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Z, vortices in the ground states of classical Kitaev-Heisenberg models
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The classical nearest-neighbor Kitaev-Heisenberg model on the triangular lattice is known to host Z, spin
vortices, forming a crystalline superstructure in the ground state. The Z, vortices in this system can be
understood as distortions of the local 120° Néel parent order of the Heisenberg-only Hamiltonian. Here, we
explore possibilities of stabilizing further types of Z, vortex phases in Kitaev-Heisenberg models, including
those which rely on more complicated types of noncollinear parent orders such as tetrahedral states. We perform
extensive scans through large classes of Kitaev-Heisenberg models on different lattices employing a two-step
methodology which first involves a mean-field analysis followed by a stochastic iterative minimization approach.
When allowing for longer-range Kitaev couplings, we identify several Z, vortex phases such as a state based on
the 120° Néel order on the triangular lattice which shows a coexistence of different Z, vortex types. Furthermore,
perturbing the tetrahedral order on the triangular lattice with a suitable combination of first- and second-neighbor
Kitaev interactions, we find that a kagomelike superstructure of Z, vortices may be stabilized, where vortices
feature a counter-rotating winding of spins on different sublattices. This last phase may also be extended to
honeycomb lattices where it is related to cubic types of parent orders. In total, this analysis shows that Z, vortex

phases appear in much wider contexts than the 120° Néel-ordered systems previously studied.

DOI: 10.1103/PhysRevB.101.174443

I. INTRODUCTION

Topological defects are local perturbations of an otherwise
homogeneous system which cannot be removed by any con-
tinuous operation. In condensed-matter systems, topological
defects have a long and active history of investigation where
they appear in a colorful variety of different types, including
screw dislocations in crystals [1,2], magnetic skyrmions [3-5]
(which in more accurate terms would be referred to as topo-
logical textures), magnetic monopoles in spin ice [6-9], and
quantum vortices in superconductors and superfluids [10-15].
A prototypical microscopic situation inducing topological
defects arises when a two-dimensional system consists of
local U(1) degrees of freedom such as the phase field of a
superconducting film or the in-plane spin direction of an XY
magnet. In this case, a vortex is formed if the U(1)-phase
winds an integer number of times around the center of the
perturbation, leading to a classification of defects in terms
of a Z-quantized vorticity [12,16]. The insights about the
thermodynamic properties of such phases, including vortex
formation and binding/unbinding, as described in the sem-
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inal works by Berezinskii, Kosterlitz, and Thouless (BKT)
[17-19] are of paramount importance in condensed-matter
physics.

Interestingly, a variant of the aforementioned Z vortices
also occurs in Heisenberg magnets if the system possesses
a noncollinear local order parameter. This is, for example,
realized in a nearest-neighbor Heisenberg antiferromagnet on
the triangular lattice which forms a 120° Néel-ordered ground
state [20-23]. Vortex excitations arising at finite temperatures
then consist of deformations of this parent state where the
local trio of spins performs a full rotation as one moves
around the vortex core. Most importantly, these vortices are
of Z type [20], which implies that any pair of two vortices—
regardless of their precise microscopic realization—can al-
ways be continuously transformed such that they mutually
annihilate. In other words, there is no distinction between
vortices and antivortices, implying that they are topologically
equivalent.

While the Z,-vortex scenario is much less explored com-
pared to the Z case, there has recently been increasing interest
in such phases, as it has been realized [24] that Z, vortices
form stable defects in the ground states of classical trian-
gular Heisenberg antiferromagnets when Kitaev interactions
[25-29] are added. The novel aspect of this observation is that
the Z, vortices are not induced by thermal fluctuations as in
the BKT transition but result from an interplay of frustration
from isotropic Heisenberg and anisotropic Kitaev interactions.
Particularly, an infinitesimal Kitaev coupling is already suf-
ficient to generate a triangular crystalline superstructure of
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Z, vortices where the distance between vortices decreases
with increasing Kitaev interaction. In momentum space, the
vortex crystal formation manifests in a characteristic shift of
the 120° magnetic Bragg peak away from the corners of the
first Brillouin zone, accompanied by the emergence of sub-
leading satellite peaks. The initial observation of Z, vortices
in the ground states of classical triangular Kitaev-Heisenberg
models [24] motivated a series of follow-up works where
the deformation of the 120° Néel state into a vortex crystal
has been investigated for longer-range Heisenberg couplings
[30,31], Dzyaloshinskii-Moriya interactions [32], honeycomb
lattices [30,31] (or an interpolation between triangular and
honeycomb lattices [33]), quantum spins [34,35] (including
their dynamics in a semiclassical approximation [36]), and
from a material perspective [37,38].

In general, the allowed types of topological defects in two-
dimensional systems are determined by the first homotopy
group m; of the system’s order parameter space [16]. For the
XY magnet and the triangular Heisenberg antiferromagnet, the
order parameter spaces are U(1) and SO(3), respectively, such
that the aforementioned nature of their vortices follows from
the properties 7 (U(1)) = Z and 7{(SO(3)) = Z,. Particu-
larly, since any noncollinear-ordered isotropic spin system has
(at least) an SO(3) order parameter space, one may expect
that Z, vortices do not only occur for 120°-Néel-ordered
parent states but also appear as deformations of any other
coplanar or noncoplanar parent state, also including those
orders where the magnetic unit cell consists of more than
three sites. [Note that collinear-ordered isotropic spin systems
must be excluded since the first homotopy group of their order
parameter space S; is m;(S;) = 0 such that they cannot host
topological defects.] The possibility of stabilizing Z, vor-
tices in these generalized magnetic environments is, however,
largely unexplored so far.

In this paper, we investigate topological defects in Kitaev-
Heisenberg models from a more general viewpoint by ad-
dressing the question of which other Z,-vortex phases can
occur, besides their emergence out of 120°-Néel order in
triangular lattice Kitaev-Heisenberg models. To this end,
we particularly focus on parent states with four-sublattice
tetrahedral and eight-sublattice cubic types of orders which
occur on triangular and honeycomb lattices with longer-range
Heisenberg interactions, and then perturb the systems by
adding Kitaev couplings. We note that perturbations of the
Kitaev type are well-suited to explore such phenomena since
they induce a nontrivial anisotropic frustration mechanism as
needed for the formation of Z, vortices but do not enforce
any easy-plane anisotropy (which may quickly result in the
more conventional Z-type vortex formation as in XY magnets
[39,40]). Our study involves extensive scans through a wide
range of classical spin Hamiltonians exhibiting longer-range
Heisenberg interactions (to tune the systems to the desired
parent states) and longer-range Kitaev couplings (to generate
Z,y-vortex phases). For an efficient survey, we pursue a two-
step strategy: We first employ a faster (but approximative)
mean-field scheme [41] to identify candidate systems based
on the characteristic shift of magnetic Bragg peaks associ-
ated with the onset of Z, vortices. This reduced number of
candidate models is then treated with a stochastic iterative
minimization method [42,43] to find the real ground states.

