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In this article, a decomposition approach for the computation of beam coupling impedances is proposed.
This approach can account for the mutual electromagnetic coupling in long accelerator structures
consisting of several consecutive segments. The method is based on the description of the individual
segments using a multimodal network matrix formulation in which the charged particle beam is considered
as an additional port. Then, the generalized multimodal network matrices of all segments are combined to a
multimodal network matrix of the complete structure. The beam coupling impedance as well as the
scattering parameters of the full structure are recovered as particular matrix elements in this multimodal
network matrix. The new method generalizes Coupled S-Parameter Calculation (CSC) introduced in earlier
work such that charged particle beams are considered. Consequently, the introduced scheme is referred to
as CSCBEAM. Application examples for realistic accelerator components such as the simulation of a full
TESLA 1.3 GHz-cavity of the European XFEL are provided. These simulations demonstrate the high
accuracy and numerical performance of the proposed method.
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I. INTRODUCTION

The characterization of the interaction between charged
particle beams and vacuum chambers of accelerator com-
ponents is a common task in accelerator physics. Bunches
of charged particles traversing vacuum chambers of accel-
erators interact with these chambers and excite electro-
magnetic fields. These fields are referred to as wakefields.
The wakefields can lead to unwanted heating of accelerator
parts or may interact with subsequent bunches deflecting
the charged particles from their ideal trajectories. This
interaction can result in instabilities during the operation
of the machine and in the worst case in the total loss of
the beam [1]. Wake potentials are typically employed to
characterize the aforementioned processes in time domain
whereas beam coupling impedances are the counterpart for

a description in frequency domain. The concept of coupling
impedances was first proposed by Vaccaro [2] in the sixties
of the last century in combination with the concept of
stability diagrams to systematically study instabilities in
circular accelerators. The reader is referred to [3] for a
historical review of these closely related concepts.
Numerical simulation is a well established tool for the

determination of beam coupling impedances. The typical
procedure consists of subdividing the accelerator line into a
large number of subsegments. Then, the individual cou-
pling impedances of each segment are determined either by
means of analytical estimations for segments with simple
geometries or by means of numerical codes such as ECHO

[4], PBCI [5], GDFIDL [6], or CST STUDIO SUITE® [7] for
sophisticated geometries. Alternatively, coupling imped-
ances of segments can be acquired by bench measurements.
In a final step, the individual impedances of the segments
are added up to obtain a global impedance model of the
accelerator. Figure 4.1 in [8] presents a functional diagram
of this approach. The described method delivers accurate
results if the electromagnetic fields in the respective seg-
ments are sufficiently decoupled. However, the results are
inaccurate if the segments are electromagnetically coupled,
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for instance by the high-pass characteristic of the wave-
guidelike beam pipes connecting adjacent segments. In
this case, resonant modes with field energy distributed
along various segments can exist. These modes can
significantly contribute to the global impedance spectrum
of the machine.
On the other hand, the numerical impedance com-

putation for large accelerator structures consisting of
electromagnetically coupled cavities using conventional
simulation tools is extremely cumbersome. Most of these
tools are based on the direct simulation of the wakefields in
the time domain for the complete structure. Hereby, a
discretization technique based on the finite integration
technique (FIT) [9] is usually applied. This approach,
however, leads to inherently long simulation times due
to the long wakefield transients within the structure. This is
particularly the case for the short electron bunches that are
operated in new generation x-ray sources such as E-XFEL
or LCLS II, where the “catch-up” distance of the wakefields
is by orders of magnitude longer than the bunch length [10].
Furthermore, the size of the discrete problem becomes
often prohibitively large, even when a moving window
technique combined with massive parallelization is
employed [11]. This is due to the very fine Cartesian-type
meshes that are required by the FIT discretization to resolve
the bunch current as well as the small geometrical details of
the structure.
The aim of this article is the introduction of an approach

which is able to compute the beam coupling impedance of
large and geometrically complex accelerator structures
based on the simulation of smaller subsegments that can
be performed very efficiently using moderate computa-
tional resources. Figure 1 depicts the main idea of the
method, i.e., the decomposition of a beamline section into
different elements. The new approach builds upon the
previously introduced method of Coupled S-Parameter
Calculation (CSC) [12–17]. CSC delivers multimodal
scattering matrices of complex geometries based on multi-
modal scattering matrices of segments of the geometry in
combination with topology information. In this article, the

CSC formulation is generalized so that the coupling of
the beam to the cavity fields is accounted for. Since the
introduced scheme is a generalization of CSC, it is referred
to as CSCBEAM. The first attempt to include the charged
particle beam in CSC is described in [18] which is focused
on port signals in time domain and not on impedances.
The article is organized as follows. In Sec. II, the

commonly known concept of scattering matrices is gener-
alized so that charged particle beams are considered as an
additional port. Thereafter, the numerical determination of
these generalized matrices for individual segments using a
finite element formulation is presented. In Sec. II C,
relevant aspects of the CSCBEAM approach are introduced.
This includes the decomposition of the structure of interest
into segments, the concatenation of the generalized beam
coupling matrices of the respective segments, and the
reconstruction of global field distributions. In Sec. III,
the application of CSCBEAM for two typical accelerator
cavity structures is demonstrated. In particular, the imped-
ance calculation for a full 1.3 GHz TESLA nine-cell cavity
of the European XFEL is presented. Finally, Sec. IV
provides a summary and conclusions.

