simulation without offsets as xsimulation ∈ R14, the inputs as they are in reality with xexperiment ∈
R14. The difference of these we call the offset xoff ∈ R14.

xsimulation = xexperiment + xoff

The approximation of the simulation is denoted by yapprox : R14 → R5. The real outputs in our experiments are
called yexperiment : R14 → R5, they are shifted by an unknown offset. Again, we define the resulting difference as
yoff ∈ R5.

yapprox(x) = yexperiment(x) + yoff

When having n measured values of our machine, we denote the i-th evaluation of our experiment with

yexperiment(x
(i)
experiment) with i ∈ {1, . . . , n}. Furthermore, we know the setup of the machine x

(i)
experiment. To

summarize, we already know x
(i)
experiment, yexperiment(x

(i)
experiment) and yapprox(·) in advance.

In order to determine the offsets xoff and yoff, we have to solve the following optimization problem:

min
xoff,yoff

L(xoff, yoff) (1)

with

L(xoff, yoff) =

n∑
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)
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(
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=
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))2

(3)
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Figure 3: The result of the basin-hopping algorithm on finding the offsets with a maximum deviation of 0.1 after
20000 steps; the blue dots show the randomly generated offsets. The magenta stars show the approximation by
the basin-hopping algorithm. The y-axis shows the deviation from the simulation value, the x-axis is the feature
ID. Features 0 to 13 are the input values offsets xoff, 14 to 18 are the screen values offsets yoff. See Table 1 and
Table 2 for the according feature and output names.

Basin-hopping is a stochastic global optimization algorithm that works by walking at first one step randomly.
At this step, a local minimization algorithm is run. If the result is better than the previous step, it is accepted,
and a new step is executed. If the result is worse, the step is getting discarded, and another step is chosen
randomly. The acceptance criterion is more precisely the Metropolis criterion of the standard Monte Carlo
algorithm.10 The algorithm is presented with more details by Wales et al.11

The hyperparameters used in this study:

• Iterations: 20000

• Batch size: 128, the set of samples probed for acceptance criterion

• Starting point: x0 = 0

• Temperature for acceptance criterion: 1.0

The results are shown in Figure 3 and Figure 4. The maximum deviation of offsets to find is set to 0.25
(a maximum deviation of ±25 %) and 0.1 (a maximum deviation of ±10 %). The used hyperparameters and
results are compared in Table 3. Please note that basin-hopping is a stochastic algorithm, and finding the global
minimum depends on the seed and starting point. For both parameters, the global minimum is not found yet
(since the error is not 0), but it is approximated with an adequate deviation.
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Figure 4: The result of the basin-hopping algorithm on finding the offsets with a maximum deviation of 0.25
after 20000 steps; the blue dots show the randomly generated offsets. The magenta stars show the approximation
by the basin-hopping algorithm. The y-axis shows the deviation from the simulation value; the x-axis is the
feature ID. Features 0 to 13 are the input values offsets xoff, 14 to 18 are the screen values offsets yoff. See Table 1
and Table 2 for the according feature and output names.

Table 3: Results and hyperparameters of experiments with different maximum deviations; Interval is the number
of steps to wait until step size is updated. The squared error is calculated as described in Equation 2.

Maximum deviation Stepsize Inverval Squared Error

0.1 0.001 100 8.26 ∗ 10−5

0.25 0.0025 500 0.2424

5. OUTLOOK

The approximation of the electron gun simulation achieves sufficient accuracy, as discussed in section 3. Fur-
thermore, the offsets between simulation and reality can be determined reasonably with the used basin-hopping
approach. Other approaches could be beneficial and should be investigated, e.g., neural networks, brute force
algorithms, or a grid search. The next step towards application at the real device is solving the inversion of the
simulation for optimum parameter estimation.
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