Our main results can be summarized as follows: After
briefly revisiting the Z,-vortex crystal in the triangular lattice
Kitaev-Heisenberg model as first investigated in Ref. [24], we
identify another type of vortex phase in this system which
emerges out of the 120°-Néel order upon adding second-
neighbor Kitaev interactions. Apart from a different arrange-
ment of Bragg peaks in momentum space, this phase is
characterized by the coexistence of two types of Z, vortices
exhibiting different (albeit topologically identical) rotation
axes of the local tripods of spins. We then tune the parent
Heisenberg system into the regime 1/8 < J,/J; < 1, where
J1 (J») is the first- (second-) neighbor antiferromagnetic in-
teraction on the triangular lattice. For these couplings, the
ground state is degenerate, supporting any type of magnetic
order where the sum of all spins in a four-site magnetic unit
cell vanishes [44]. This degeneracy enables a large variety of
possible deformations and is, hence, a particularly interesting
starting point for investigating Z,-vortex phases. We find that
upon adding a suitable combination of longer-range Kitaev
couplings, the system realizes a kagome superstructure of
Z, vortices. In each individual vortex, the four sites of the
magnetic unit cell split up into pairs which perform a counter-
rotating motion through a manifold of tetrahedral states as one
moves around the vortex core. Finally, we identify a doubled
version of this phase for the Kitaev-Heisenberg model on the
honeycomb lattice where the eight-site magnetic unit cell of
degenerate cubic-type magnetic orders splits up into groups
of four sites which again perform a collective counter-rotation
in each vortex. In total, this analysis highlights the richness
of physical phenomena in Kitaev-type magnets and opens the
door to more refined investigations of the identified phases.

The rest of the paper is organized as follows: In Sec. II,
we first introduce and discuss the Heisenberg parent Hamilto-
nians and their noncollinear ordered ground states. These are
the 120°-Néel state on the triangular lattice (Sec. I A), the
tetrahedral states on the triangular lattice (Sec. II B), and the
cubic states on the honeycomb lattice (Sec. I C). The follow-
ing Sec. Il introduces the two methods which are used to treat
these systems when adding Kitaev interactions: In Sec. IIT A,
we present a mean-field scheme for the susceptibility while
Sec. III B discusses the iterative minimization technique. We
then present the result of these two approaches in Sec. IV
where Sec. IV A first applies the mean-field method to identify
possible candidate vortex phases. The momentum-resolved
mean-field responses of the resulting four models are briefly
discussed. In the following Sec. IV B, we treat these models
one by one with iterative minimization and describe in detail
the spin arrangements in the identified vortex phases. The
paper ends with a conclusion in Sec. V.

II. PARENT HEISENBERG HAMILTONIANS

In this section, we specify the class of parent Heisenberg
Hamiltonians H, for which we will investigate Z, vortex
formation. The Hamiltonians H, take the form

Hy=Y 1, ;Sisj, M
n i)

where (ij), denotes pairs of nth neighbor sites on the
respective lattice [see Figs. 1(a) and 2(a)] and J, is the
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FIG. 1. The triangular lattice and its commensurate noncollinear
types of order. (a) First-, second-, and third-neighbor bonds on the tri-
angular lattice. Orange, cyan, and gray arrows represent Kitaev bonds
of xx, yy, and zz types, respectively. (b) The three-sublattice 120°-
Néel state. (b)(i) depicts the three spin orientations defining this state
and (b)(ii) shows their spatial arrangement in the lattice with selected
nearest-neighbor Kitaev bonds labeled xx, . ... (b)(iii) indicates the
magnetic Bragg-peak location of the 120°-Néel state in the first
Brillouin zone (black hexagon). (c) The four-sublattice tetrahedral-
type orders. (c)(i) illustrates the construction of all degenerate spin
orders in this phase (see text for details) while (c)(ii) displays the
arrangement of the sublattices with selected nearest-neighbor Kitaev-
bonds labeled xx, . . .. (c)(iii) indicates the momentum-space location
of these orders in the first Brillouin zone (black hexagon).

corresponding coupling strength (in the following, we will
restrict ourselves to interactions up to third neighbors). Fur-
thermore, S; is a normalized three-component vector repre-
senting the classical spin on site i. Below, we will introduce
and discuss the noncollinear-ordered ground states of Eq. (1)
which may potentially host Z, vortices upon adding Kitaev
couplings. For the triangular lattice Heisenberg model, we will
focus on three-sublattice 120°-Néel order and four-sublattice
tetrahedral-type magnetic orders. Apart from incommensurate
spin spirals, these two states already cover all possible non-
collinear ordered phases in the triangular lattice Heisenberg
model [45] (note that incommensurate spiral phases are ig-
nored here since their unbounded unit cells do not support
the types of topological defects discussed here). Furthermore,
for the honeycomb Heisenberg model, we will consider eight-
sublattice cubic spin phases.

B

(a)

Cubic-type orders:

(b)(ii)

FIG. 2. (a) First-, second-, and third-neighbor bonds on the hon-
eycomb lattice where orange, cyan, and gray arrows represent Kitaev
bonds of xx, yy, and zz types, respectively. (b) The magnetic unit cell
of the cubic states has eight sublattices denoted 1, 2, 3, 4 (shown
as full circles) and 1, 2, 3, 4 (shown as dashed circles). In each of
these two sets, the spins S, and S; sum up to zero and S, = —S;
for o € {1, 2, 3, 4}. (c) Momentum-space location of the cubic order
where the inner (outer) hexagon corresponds to the first (extended)
Brillouin zone.

A. 120°-Néel order on the triangular lattice

The 120°-Néel order is a coplanar state including
three sublattices oriented at 120° with respect to one an-
other [Fig. 1(b)(i)], creating a three-site magnetic unit cell
[Fig. 1(b)(ii)]. The sublattices are arranged such that each
pair of second-neighbor spins has the same direction. This
type of order represents the ground state in the case of only
nearest-neighbor antiferromagnetic Heisenberg couplings but
remains intact for all second-neighbor couplings J, < J;/8
[44-46]. As discussed below, the addition of second-neighbor
couplings J, turns out beneficial for the formation of a vortex
crystal from 120°-Néel order. We will, hence, consider the
triangular lattice Heisenberg model with J; = 1 and J, = —1.
Note that due to the spin-isotropy of Eq. (1), any rotated
version of the 120°-Néel order is also a ground state of the
system which, particularly, implies that the plane which is
common to all spins is arbitrary. The magnetic Bragg peaks
describing this order are located at the corners of the first
Brillouin zone, as can be seen in Fig. 1(b)(iii).