II. THEORY

A. Generalization of scattering matrices

In the following, the problem of electromagnetic wake-
fields in accelerators caused by a relativistic charged
particle beam in the longitudinal z-direction is considered.
It is assumed that the rigid-beam approximation applies
so that the coupling between the field equations and the
particle equations of motions can be neglected [19].
For CSC the spectral properties of every segment are
described by their multimodal frequency-dependent scat-
tering matrices S ∈ CN×N . This requires the segments to
consist of linear materials so that the principle of super-
position applies. To account for the interaction of a
structure with a charged particle beam, the latter is
considered as an additional port in the scattering matrix.
This idea of treating the particle beam on the same footing

FIG. 1. Example of the decomposition of a beamline section into R individual segments. The decomposition planes are marked using
red dotted lines. Every segment is indexed by r. The beam current Jðxb; yb; zÞ is indicated as blue line. The beam enters the structure at
zmin ¼ z1 ¼ 0 (left red solid line) and leaves the structure at zmax ¼ zRþ1 (right red solid line).
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with the waveguide modes as an additional discrete port
characterized by currentlike and voltagelike quantities is
originally proposed in [20].
Extending the scattering matrix by one row and one

column to accommodate the beam excitation as an addi-
tional port yields

�
S k

h zb

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

S̃

�
a

i

�
|fflffl{zfflffl}

ã

¼
�
b

v

�
|fflffl{zfflffl}

b̃

; ð1Þ

where underlined symbols refer to complex-valued quan-
tities which are sampled at a given frequency. The vectors
a ∈ CN×1 and b ∈ CN×1 comprise the incident and scat-
tered wave amplitudes corresponding to all possible (in
total N) modal excitations at the waveguide boundaries of
the structure. When M waveguide modes are considered
at the waveguide boundary located at zmin (see Fig. 1), the
incident and scattered wave amplitudes are related to
tangential electric and magnetic fields in the frequency
domain as follows:

Etðx; y; zminÞ ¼
XM
m¼1

emðx; yÞ
ffiffiffiffiffiffi
Zm

p

ðame−jkz;mzmin þ bme
jkz;mzminÞ ð2Þ

and

Htðx; y; zminÞ ¼
XM
m¼1

nz × emðx; yÞffiffiffiffiffiffi
Zm

p

ð−ame−jkz;mzmin þ bme
jkz;mzminÞ; ð3Þ

where emðx; yÞ are the modal functions on the port plane,
Zm the frequency-dependent wave impedances, kz;m the
frequency-dependent propagation constants, and am and bm
are the incident and scattered wave amplitudes of the mth
waveguide mode, respectively. The normal vector pointing
inside the structure in the z-direction is denoted by nz.
Furthermore, given a known incident field described by
the coefficients am and assuming mode orthogonality, the
scattered wave amplitudes bm can be computed directly
from the electromagnetic field (2) and (3).
For a point charge moving in the z-direction with

constant velocity βc0 and transversal offsets xb and yb,
the current density in the frequency domain is related to the
beam current i in (1) by

Jzðx; y; zÞ ¼ iδðx − xbÞδðy − ybÞ exp
�
−
jωz
βc0

�
; ð4Þ

where δ is the Dirac delta function, j the complex unit, ω
the angular frequency, β < 1, and c0 the speed of light in
vacuum. It is assumed throughout the article that the port

plane where the beam enters the structure is located at
z1 ¼ zmin ¼ 0 (cf. Fig. 1).
The voltage v in (1) denotes the voltage induced on the

point charge and is defined as

v ¼
Zzmax

zmin

Ezðxb; yb; zÞ exp
�
jωz
βc0

�
dz; ð5Þ

where zmax is the position of the port plane of the outgoing
beam pipe. Furthermore, Ezðxb; yb; zÞ denotes the longi-
tudinal electric field strength along the point charge path.
In addition to the commonly known multimodal scatter-

ing matrix S, the generalized matrix S̃ ∈ CðNþ1Þ×ðNþ1Þ

comprises the row vector h ∈ C1×N, the column vector
k ∈ CN×1, and the scalar coefficient zb ∈ C1×1. The vector
h describes the contribution of incident waveguide waves a
to the voltage v. The coefficients of h can be determined by
exciting the structure one-by-one with all its N waveguide
modes and then computing for each excitation the induced
beam voltage (5). The vector k describes the coupling
of the beam to the N waveguide modes. The coefficients
of k correspond to the scattered wave amplitudes b at the
waveguide ports when the system is solely excited by the
beam current. The transfer functions in k are particularly
relevant for the estimation of beam signals for beam
position monitors or for the power at higher-order mode
ports as discussed in [21,22]. The scalar zb describes the
relationship between the beam current i and the voltage v
seen by the beam when no waveguide mode is excited. As a
result of (4) and (5), this coefficient is the commonly
known longitudinal impedance [23]. The quantities h, k
and zb do depend on the transversal offsets xb and yb.
It is obvious from the definition (1) that the generalized