B. Tetrahedral orders on the triangular lattice

The triangular lattice Heisenberg model hosts another com-
mensurate noncollinear phase which is characterized by a
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four-site magnetic unit cell as depicted in Fig. 1(c)(ii). It oc-
curs in the presence of antiferromagnetic J; and J, couplings
when 1/8 < J,/J; < 1 [44-46]. As a representative point in
this phase, we will consider the case J; =1 and J, = 0.5
below. Most strikingly, this state is degenerate and admits all
configurations where the sum of the spins in each unit cell
vanishes:

Si+S,+S3+ S, =0. 2)

The manifold of states obeying this condition may be il-
lustrated by starting with the tetrahedral state, which is a
particularly symmetric representative of the degenerate spin
configurations. As shown in Fig. 1(c)(i), the four spin direc-
tions defining the tetrahedral state are given by the vectors
from the center of a tetrahedron to its corners, which form
an angle of 109.5° with respect to one another. Up to global
spin rotations of all four sublattices, the other degenerate
states may now be constructed as follows: We first define a
rotation axis which connects the midpoints of two opposite
edges of the tetrahedron [see gray line in Fig. 1(c)(i)]. This
axis also includes the center of the tetrahedron. Next, consider
two spins whose endpoints are connected by one of these
edges such as, e.g., the blue and red spins in Fig. 1(c)(i).
All configurations obtained by rotating these two spins by
an angle ¢ around the specified axis, while keeping the other
pair of spins fixed, obey Eq. (2). Additionally, to fully cover
the degenerate manifold of states, one needs to allow for
variations of the angle o between these pairs of spins (this
last deformation must be performed such that the rotation axis
remains symmetrically centered between the two spins of each
pair). Apart from overall rotations of all four sublattices, the
two angles ¢ and « allow one to access all degenerate states.

It is clear that the degenerate states are, generically, non-
planar, however, for special angles ¢ and o one may also
obtain planar or even collinear states (note that quantum fluc-
tuations in a semiclassical 1/S approximation induce an order-
by-disorder mechanism which energetically prefers collinear
states with o = 0 [44,46]). Since the spins in each of these
degenerate states point toward the corners of a deformed
tetrahedron, we denote them as tetrahedral-type orders.

Various different types of vortices seem possible when
the tetrahedral phase is perturbed by Kitaev couplings. First,
a vortex may not make use of the system’s degeneracy. In
this case, the perturbation would pick out a certain state
with fixed angles ¢, «. The deformation of this state as one
moves around a vortex core would then only correspond to
a simultaneous rotation of all four spins around a certain
axis. Second, the angles ¢ and/or o may change along a
loop around a vortex such that the local spin configurations
cover parts of the degenerate manifold. As we will see below,
longer-range Kitaev couplings realize the second possibility.
Particularly, two pairs of spins [e.g., (blue, red) and (yellow,
green) in Fig. 1(c)(i)] perform a counter-rotating motion with
angles ¢ and —¢, respectively.

We finally mention that the magnetic Bragg peaks corre-
sponding to each of these degenerate states are located at the
midpoints of the edges of the first Brillouin zone, as illustrated
in Fig. 1(c)(iii).

C. Cubic orders on the honeycomb lattice

In addition to the triangular lattice, we also investigate
vortex formation on the honeycomb lattice representing the
simplest non-Bravais lattice in two dimensions. The honey-
comb lattice Heisenberg model features two commensurate
noncollinear ground state orders, a four-sublattice tetrahedral
phase, similar to the one in the previous subsection, and an
eight-sublattice cubic phase [45]. Since the tetrahedral-type
states did not show any ground-state vortices upon adding
Kitaev interactions, we will not further discuss this phase
in the following. The remaining cubic phase has a rather
large extent in the J;-J,-J3 parameter space and occurs for
ferromagnetic and antiferromagnetic J; if J, > 0 and J3 > 0
are sufficiently large. In the case of ferromagnetic J; < 0,
the cubic order can even be stabilized without J, couplings
[45,47,48]. This regime will be investigated below where we
choose the specific coupling strengths J; = —1 and J;3 = 1.

The cubic order is degenerate and can be considered as
two copies of the tetrahedral states of the previous subsection
[48]. This property results from the bipartite nature of the
honeycomb lattice which, by itself, consists of two triangular
sublattices, here denoted A and B. In the presence of cubic
order, the unit cell is enlarged, consisting of four sublattices of
type A (labeled 1, 2, 3, 4 in the following) and four sublattices
of type B (labeled 1, 2, 3, 4), see Fig. 2(b)(i) for the precise
definition of the sublattices. All properties of the tetrahedral
state discussed above, such as the conditions on the spin sums,

4 4
> 8, =0 and ) Sz =0, 3)
a=1 a=1

remain separately valid for both sets of sites. Furthermore, the
spin orientations on the sublattices A and B are antiparallel,
ie., Sq = —S; for @ € {1, 2, 3,4}. The term cubic refers to
the fact that two copies of the ideal tetrahedral order depicted
in Fig. 1(b)(i) (where one copy has reversed spin directions)
yield a state with spins pointing at the corners of a cube
when plotted with the same origin. As discussed in more
detail below, this phase also hosts Z, vortices where in each
sublattice A and B, pairs of spins perform a counter-rotating
deformation defined by angles ¢ and —¢.

In momentum space, the cubic orders reside at the mid-
points of the edges of the first Brillouin zone, see Fig. 2(b)(ii).

III. METHODS

All types of magnetic orders presented in Sec. II will be
perturbed by Kitaev interactions of the form

Hy =Y K, Y SIS, )

(ij)ney

where y € {x,y,z} denotes a spin component specific to
the corresponding nth-neighbor bond (ij),, as illustrated in
Figs. 1(a) and 2(a). In contrast to Hy, the ground state of
the full anisotropic Hamiltonian H = Hy + Hk is no longer
solvable in closed analytical form, even in the classical case.
One, therefore, either has to rely on approximate analytical
methods or on numerical techniques. Here, we employ a
combination of both, where we first use a mean-field scheme
(see, e.g., Ref. [41] for a similar approach) to reduce the full
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class of Kitaev-Heisenberg models to a smaller set of a few
candidate systems. These models are then treated within a nu-
merical iterative minimization scheme [42,43] to investigate
the ground-state spin configurations and to possibly identify
vortex formation. Here, we briefly describe the two employed
methods.

A. Mean-field theory for the magnetic susceptibility

For notational convenience, we combine the Heisenberg
and Kitaev interactions J,, and K,, into a single coupling Ji’j
such that the full Hamiltonian H = Hy + Hy reads

H=D_D JisiS; 5)
2 )]
where (i, j) denotes pairs of sites (which are summed over

only once). Our mean-field approach relies on the standard
decoupling of quadratic spin interactions,

SIS — SI{SE)+ (S1)ST — (SF){s7), 6)

which yields a self-consistent condition for the thermal spin-
expectation values (S}'):

oL (B XIS
(S7) = 5 tanh ( T . 7)

Here, we temporarily allow for local magnetic source fields
Bf‘ which are added via H — H — ), B;S;. For methodolog-
ical reasons to become clear below, we also consider finite
temperatures 7 .

One may now define a local, zero-field susceptibility via

(S
[alad L
Xij = (®)
! 837 B;—0

Exploiting Eq. (7) and restricting to the paramagnetic phase
where all spin-expectation values (S}*) vanish, one obtains a
self-consistent equation for Xi’;" ,

1
W,
X" = % T(8 XI:JUX“ ) )

Since all models investigated here only consist of diagonal
couplings in spin space, different components & do not mix
in this equation. Assuming a lattice with an N,-atomic unit
cell (note that N, refers to the unit cell of the lattice, not to the
magnetic unit cell), Eq. (9) can be straightforwardly solved by

Fourier transforming x/;"* via
~ U —ikAR, X
Xpo (K) = E e " Koo (10)
ARab

and equivalently for f[/j(, (k). Here, we have decomposed the
site index i into i — {a, p}, where a denotes the unit cell of
site i and p € {1,...,N,} is a sublattice index (in the same
way j — {b, 0}). Furthermore, the site positions r; are split
up into r; = R, + §, where R, are unit-cell positions and §,
denotes displacements within the unit cells. Distance vectors
between unit cells are written as AR,;, = R, — R,,. With these
definitions, the solution of Eq. (9) is given by

FMK) = [4kgTT + J*(K)] 7Y, (11)

where we have dropped the sublattice indices p, o in F**(k)
and J* (k) to indicate that these quantities can be interpreted as
N, x N, matrices in sublattice space. Furthermore, 1 denotes
the N, x N, identity matrix and the exponent —1 stands for
the usual matrix inversion.

The matrix-valued susceptibility j*#(K) is closely related
to the usual scalar momentum-resolved susceptibility y*“*(k),
defined by

1 9(5"(k))
x" (k) = NW B}—>0 (12)
where
(S*(K)) = Ze_lkr' SHy, (13)

and equivalently for B* (k). Using Egs. (8) and (10), one finds

1 R b
x"(k) = N Ze k(E, Ev)x},‘é‘(k) . (14)

The investigations in the next section are based on the
momentum-resolved susceptibility x**(k), determined from
Egs. (11) and (14). Starting at a sufficiently large initial 7
and for a given set of couplings J,, and K,,, the temperature is
lowered until the right-hand side of Eq. (11) becomes singular
at certain momenta k. At this critical mean-field temperature
T., sharp peaks appear in the susceptibility x**(k), signaling
the onset of magnetic long-range order, while for T < T the
solution in Eq. (11) is no longer valid. The peak positions in
momentum space right at the critical temperature provide an
approximation for the ground state magnetic order. Despite its
mean-field character, this approach proves to be a simple but
efficient tool for a first examination of the system’s magnetic
properties.

It is worth emphasizing that the resulting magnetic wave
vectors coincide with those from a Luttinger-Tisza analysis
[49-51]. An additional benefit of our approach is that the
susceptibility x**(k) contains the full momentum-resolved
intensity distribution of the magnetic response which also
allows one to identify subleading ordering tendencies.

B. Iterative minimization

In addition to the approximative mean-field approach of
the last subsection we apply a numerical iterative min-
imization scheme [42,43] which, up to statistical errors,
finds the exact spin configuration of an energy minimum
(which may, however, be local, see comments below). The
motivation behind this method is based on the fact that
in any genuine classical ground state, each spin must
be aligned with its local field h; whose components are
defined by

K= —

SH
=g =255 (15)
! J

where in the last step we have assumed a Hamiltonian of the
form of Eq. (5).

The calculation starts with an initial state of N spins
randomly oriented. We then perform successive sweeps over
the lattice. In each sweep, we select N spins at random (with
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repetitions allowed), which are successively oriented along its
local field,

h;
S, — —. (16)
[

This process thus generates a new configuration which, in
each sweep, lowers the classical energy. Sweeps are per-
formed until the energy difference between the new and old
spin configurations falls below a predefined threshold (10~'3
in our case). For the triangular and honeycomb lattices, we
use system sizes N = 2611 and N = 2814, respectively, and
implement open boundary conditions, unless stated otherwise.

Please note that iterative minimization is a stochastic
method based on a steepest decent algorithm, and as such
is prone to detect local minima instead of global ones. To
overcome this problem, we run the algorithm a given number
of times (10-20 times) starting from different random config-
urations, and choose the spin configuration that has the lowest
energy.

IV. RESULTS
A. Mean-field results

The models H = Hy + Hk [see Egs. (1) and (4)], where
Hj denotes the parent Hamiltonians from Sec. II exhibiting
120°-Néel, tetrahedral, and cubic types of orders, are first
treated with the mean-field approach from Sec. III A. This
approximative method allows us to efficiently sweep through
large parameter regions of Kitaev couplings, hence, identi-
fying possible candidate Z,-vortex phases which are then
investigated in more detail using the iterative minimization
scheme. Even with this mean-field approach, the space of
nearest-neighbor up to third-neighbor Kitaev couplings K,
K>, K3, including positive and negative signs of each of
them, is too large to be mapped out as a whole. Therefore,
in the three-dimensional space (K, K, K3) of Hamiltonians
Hg we choose to explore nine different cuts including the
three lines along the vectors (1,0,0), (0,1,0), (0,0,1) (.e.,
where only one Kitaev coupling is finite) and the six lines
(1,£1,0), (1,0, x1), (0,1, £1) (i.e., the diagonals in each
plane where one Kitaev coupling vanishes). While this already
gives good coverage of the full phase diagram, an extended
investigation, which we leave for future studies, could also
include additional cuts and/or further types of interactions
such as off-diagonal Dzyaloshinskii-Moriya couplings and
I'-exchange (i.e., off-diagonal and site-symmetric interactions
of the form S#S}‘, + Sl”’S}‘ with u, ' € {x,y, z} and p # ).