matrix relates quantities of different kind, i.e., incident
waves, scattered waves, a current, and a voltage. Therefore,
the formulation may be considered as a hybrid representa-
tion, where the scattering matrix approach for the wave-
guide modal amplitudes is combined with an impedance
representation for the particle beam. Note that the unit of
the scattering matrix S is dimensionless, the dimension of h
and k is

ffiffiffiffi
Ω

p
, and that of zb is Ω.

B. Finite element impedance solver

In order to determine the generalized beam coupling
matrices (1), the solution of Maxwell’s equations for each
considered frequency is needed. Apart from the calculation
of the conventional scattering matrix block S in (1), the
procedure requires the estimation of the induced voltage
on the beam axis (5) as well as the modal scattering
coefficients b, generated by the beam.
For the solution of the field problem, a high-order finite

element approach in the frequency domain is adopted.
Given a discretization of the computational domain Ω,
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the electric field strength is approximated by a linear
combination of vector basis functions on the mesh. The
appropriate approximation space is the tangentially con-
tinuous HðcurlÞ-space defined as, HðcurlÞ ¼ fϕh ∈ L2∶
curlϕh ∈ L2g. High-order hierarchical HðcurlÞ-basis
functions for various polygonal type meshes are given,
e.g., in [24]. Then, following the standard Galerkin
procedure [25], the weak form of the frequency-domain
problem reads

ZZZ
Ω

μ−1r ∇ ×E ·∇ × ϕhdV − k20

ZZZ
Ω

εrE · ϕhdV

¼ −jk0Z0

ZZZ
Ω

J ·ϕhdV −∯
∂Ω

μ−1r ϕh · ½n ×∇ ×E�dA;

ð6Þ

∀ϕh ¼ ϕhðx; y; zÞ ∈ HðcurlÞ, where E ¼ Eðx; y; zÞ is
the electric field strength, J ¼ Jðx; y; zÞ the excitation
current density at the given frequency, Z0 the vacuum
impedance, k0 ¼ ω=c0, μr the relative permeability, and εr
the relative permittivity.
The surface integral term in (6) is treated according to

the respective boundary condition. On a perfectly con-
ducting wall, the trivial condition n ×∇ ×Ej∂Ωpec

¼ 0 is
imposed. Resistive cavity walls are modeled by means of a
Leontovich type surface impedance condition as

n × ∇ × Ej∂Ωsibc
¼ −

jωμ0
ZsðωÞ

n × n × E

����∂Ωsibc

; ð7Þ

where μ0 is the permeability of free space and ZsðωÞ the
surface impedance of the wall [26].
On a waveguide port boundary ∂Ωport, the electromag-

netic field solution is required as a superposition of incident
and reflected fields [25]:

n ×∇ ×Ej∂Ωport
¼ n ×∇ ×Eincj∂Ωport

þ
XMTE

m¼1

rTEm γTE
m
eTEm þ

XMTM

m¼1

rTMm
−k20
γTM
m

eTMm ;

ð8Þ

where eTEm ¼ eTEm ðx; yÞ and eTMm ¼ eTMm ðx; yÞ are the
modal functions at ∂Ωport corresponding to the TE- and
TM-modes with the propagation constants γTE

m
and γTM

m
,

respectively. Furthermore, rTEm and rTMm are the correspond-
ing reflection coefficients for each waveguide mode
at ∂Ωport.
Of interest for the present discussion is the incident field

Einc ¼ Eincðx; y; zportÞ on a waveguide boundary corre-
sponding to the in- and outgoing beam pipes, located at

zmin and zmax, respectively. In the special case of an
ultrarelativistic beam moving along the z-axis with the
speed of light in vacuum (β → 1), the incoming field is
obtained by the solution of a 2D electrostatic problem

Eincðx; yÞ ¼ −∇⊥φðx; yÞ; ð9Þ

−∇2⊥φðx; yÞ ¼
ϱðx; yÞ
ε0

; ð10Þ

on ∂Ωport, where ϱðx; yÞ ¼ Jzðx; y; zportÞ=c0 is the charge
density on the waveguide boundary plane. For a given
beam current, the solution of (10) can be performed in a
preprocessing step and then incorporated in the boundary
condition (8).
Given the formulation (2)–(5) and (6)–(10), the coef-

ficients of the generalized matrix can be obtained by
solving a full electromagnetic field problem for every
row of (1). Each of these solutions corresponds to either
the beam current excitation or to a modal field excitation on
each of the waveguide ports of the structure. This procedure
needs to be repeated for all frequency points considered.
Due to this complexity, the calculation of generalized beam
coupling matrices for the individual substructures of the
system represents the computationally most intensive part
of the method.