Our main diagnostic tool in this section is the peak struc-
ture of the magnetic susceptibility x**(k) from Eq. (14)
right above the critical temperature 7;. While all the orders
discussed in Sec. II reside at high symmetry points in mo-
mentum space, the formation of a vortex superstructure due to
finite perturbations Hx induces an additional (and typically
incommensurate) periodicity of the real-space spin pattern,
which in reciprocal space manifests in a continuous shift of
the magnetic Bragg peaks away from these commensurate
points [24]. Since the magnetic Bragg peak positions indi-
cate the wave vectors where the corresponding mean-field
energies are minimal, a shift of these peaks also implies that
the incommensurate phase is energetically preferred over the

TABLE L. The four candidate models for Z,-vortex phases found
within mean-field theory. The columns specify the lattice, the un-
derlying commensurate ground-state order, the couplings J;, J2, J3
of the parent Heisenberg Hamiltonian H, (which are held fixed in
each model), and the direction (K, K3, K3) in the space of Kitaev
couplings along which a continuous Bragg peak shift is found.

Model Lattice Heisenberg order J; J, J3 (K1, K», K3)
1 Triangular 120° Néel 1 -1 0 (£1,0,0)
I Triangular 120° Néel 1 -1 0 0,1,0)

111 Triangular Tetrahedral 1 05 0 (-1,1,0)
v Honeycomb Cubic -1 0 1 (0,-1,-1)

commensurate parent order. Our investigation below aims
at identifying such characteristic shifts upon increasing the
Kitaev couplings K,,. It is important to emphasize that, in
general, this approach might be subject to two types of errors.
First, an existing vortex phase could be missed because the
mean-field approach might be unable to resolve the peak
shifting due to its approximate character. Second, an observed
peak migration does not necessarily signal a vortex phase
but might also indicate any other type of incommensurate
spin configuration such as, e.g., a spin spiral. We, indeed,
identified some models where this is the case [52], which will,
however, not be further explored here. Instead, we concentrate
on those phases which eventually show vortices with iterative
minimization.

As discussed in more detail below, we identified four Z,-
vortex phases via the aforementioned shift of Bragg peaks,
where two of them are based on the 120°-Néel order (one is
the well-known vortex phase first studied in Ref. [24]) while
the other two are deformations of the tetrahedral and cubic
orders, respectively. In Table I, we summarize the relevant
information of these models where we specify the lattice, the
couplings Ji, J», J3 of the parent Hamiltonians Hy, including
its ground state order, and the direction in parameter space
(K1, K>, K3) along which a continuous Bragg peak shift is
observed. In the following, we discuss the momentum-space
structure of the mean-field susceptibility for each of these
models.

1. Model I: 120°-Néel order on the triangular
lattice perturbed by K,

Here, we briefly revisit the well-known Z,-vortex phase
which is stabilized when perturbing the 120°-Néel order on
the triangular lattice by (positive or negative) nearest-neighbor
Kitaev couplings K; [24,37]. As can be seen in Fig. 3(a),
showing a representative plot of the mean-field susceptibility
x(k) at K; = —1.7, the magnetic Bragg peaks, which
reside at the corners of Brillouin zone in the case of pure
120°-Néel order, have shifted along the boundaries of the
Brillouin zone. Note that without loss of generality, we chose
to depict the xx component of the susceptibility. Due to
the special spin/real-space symmetry of the Kitaev model
[according to which the system remains invariant under a
combined 120° real-space rotation and a 120° spin-space
rotation around the (1,1,1) axis] the yy and zz susceptibilities
just correspond to 120°-rotated versions of the xx
susceptibility. The peak displacement Ak, on the
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FIG. 3. Mean-field susceptibility x**(k) and magnetic Bragg-peak evolution for models I and II on the triangular lattice. (a) Susceptibility
x* (k) of model I at K; = —1.7, (b) peak displacement Ak, relative to the 120°-Néel-order position (corners of the first Brillouin zone) as
a function of K; for model I, (c) susceptibility x**(k) of model II at K, = 2. The white line shows the trajectory of the peak in the first

quadrant while all other trajectories follow by symmetry. (d) Peak displacement Ak =

| Ak + Ak relative to the 120°-Néel-order position

as a function of K, for model II. All data is collected right above the respective critical temperature 7.

Brillouin-zone boundary, relative to the corner position,
is shown in Fig. 3(b) as a function of K. The data indicates a
continuous peak shift which already sets in at infinitesimally
small |K;|. This behavior qualitatively agrees with the
numerical findings in Ref. [24]. As an obvious difference,
however, the subleading satellite peaks from higher harmonics
which are numerically found in Ref. [37] are not resolved on
a mean-field level.

2. Model I1: 120°-Néel order on the triangular lattice perturbed
by Kz

Interestingly, the 120°-Néel order on the triangular lat-
tice hosts another vortex phase for antiferromagnetic K, > 0
which, to the best of our knowledge, has so far not been
explored. As shown in Fig. 3(c) for K, = 2, the peaks exhibit
a vertical displacement with respect to the corner position,
i.e., they evolve along a direction perpendicular to the Bril-
louin zone boundary. Due to the momentum space periodicity
of yx**(k), the migration of peaks along this perpendicular
direction must be accompanied by a peak splitting. As il-
lustrated by the white line in Fig. 3(c), for larger K, the
peak trajectory starts bending back towards the edge of the
Brillouin zone such that at a certain strength of K, they
reside at the midpoints of the edges. Due to this property,
both components k, and k, of the magnetic peaks typically
lie at incommensurate momenta. In Fig. 3(d), we plot the

| Ak} + Ak relative to the 120°-Néel

position. Most obviously, the peak shift sets in at a finite
perturbation strength of K, & 1.7 and evolves continuously
above this value. Note that a continuous peak shift is only
observed in the presence of a finite J, < O interaction while
in the absence of these couplings the peaks show a direct
jump from the corner position to the midpoints of the Brillouin
zone edges. This indicates the importance of J, interactions
in stabilizing a vortex phase. As we will see in Sec. IV B,
despite the common parent state, this vortex phase exhibits
pronounced differences compared to model I such as the
coexistence of different vortex types.

displacement Ak =

3. Model I11: Tetrahedral order on the triangular lattice perturbed
by K; and K,

For the tetrahedral order, the magnetic Bragg peaks are
located at the centers of the edges of the Brillouin zone. When
perturbing the system along the aforementioned nine direc-
tions in the space of (K, K5, K3) only the case K; < 0, K, =
—Kj, K3 =0 yields a continuous shift of magnetic Bragg
peaks. We find that the peaks evolve along a straight line
perpendicular to the Brillouin zone boundary, see Fig. 4(a) for
K> = —K; = 0.3. From the six initial peaks of the tetrahedral
order, two exhibit increasing weight while the other four
show decreasing intensity. Again, the peak migration sets in
at finite Kitaev couplings K, = —K; ~ 0.25 [see Fig. 4(b)]
and evolves continuously for larger perturbations. Our more
detailed analysis of this parameter regime in Sec. IV B reveals
vortices with a remarkable counter-rotating motion of spins
on different sublattices.

4. Model IV: Cubic order on the honeycomb lattice perturbed by
Kz and K3

Finally, we find that the cubic order on the honeycomb
lattice (whose magnetic Bragg peaks are located at the centers
of the edges of the first Brillouin zone) can be continuously
deformed by ferromagnetic Kitaev couplings K, = K3 < 0.
Very much similar to model III, the peaks move along a
direction perpendicular to the Brillouin zone boundary [see
Fig. 4(c) for K, = K3 = —1.4] and the shift sets in at finite
Kitaev couplings K; = K3 ~ —1.3 [see Fig. 4(d)]. As we
will see in Sec. IV B, the vortex phase of model IV can be
considered as a doubled version of the vortex phase of model
III, hence, explaining the similarities of the corresponding
mean-field susceptibilities.

B. Iterative minimization results

Due to the approximative nature of the mean-field ap-
proach and the limited information contained in momentum-
resolved susceptibilities, we now present results of the it-
erative minimization technique which determines the actual
ground-state spin pattern in real space. For each of the four
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FIG. 4. Mean-field susceptibility x**(k) and magnetic Bragg-peak evolution for models III and IV on the triangular and honeycomb
lattices, respectively. (a) Susceptibility x**(k) of model III at K, = —K; = 0.3, (b) peak displacement Ak, relative to the tetrahedral order
position (midpoints of the edges of the first Brillouin zone) as a function of K, = —K; for model III, (c) susceptibility x**(k) of model IV
at K, = K5 = —1.4, (d) peak displacement Ak, relative to the cubic order position (midpoints of the edges of the first Brillouin zone) as a

function of —K, = —Kj3 for model IV. All data is collected right above the respective critical temperature 7.

models in Table I, we discuss two aspects: The precise
winding of spins in an individual vortex and their possible
arrangement into a vortex lattice.

1. Model I: 120°-Néel order on the triangular lattice
perturbed by K,

Iterative minimization identifies Z, vortices for sufficiently
large Kitaev couplings K; 2 1 and K; < —0.95, i.e., when the
vortex density is large enough such that their typical distance
is smaller than the simulated system size. As an example, we
illustrate a representative Z, vortex in Fig. 5(a) where we
project the spins onto the [1,1,1] plane [this is the plane of
rotation of the local trio of spins, see Fig. 5(b)]. To better
resolve the winding of the spins around the vortex core, we
only show one sublattice of the 120°-Néel order. As can
be seen from the reduced length of the depicted spins in
the center of the image, the largest out-of-plane components
occur near the vortex core. The red arrows highlight the spins

belonging to unit cells on a specified closed path around
this core. For each unit cell along this path, Fig. 5(b) shows
the directions of the three spins (red, green, and blue) on
the Bloch sphere where the red points correspond to the red
arrows in Fig. 5(a). One recognizes various characteristic
vortex properties of this phase. First, the spin directions on the
Bloch sphere are concentrically arranged around the (1,1,1)
axis, indicating that the vortex is a result of a spin rotation
within the [1,1,1] plane. Second, the spins on two sublattices
(red and green) perform a rotation when circling around the
core, while the third sublattice remains fixed, pointing along
the (1,1,1) axis. Note that the two rotating sublattices have
opposite spin directions when projected onto the [1,1,1] plane.
This is indicated by the labels 1, 2, 3 . . ., where equal numbers
correspond to spins belonging to the same unit cell [hence, in
a plot of the type of Fig. 5(a), the green sublattice would just
show reversed arrows as compared to the red ones].

In Fig. 5(c), we illustrate the spin arrangement in this
vortex in a slightly different way by showing the local trio of
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(a) (b) (c) (d)
FIG. 5. Spin vortices for model I obtained with iterative minimization. (a) shows a representative Z, vortex at K; = —0.95, where only one

sublattice is depicted and the spins have been projected onto the [1,1,1] plane. (b) Arrangement of spins on the Bloch sphere along the closed
loop around the vortex core defined by the red arrows in (a). Different colors represent the different sublattices. To highlight the (1,1,1)-rotation
axis (thick black arrow), we have added cubic edges in one octant (dashed lines). Spins with the same labels 1, 2, 3. .. reside in the same unit
cell. (c) Type-1I vortices may feature different in-plane rotation axes of the local trio of spins: The depicted axis A coincides with the spin
orientation in one of the three sublattices and is realized for all vortices of model 1. The axis B is perpendicular to the spin orientation of
one sublattice. This case is found for parts of the vortices of model II. (d) Local energies ¢; [see Eq. (17)] for the entire simulated system at
K, = —1.6. The depicted state has an energy per site which is 0.228J; smaller than the undisturbed parent state.
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spins together with their rotation axis (labeled A) when going
around the vortex core. Most crucially, this axis lies within
the plane of the three spins indicative of a type-II vortex [20].
This is in contrast to a type-I vortex where the rotation axis
is perpendicular to the plane of the 120°-Néel parent state. It
can also be seen that the rotation axis A is identical to the spin
orientation in one sublattice which remains fixed along this
path.

For larger values of the Kitaev coupling, vortices appeared
arranged in a triangular superstructure. An example for K; =
—1.6 is shown in Fig. 5(d), where we plot the local energies
€; for each site i defined by