C. The CSCBEAM approach

1. Decomposition of the structure

The decomposition of the chain is conducted in
CSCBEAM so that the decomposition planes are normal
with respect to the propagation direction of the beam.
Figure 1 depicts the decomposition of a beamline section

as an example. The beam is indicated by the blue ellipses
and the blue line. The planes used for the decomposition of
the structure into segments are depicted as dotted red lines.
In addition to the external waveguide ports of the full
structure (depicted by the red solid lines), waveguide ports
are assigned to the interfaces between neighboring seg-
ments (located at the red dotted lines). These ports are
referred to as internal waveguide ports. At each port a finite
number of waveguide modes is considered. As shown in
Fig. 2, each considered mode at a port corresponds to
one terminal with an incident wave amplitude ar;p;m and a
scattered wave amplitude br;p;m. On both sides of the
interface, the same number of waveguide modes is taken
into account.
The number of waveguide modes considered on internal

ports is a critical issue. On the one hand, the number of
these modes should be small so that the number of
excitations to be computed in (1) is small and the size
of generalized beam coupling matrices for each of the
segments remains manageable. On the other hand, the
number of internal waveguide modes must be large enough
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to accurately describe the total electromagnetic field at the
interface between neighboring segments. There is no closed
formula for the required number of modes as this strongly
depends on geometry. As rule of thumb all waveguide
modes with cutoff frequencies smaller than the maximum
considered frequency fmax are required. In addition, a finite
number of evanescent waveguide modes must be consid-
ered as well. Generally, the number of these evanescent
modes depends on their attenuation constant and on the
geometry of the transition region between the two seg-
ments. For a transition region resembling a long pipe of
constant cross section, evanescent modes with large cutoff
frequencies and therefore large attenuation constants will
decay quickly and need not be considered. The shorter
the transition region, the more evanescent modes need to be
considered. Generally, the number of considered modes on
internal ports is a parameter of the method that needs to be
determined by numerical convergence tests.

2. Concatenation of the elements

In a first step, the dynamical properties of all segments
are collated as

S̃blkãblk ¼ b̃blk; ð11Þ

where

S̃blk ¼ diagðS̃1; S̃2;…; S̃RÞ ð12Þ

is a block diagonal matrix holding the generalized
matrices (1) of each individual segment. The input vector

ãblk ¼

0
BBBBB@

ã1
ã2

..

.

ãR

1
CCCCCA

ð13Þ

contains all the generalized input vectors of each segment,
and

b̃blk ¼

0
BBBBB@

b̃1

b̃2

..

.

b̃R

1
CCCCCA

ð14Þ

is a vector containing all the generalized output vectors of
each segment as defined in (1).
Next, the ordering of ãblk and b̃blk is modified by means

of a permutation matrix P, so that

Pãblk ¼ ãsrt ¼

0
B@

aint
aext
i

1
CA; ð15Þ

Pb̃blk ¼ b̃srt ¼

0
B@

bint

bext

v

1
CA ð16Þ

is obtained. The size of the permutation matrix P is
determined by the number of ports and the number of
waveguide modes at the respective ports of all segments.
The complex-valued vectors aint ∈ CNint×1 and bint ∈
CNint×1 in (15) and (16) comprise, respectively, incident
and scattered wave amplitudes of the internal ports. The
vectors aext ∈ CNext×1 and bext ∈ CNext×1 in (15) and (16)
contain, respectively, incident and scattered wave ampli-
tudes of external ports. Here, Nint and Next denote the total
number of internal and external waveguide modes, respec-
tively. The vectors i and v collate the beam currents and the
beam voltages in each of the R segments:

i ¼ ð i1 i2 … iR ÞT; ð17Þ

v ¼ ð v1 v2 … vR ÞT: ð18Þ

Replacing the vectors ãblk and b̃blk in (11) by their sorted
counterparts defined in (15) and (16) and using the
orthogonality of permutation matrices yields

PS̃blkPT|fflfflfflffl{zfflfflfflffl}
G

ãsrt ¼ b̃srt: ð19Þ

FIG. 2. Representation of the cutplane between Segment 1 and
Segment 2 in Fig. 1 as an example. The segments are depicted in
terms of white boxes. By way of illustration m waveguide modes
are considered at the cutplane. These modes are represented as
terminals of both white boxes. Each terminal is equipped with the
amplitude of incident waves ar;p;m and the amplitude of scattered
waves br;p;m. The subscript r, p, m denotes that the quantity
belongs to the mth mode at the pth port of the rth segment. The
green and orange lines indicate the concatenation.
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Next, G is written as a block matrix, so that (19) becomes

�
G11 G12

G21 G22

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

G

0
B@

aint
aext
i

1
CA

|fflfflfflfflffl{zfflfflfflfflffl}
ãsrt

¼

0
B@

bint

bext

v

1
CA

|fflfflfflfflffl{zfflfflfflfflffl}
b̃srt

; ð20Þ

where

G11 ∈ CNint×Nint ; G12 ∈ CNint×ðNextþRÞ;

G21 ∈ CðNextþRÞ×Nint ; G22 ∈ CðNextþRÞ×ðNextþRÞ:

This enables the expression of (20) by means of

G11aint þG12

�
aext
i

�
¼ bint; ð21Þ

G21aint þG22

�
aext
i

�
¼

�
bext

v

�
: ð22Þ

The coupling of the internal quantities is enforced by

Faint ¼ bint: ð23Þ

Similarly to the matrix P, the feedback matrix F ∈ NNint×Nint

is a permutation matrix that couples the incoming waves
in each segment with the corresponding outgoing waves
of the previous one. This matrix is determined by the
permutation matrix P, the topology of the segments to be
coupled, and by the number of internal terminals.
Using (23) to replace bint in (21) and sorting for the

internal incident wave amplitudes yields

aint ¼ ðF −G11Þ−1G12

�
aext
i

�
: ð24Þ

Employing this statement to substitute the internal incident
waves aint in (22) gives

½G22 þG21ðF −G11Þ−1G12�
�
aext
i

�
¼

�
bext

v

�
: ð25Þ

On account of charge conservation and the rigid beam
assumption, the magnitude of the beam current in every
segment is the same. However, while moving in the
longitudinal direction along the chain of segments, phase
of the beam current in the respective segments is shifted as

ir ¼ i exp

�
−j

ωzr
βc0|{z}
φr

�
; ð26Þ

with the position of the entrance of the rth segment

zr ¼
Xr−1
k¼1

Lr; ð27Þ

(refer to Fig. 1) and Lr its length. Expressing (26) for all R
currents gives

0
BBBBB@

i1
i2

..

.

iR

1
CCCCCA

|fflfflffl{zfflfflffl}
i

¼

0
BBBBB@

1

exp ð−jφ2Þ
..
.

exp ð−jφRÞ

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
d

i; ð28Þ

with the complex-valued vector d ∈ CR×1. The different
phases of the beam currents in every segment are now
accounted for in (25) by

�
aext
i

�
¼ M

�
aext
i

�
; ð29Þ

with the block diagonal matrix

M ¼ diagðI;dÞ ∈ CðNextþRÞ×ðNextþ1Þ: ð30Þ

Here, I denotes the identity matrix.
The total voltage v experienced by the beam traversing

the complete chain of segments can be written by splitting
(5) into individual integrals for each segment:

v ¼
XR
r¼1

ZzrþLr

zr

Ezðxb; yb; zÞ exp
�
jωz
βc0

�
dz: ð31Þ

Substituting ẑ ¼ z − zr gives

v ¼
XR
r¼1

ZLr

0

Er;zðxb; yb; ẑÞ exp
�
jωẑ
βc0

�
dẑ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vr

×exp

�
jωzr
βc0

�
;

ð32Þ

where vr is the voltage induced on the beam in segment r
by the current i without taking into account the phase shift
in the voltage resulting from the shift of the segment. Thus,
vr is the usual beam voltage corresponding to the current i
as appears from the generalized coupling matrix formu-
lation (1) for the respective segment. Relation (32) can be
further written as
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dH

0
BBBBB@

v1
v2

..

.

vR

1
CCCCCA

|fflfflfflffl{zfflfflfflffl}
v

¼ v; ð33Þ

whereas dH is the conjugate transposed of d as defined
in (28).
As a result of (33), the right-hand side of (25) can be

replaced by

MH

�
bext

v

�
¼

�
bext

v

�
: ð34Þ

Multiplying (25) from the left-hand side with MH and
replacing the excitation vector as well as the right-hand side
by (29) and (34), results in

S̃csc

�
aext
i

�
|fflfflfflffl{zfflfflfflffl}

ãext

¼
�
bext

v

�
|fflfflfflffl{zfflfflfflffl}

b̃ext

; ð35Þ

with the generalized beam coupling matrix

S̃csc ¼ MH½G22 þG21ðF −G11Þ−1G12�M ð36Þ

of the concatenated structure. Following definition (1), the
coefficient in the last row of the last column is the beam
impedance of the entire structure.

3. Reconstruction of field distributions

Subsequently, the field reconstruction is discussed for
electric fields. The approach for magnetic fields is analo-
gous. For the reconstruction of the field distributions in
concatenated structures, the fields in the segments have to
be computed and stored for all possible excitations at the
waveguide ports and the beam excitation. Note that these
computations need to be performed anyhow to determine
the generalized beam coupling matrix (1) of each segment.
The electric field distribution in the segment r is given by

Erðx; y; zÞ ¼
XNrþ1

k¼1

Er;kðx; y; zÞãr;k; ð37Þ

where ãr;k is the kth coefficient of the generalized excita-
tion vector ãr of the rth segment, Er;kðx; y; zÞ the electric
field strength in the rth segment resulting from the
excitation ãr;k ¼ 1 while the remaining coefficients in ãr
equal zero, and Nr the number of terminals corresponding
to all waveguide modes at the various ports of the rth

segment. The total field distribution in the concatenated
chain is therefore described by