€ = ZZJ;;S#SjA a7
wo

One can clearly see the vortex cores as defects in an oth-
erwise homogeneous energy landscape. To demonstrate that
the system at K; = —1.6 gains energy by forming vortices,
we calculated the energy difference per site AE between
the pure 120°-Néel parent order and the numerically ob-
tained spin configuration in Fig. 5(d). The positivity of our
result AE = 0.228 indeed shows that vortices are energeti-
cally preferred as compared to the vortex-free parent state.
Note that the inclusion of a finite J, = —1 in model I (see
Table 1) is justified by the empirical observation that a vor-
tex lattice is more easily stabilized when a ferromagnetic
second-neighbor Heisenberg interaction is added. Without
going into detail, we would like to point out some further
characteristic properties of this vortex lattice. For a more
in-depth discussion, we refer the interested reader to Ref. [24],
where these properties have first been described. All vor-
tices forming this superstructure are of type II with one
sublattice remaining fixed. However, the rotation axis of the
local trio of spins varies between different vortices but is
always given by one of the four symmetry-equivalent (1,1,1)
directions [which are (1,1,1), (—1, —1,1), (—1,1, —1), and
(1, —1, —1)]. The rotation axis, hence, defines four subtypes
of vortices which in the vortex superstructure form the same
pattern as the four spin orientations of the tetrahedral state
depicted in Fig. 1(c)(ii). Together with the three possibilities
for the fixed sublattice, there are 12 different vortex types
and the magnetic unit cell comprises exactly one of each. In
principle, there are 12 more vortex types which result from the
former by inverting all spin directions (corresponding to their
time-reversed counterparts). However, numerical outcomes at
the lowest accessible energies never show these two sets of
12 vortex types being mixed up. In other words, depending
on the initial spin configuration, the system either exhibits
vortices where the spins on the fixed sublattice only point in a
(1,1,1)-type direction or vortices where the spins on the fixed
sublattice only point in a (—1, —1, —1)-type direction. We,
hence, speculate that there is a finite temperature Ising-type
transition where time-reversal is spontaneously broken and
one of the two vortex types is selected. It is important to em-
phasize, however, that vortices with different fixed sublattices
and/or rotation axes (including the distinction between type-I
and type-II vortices) are all topologically equivalent since
they can be transformed into each other by continuous spin
rotations.

2. Model II: 120°-Néel order on the triangular lattice perturbed by
K,

Real-space spin patterns generated with iterative minimiza-
tion show vortices appearing at K, ~ 1.7, in agreement with
mean-field theory. The investigation of vortices in this system,
however, turns out to be more difficult compared to model
I. For example, in some outputs, vortices are grouped in
tight clusters such that they become hard to distinguish. As
discussed further below, this is likely due to a very compli-
cated ground state which is hard to identify numerically. A
closer analysis was performed on all isolated defects found
in this model. Interestingly, two distinct types of vortices
were detected. The first is qualitatively identical to the type-II
vortices found in model I, with the fixed sublattices aligned
along one of the (111) directions in spin space [see axis A
in Fig. 5(c)]. The second type of vortex involves rotations
of all sublattices where the rotation axis is perpendicular to
one of the three spin directions of the 120°-Néel state [see
axis B in Fig. 5(c)] but is again given by one of the (111)
directions. Since the rotation axis lies within the plane of
the 120°-Néel order, these vortices are, likewise, of type II.
Examples of vortices with these two distinct rotations are
plotted in Figs. 6(a) and 6(b), where spins along a path around
the core are depicted on the Bloch sphere.

Furthermore, we show in Fig. 6(c) the local energies ¢;
of an output with one vortex of each type. Most notably,
both vortices are energetically indistinguishable indicating
that they may coexist in the real ground state. It is worth
emphasizing that outside the vortex cores, the state in Fig. 6(c)
shows nearly perfect local 120°-Néel spin configurations on
small length scales such that the parent state is still clearly
discernible in these numerical outputs. The energy gain of this
state compared to the undisturbed parent state is only 0.018J;
per site, i.e., significantly smaller than for model I. This
shows that while vortices still occur in the system’s ground
state, they are energetically less stable. Our simulations only
showed seemingly random vortex locations but no regular
vortex crystals. We could, hence, not determine a preferred
pattern in which the vortices of types A and B arrange.
We believe this is due to numerical difficulties in detecting
a potentially very complex and energetically fragile ground
state. More precisely, the complications are the following: The
total number of different vortex types in this system is vast.
As explained before, type A vortices appear in 24 different
species, and by the same argument one can arrive at the
same number for vortices of type B. This results in a total of
2 - 24 = 48 different vortex types which may altogether form
a large magnetic unit cell. Furthermore, for small K, 2 1.7,
i.e., close to the transition point, vortices are dilute such that
the energy gain from realizing a regular superstructure is
particularly small. These condensation energies may be well
below our numerical accuracies. On the other hand, for larger
K5, our mean-field results indicate that the trajectory of Bragg
peaks bends away from the initial high-symmetry line k, =
427 /3 [see Fig. 3(c)] such that both wave vector components
kx, ky, become incommensurate. In this case, the lattice vectors
of the magnetic unit cell will be twisted against the lattice
vectors of the underlying triangular lattice with an irrational
rotation angle between them (one may contrast this situation
with the vortex phase of model I where the component k, =
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FIG. 6. Spin vortices for model II obtained with iterative minimization. (a), (b) Arrangements of spins on the Bloch sphere for a path
around the vortex core in the case of type A and type B vortices, respectively [see Fig. 5(c) for the corresponding rotation axes]. The vortices
have been numerically obtained at coupling strengths of K, = 1.75 and K, = 1.7, respectively. Red, green, and blue points denote different
sublattices of the 120°-Néel state. To highlight the (1,1,1)-type rotation axis (thick black arrow), we have added cubic edges in one octant
(dashed lines). (c) Local energies ¢; [see Eq. (17)] at K, = 1.8 for a numerical outcome including a type A and a type B vortex. The depicted

state has an energy per site which is 0.018J/; smaller than the undisturbed parent state.

+27 /+/3 remains commensurate and the orientations of the
vortex and spin lattices agree). This adds another source of
incommensurability to the system which is hard to capture in
our finite simulated lattices. We, hence, keep a more detailed
characterization of this phase for future studies.

3. Model I11: Tetrahedral order on the triangular lattice perturbed
by K, and K,

This model exhibits ferromagnetic first- and antiferro-
magnetic second-neighbor Kitaev couplings with the same
absolute value, i.e., K, = —K; > 0. In good agreement with
mean-field theory, numerical data from iterative minimization
shows vortices for K, = —K; > 0.27. In Figs. 7(a) and 7(b),
we show the spin directions on the Bloch sphere along loops
around the cores for two different vortices. Note that we dis-
tinguish here between the four sublattices of the tetrahedral-
type states which are colored red, green, blue, and yellow.

one of the Cartesian x, y, or z spin directions. From the
perspective of the underlying parent state, these axes are of
the same type as the gray line in Fig. 1(c)(i), connecting the
midpoints of two opposite tetrahedral edges. Consequently,
the winding of vortices is described by variations of the
angle ¢. The four tetrahedral spin directions, however, do not
rotate as one entity with their relative orientations fixed, but
rather show a splitting into pairs of sublattices where one pair
rotates with an angle ¢ while the other pair features a reversed
motion with an angle —¢. This is indicated in Figs. 7(a) and
7(b) by the numbers 1, 2, ... labeling sites within the same
unit cell. Furthermore, the opening angle o between the spins
in each pair is approximately proportional to the distance from
the vortex core such that in the center the spins are closely
aligned (not shown in Fig. 7). Hence, at r = (, ¢) describing
a point on the lattice in polar coordinates relative to the core,
the local tetrahedral spin configuration may be approximated
by