Eðx; y; zÞ ¼
XR
r¼1

XNrþ1

k¼1

Er;kðx; y; zÞãr;k: ð38Þ

In order to finally evaluate (38), all coefficients ãr;k
which are collected in ãblk need to be determined in terms
of the external excitation (that can be the beam or a
waveguide mode at an external port). The relationship
between these quantities is given by

ãblk ¼ PTãsrt ¼ PT

0
B@

aint
aext
i

1
CA ¼ PTD

�
aext
i

�
; ð39Þ

with the block matrix

D ¼
� ðF −G11Þ−1G12M

M

�
; ð40Þ

which results from exploiting (15), (24), and (29).

III. NUMERICAL COMPUTATIONS

A. Implementation of the scheme

The scheme is implemented in two steps. First, a FEM-
based frequency domain impedance solver is developed
that enables the computation of the generalized beam
coupling matrices. Second, the concatenation scheme
described above is applied using these matrices.
So far, the solution of the full 3D Maxwell problem in

the frequency domain in the presence of a beam passing
through in- and outgoing pipes has been presented in the
literature only for frequencies below cutoff [27], for rota-
tional symmetric structures [28] or for planar geometries
in 2D [29]. Therefore, the development of a dedicated field
solver based on the formulation (2)–(5) and (6)–(10) was
necessary. For the finite element discretization, the high-
order hierarchic basis functions proposed in [24] were
adopted and further implemented in an in-house simulation
platform [30].
One of the main difficulties in the simulation of

electromagnetic fields in the presence of particle beams
stems from the singularity of the transverse electric field
components on the beam axis. Due to this singularity,
the numerical solution introduces huge errors in the
longitudinal field and thus in the beam impedance. This
effect was early recognized in [31], where it was shown that
a disparity by orders of magnitude between the transverse
and longitudinal field components leads to large numerical
noise in wakefield simulations with unstructured grids.
Furthermore, it was shown that using a regular Cartesian
mesh allows to fully decouple transverse and longitudinal
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error contributions, resulting in noisefree simulations. In
this work, a similar discretization idea is used. A hybrid
mesh discretization is applied consisting of a uniform
Cartesian submesh around the beam and of an unstructured
submesh of curved tetrahedral elements resolving the
geometry of the cavity. Mesh conformity is ensured by
applying a layer of pyramidal elements at the interface
between the two submeshes. Such mesh constructions can
be generated in an automated fashion using the meshing
platform SALOME [32]. The hybrid mesh approach is
applied for all considered examples in the paper. Figure 3
depicts an example of such a hybrid mesh that is applied for
the discretization of single cell of the 1.3 GHz TESLA
cavity (cf. Sec. III C).
The concatenation procedure is implemented as a script

in the Matlab R2017 platform [33]. The script reads in
the generalized beam coupling matrices of all segments
sampled at the frequencies of interest in addition to top-
ology information. The latter specifies the ports to be
concatenated and the number of waveguide modes con-
sidered for each port. Based on this information, the
matrices P and F are constructed. In addition, the lengths
of the individual segments are required to determine the
matrix M. The scripts and the raw data for the following
application examples are provided as Supplemental
Material in [34].

B. Cylindrical cavity

The simple cylindrical cavity consisting of two coupled
perfectly conducting segments shown in Fig. 4 is used as a
fundamental proof of principle for the proposed approach.
This example allows for estimating the ability of CSCBEAM

to reproduce resonances of the concatenated structure
whereas its segments are non-resonant (above the cutoff
frequencies of the corresponding waveguide modes). The
particle beam exciting the structure is defined on the
symmetry axis. The in- and outgoing beam pipes are
represented by the two (external) waveguide ports marked

as red solid lines at both ends of the structure. The cutplane
used to decompose the structure into two segments is
indicated in Fig. 4 as red dotted line.
For generality, the radii of the in- and outgoing beam

pipes are chosen to be different. The radius at the
intermediate beam pipe connecting the two segments is
chosen to be much larger than the beam pipe radii, so that
higher-order waveguide modes may contribute to the
coupling between the segments. Moreover, the two seg-
ments are nonresonant above the cutoff frequency of the
lowest TM mode in the in- and outgoing beam pipes
whereas resonant modes with large quality factors exist in
the complete structure.
The generalized beam coupling matrices (1) are com-

puted for each segment on 161 equidistant frequency
samples in the interval 2 GHz to 10 GHz. At the external
ports solely the TM01 waveguide modes are considered.
Their cutoff frequencies are 5.74 GHz and 4.59 GHz for the
in- and outgoing pipes, respectively. At the decomposition
plane two waveguide modes are considered, namely the
TM01 and the TM02. Their cutoff frequencies are 3.28 GHz
and 7.52 GHz, respectively. Therefore, the generalized
matrix for the complete structure has three rows and
columns whereas the generalized matrices for the individ-
ual segments have four rows and four columns each. Note
that for the given example Next ¼ 2 and Nint ¼ 4.
Figure 5 presents the computed beam impedances. The

red solid lines arise from the direct impedance computation
of the complete structure and are used as reference curves.
The solid blue curves result from CSCBEAM with no internal
waveguide modes considered at the decomposition plane.
Thus, it corresponds to a simple addition of the beam
impedances of the two cavities. The orange curves arise
from CSCBEAM when a single internal waveguide mode
(TM01) is considered whereas the purple dashed curves
result from CSCBEAM with two waveguide modes (TM01

and TM02) considered at the decomposition plane.

FIG. 3. (a) Outer view of the hybrid mesh used to discretize a
single TESLA cell. (b) Cut view of the mesh featuring the
Cartesian elements in the beam region, the curved tetrahedral
elements resolving the cavity wall and the connecting pyramidal
layer in between.

FIG. 4. Vacuum model of a rotational symmetric coupled cavity
constructed by six cylinders. The structure is visualized with
CST [7] using a cutplane. The decomposition of the structure
takes place at the red dotted line. The beam of charged particles
is depicted by orange/blue lines and orange/blue cones and
traverses the structure on the symmetry axis. The external
waveguide ports are illustrated by red solid lines at the beam
pipes of the structure.
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As seen in the figure, the approximation of the total
impedance by simply adding the individual impedances of
the segments completely fails above the cutoff frequency
3.28 GHz of the TM01 mode at the decomposition plane as
expected. Including a single coupling mode (TM01) in the
formulation already shows a much better agreement with
the reference curve over the entire frequency interval.
However, small deviations are observed beyond the cutoff
frequency 7.52 GHz of the TM02 mode of the connecting
pipe. Including this mode in the CSCBEAM computation
results in a perfect agreement between the beam impedance
delivered by the direct run and the concatenation. Note that
the comparably small number of waveguide modes
required at the decomposition plane for the concatenation
results from the symmetry of this academic example and its
symmetric excitation. Generally, many more waveguide
modes are required for a reasonable field expansion as will
be shown in Sec. III C.
Figure 6 depicts the normalized longitudinal component

of the real part of the electric field strength in the circular

cavity under study. All fields result from an excitation at
3.85 GHz by solely the beam current, i.e., the waveguide
ports at the ends of the beam pipes are not excited. This
frequency is chosen on purpose. The full structure is
resonant at this frequency (cf. Fig. 5) whereas the individ-
ual segments are not. Figure 6(a) is obtained by a
computation of the full structure and serves as reference.
Figure 6(b) shows the field distribution arising from the
beam excitation in each segment separately. Figure 6(c)
results from reconstructing the fields with CSCBEAM as it is
discussed in Sec. II C 3. Figures 6(a) and 6(c) show a very
good agreement and a resonant mode in both segments is
clearly visible. In contrast, this resonant mode is not
observable in Fig. 6(b).

C. TESLA cavity with couplers

The impedance calculation of the TESLA cavity with
higher-order mode and input couplers in Fig. 7 is employed
as a more advanced application example for the proposed

Direct
CSCBEAM (0 modes)
CSCBEAM (1 mode)
CSCBEAM (2 modes)

(a)

Direct
CSCBEAM (0 modes)
CSCBEAM (1 mode)
CSCBEAM (2 modes)

(b)

FIG. 5. Beam impedance of the rotational symmetric structure depicted in Fig. 4: (a) absolute values and (b) phases of the beam
impedance. The red solid lines depict the impedance resulting from a direct computation, the blue solid lines from a simple phase-
accounting addition of the impedances of both segments (i.e., zero waveguide modes considered at the decomposition plane), the orange
solid lines from the proposed approach with solely the TM01 mode considered at the decomposition plane, and the purple dashed lines
from the proposed approach with the TM01 and the TM02 mode considered at the decomposition plane.
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approach. Details of the geometry can be found in [36] and
references therein. The particle beam is traversing on the
symmetry axis of the cells. The structure is equipped with
(external) waveguide ports at both beam pipe ends, i.e., at
zmin and zmax. The external waveguide ports are indicated
by the solid red lines. The cutplanes used to decompose the
complete structure into segments are indicated in Fig. 7 as
red dotted lines. The decomposition results in 11 segments,
namely upstream higher-order mode coupler (r ¼ 1),
upstream end cell (r ¼ 2), mid cells (r ¼ 3;…; 9), down-
stream end cell (r ¼ 10), and downstream higher-order
mode coupler with input coupler (r ¼ 11). Note that the
input coupler is not visible in Fig. 7 due to the cutplane
representation. Surface losses are not considered.
Since the midcells are identical, only five generalized

beam coupling matrices need to be computed for the 11
segments constituting the full structure. Note that only the
columns relevant for the computation of the beam imped-
ance of the full structure are computed, i.e., excitations
at external ports of the structure are not required. The
computations are performed for 601 equidistant frequency
samples in the interval 1 GHz to 4 GHz. For the FEM
discretization of each segment a hybrid mesh with

approximately 9,000 hexahedral, tetrahedral, and pyrami-
dal finite elements is used as shown in Fig. 3. At the external
ports as well as at the decomposition planes 18 waveguide
modes are considered: 11 modes of TE type and 7 modes of
TM type. Their cutoff frequencies range from 2.25 GHz to
7.81 GHz for the beam pipes and from 2.51 GHz to
8.70 GHz for the cutplanes, so that all propagating modes
as well as several evanescent modes are considered. As a
result of this choice, the generalized matrices for the
complete structure and for the individual segments have
37 rows and columns. In the presented example Next ¼ 36
external terminals and Nint ¼ 360 internal terminals exist.
Figure 8 shows the computed beam impedances. The red

solid lines result from the direct impedance computation of
the full structure and are therefore providing the reference
curves. The blue solid lines arise from the complex-valued
addition of the individual beam impedances of all seg-
ments, i.e., no coupling across the decomposition planes
is modeled. The orange curves result from CSCBEAM with
18 waveguide modes considered for the field expansion at
the decomposition planes.
Figure 8 depicts that the pure addition of the individual

segment impedances leads to a reasonable impedance

FIG. 6. Real part of the longitudinal electric field strength in the rotational symmetric structure shown in Fig. 4: (a) field strength
arising from the direct computation (reference solution), (b) field distribution arising from an individual beam excitation in both
segments without mutual coupling via electromagnetic fields, (c) field strength delivered by CSCBEAM, and (d) legend. The
decomposition plane is indicated by a white bar in (b) and (c). All field strengths result from an excitation with an on-axis charged
particle beam at 3.85 GHz. All three field distributions are normalized to max jRefEd

zð0; y; zÞgjÞ, whereas Ed
zðx; y; zÞ is the longitudinal

field strength from the direct computation. The plots are created with ParaView [35].

FIG. 7. Vacuum model of a TESLA cavity with higher-order mode and input couplers [36]. The charged particle beam is illustrated by
orange/blue lines and orange/blue cones and is defined from zmin to zmax. The z-coordinates at which the beam enters the rth segment are
denoted by zr. Note that the beam is solely visible in the nine elliptical-shaped cells since a yz-cutplane is used to draw these cells. The
xy-cutplanes employed to decompose the structure are depicted in terms of dotted red lines. The geometry is visualized using CST
Studio Suite® [7].
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approximation of the full structure up to 2.2 GHz. Only
small frequency shifts of the peak at 1.3 GHz and the notch
at 2.05 GHz can be observed. Note that exclusively the
TM01-π mode is visible in the spectrum around 1.3 GHz.
The remaining eight modes of the fundamental band are not
observable on account of their small on-axis coupling
impedances [37]. The approximation by a simple com-
plex-valued impedance addition deteriorates in the interval
2.2 GHz to 3.4 GHz, whereas it completely fails beyond
3.4 GHz. The location of the peak at 2.45 GHz is not
accurately reproduced. The small resonance features below
this peak are not visible in the blue lines at all. Moreover,
the blue curve shows a peak at 2.94 GHz which is by far
less distinctive in the red reference curves. The notch
effect at 3.6 GHz is not approximated at all and the quality
factor of the resonance at 3.86 GHz is significantly
underestimated in the blue curves. In contrast to this,
CSCBEAM delivers a extremely good approximation of
the impedance over the entire considered band. Tiny
features of the reference curves are observable in the
orange curves as well.

IV. SUMMARY AND CONCLUSIONS

The current article motivates the need of a method to
compute beam coupling impedances of coupled accelerator
parts. The article introduces a flexible scheme which allows
for the computation of global impedances in electromag-
netically coupled elements of particle accelerators. The new
method is referred to as CSCBEAM as it is based on the
generalization of CSC. The theory of the method is
introduced and two validation examples are presented.
The validation examples show the flexibility of the method
in terms of the number of waveguide modes used for the
concatenation. As far as the authors can determine, the
scheme is not limited by the number of segments used for
the concatenation. In fact, the computational complexity of
the scheme is rather related to the number of waveguide
modes employed for the coupling of the fields across the
decomposition planes. Therefore, the scheme is suitable to
accurately determine global impedance models of entire
machines. In this way, CSCBEAM can help to identify
missing impedance contributions in global impedance
models of particle accelerators.

Direct
CSCBEAM (0 modes)
CSCBEAM (18 modes)

(a)

Direct
CSCBEAM (0 modes)
CSCBEAM (18 modes)

(b)

FIG. 8. Beam impedance of the TESLA cavity higher-order mode couplers and input couplers as depicted in Fig. 7: (a) absolute values
and (b) phases of the beam impedance. The red solid lines depict the impedance from a direct computation, the blue solid lines by a
simple phase-accounting addition of the impedances of all 11 segments (i.e., no waveguide modes considered at the decomposition
planes), the orange solid lines by the proposed approach with 18 modes considered at each of the ten decomposition planes.
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