Interestingly, the detected spin patterns are in striking contrast

to the previous models: All vortices feature rotation axes along (18)

p(P) =%+ o, a(r)=ar,

-100

FIG. 7. Spin vortices for model III from iterative minimization. (a), (b) Spin arrangements of the four tetrahedral sublattices (colored
red, green, blue, yellow) for closed paths surrounding vortex cores obtained for K, = —K; = 0.28. The two vortices in (a) and (b) show
spin rotations around the z and y axes, respectively. Note that for each vortex the sublattices break up into pairs where one pair exhibits a
clockwise and the other a counterclockwise rotation, see text for details. (c) Real-space spin configuration obtained with iterative minimization
for K, = —K; = 0.5 where each site is colored according to the spin component u € {x, y, z} with the largest absolute value |S!'| (red, green,
blue correspond to x, y, z, respectively). Square (circular) symbols indicate that for the first, i.e., red, sublattice the corresponding signed spin
component S} is positive (negative). (d) Local energies ¢; for the numerical output in (c). This spin configuration has an energy per site which
is 0.13J; smaller than the lowest undisturbed parent state. In (c) and (d), we draw a kagome lattice on top of the configuration to highlight the
formation of a superstructure.
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where =+ refers to the two pairs, ¢ is an angular offset, and
a is a proportionality constant. In other words, the local spin
patterns in the vicinity of vortex cores explore parts of the
degenerate tetrahedral manifold. Since away from the vortex
core, each rotating pair of spins is noncollinear and hence
spans a local SO(3) configuration space, these vortices may
be classified as being of Z, type.

We further find that for all vortices, the pairing of sublat-
tices is directly tied to the Cartesian rotation axis in spin space
in a way that matches the direction of Kitaev anisotropy on
different nearest-neighbor bonds: For a vortex with z rotation
axis, the sublattices break up into pairs (blue, green) and
(yellow, red) which are exactly those pairs of sites carrying
z-type Kitaev interactions S7S%, and equivalently for the other
rotation axes, see Fig. 1(c)(i1). Hence, from their sublattice
structure and rotation axes, one may distinguish between three
different vortex types. For each of these three species, there
are two subtypes of vortices depending on which of the two
pairs points along the positive (negative) Cartesian rotation
axes (up to the sense of rotation these two vortex types are
time-reversal partners of each other). For example, for z-type
vortices, one can distinguish between cases where the blue
and green sublattices have positive spin components along
the z axis and cases where these components are negative
(the yellow and red sublattices feature opposite signs of the z
components in both cases). In total, this results in six different
vortex types. It may seem surprising that model III permits
a much smaller number of vortex types compared to the pre-
vious models, even though the underlying tetrahedral parent
state appears more complicated. The reason for this is the
aforementioned spin-space/real-space locking of model III
where the sublattice pairing is tied to the rotation axis. This
is in contrast to model I where the fixed sublattice of a vortex
is independent of its rotation axes, hence, leading to a large
number of vortex types.

Note that the spin-orbit symmetry of the Kitaev model
[according to which the system remains invariant under a
120°-rotation in real space, combined with a 120° rotation
around the (1,1,1) axis in spin space, swapping xx — yy —
zz — xx] transforms vortex types with different Cartesian
rotation axes into each other. Therefore, assuming that this
symmetry is not spontaneously broken on a global level, one
expects that vortices with all three rotation axes coexist in the
system. Above K, = —K| ~ 0.4, where the vortices become
dense enough such that we could resolve a vortex lattice,
this is indeed observed. In Fig. 7(c), we show the output
of a simulation where we color each site according to the
spin component with the largest absolute value |S¥|, where
u € {x,y, z}. Due to the fact that, in the center of each vortex,
the spins are nearly aligned with the respective Cartesian
axis, we can easily distinguish between the different vortex
types. As can be seen, the vortices form a kagome lattice,
where each “sublattice” of the kagome superstructure hosts
vortices with the same Cartesian rotation axes. Additionally,
the aforementioned two subtypes of vortices (which differ
by the sign of the projection onto the rotation axis) are also
present in the system. Particularly, for vortices with a given
rotation axis, the two subtypes form alternating stripes as
indicated by circular and square symbols in Fig. 7(c). We also
depict the local energies ¢; for this state in Fig. 7(d), where

the vortex cores (light colors) show the same pattern as in
Fig. 7(c).

4. Model 1V: Cubic order on the honeycomb lattice perturbed by
K> and K3

Due to the bipartite nature of the honeycomb lattice which
consists of two interpenetrating triangular lattices, it is clear
that a vortex phase similar to the one of model III can also
be stabilized in a honeycomb model. In the simplest case,
this amounts to implementing model III on both triangular
sublattices and only allowing for small couplings between
them (implying small J;, J3, Ki, K3, . . .). The second-neighbor
triangular lattice couplings J, and K, which were needed to
generate the vortex phase in model III would then correspond
to fifth-neighbor couplings Js5, Ks on the honeycomb lattice.
Here, we show that a duplicated version of the vortex phase of
model III may already be stabilized in a simpler system with
honeycomb interactions only ranging up to third neighbors.
Interestingly, this phase even occurs for sizable intersublattice
couplings Jy, J3, and K3, see Table I. As discussed in Sec. I C,
the two Heisenberg couplings J; and J3 are actually needed for
obtaining a cubic-ordered parent state.

In agreement with our mean-field analysis, iterative min-
imization finds vortices for —K, = —K3 > 1.4. An example
is shown in Figs. 8(a) and 8(b), where we plot the spin
configurations of a single vortex on the Bloch sphere. For
better illustration, we split up the eight sublattices of the
cubic order into groups of four, shown in subfigures 8(a)
and 8(b), respectively, where each group represents one of the
two triangular sublattices of the honeycomb lattice. Using the
convention of Fig. 2(b)(i), subfigure 8(a) shows sublattices 1,
2, 3, 4 while 8(b) depicts sublattices 1, 2, 3, 4. Furthermore,
pairs of data points in 8(a) and 8(b) with the same color
correspond to pairs («, @) where a € {1, 2, 3, 4}. Considering
Figs. 8(a) and 8(b) separately, it can be seen that the properties
from model III directly carry over: Vortex rotations always
occur around Cartesian axes (here, only a vortex with a z
rotation axes is shown) and the four sublattices in each plot
split up into pairs showing a counter-rotating motion. When
comparing the two plots, one further finds that pairs of spins
(o, @) in the same unit cell have opposite directions, which
agrees with the spin pattern of the cubic parent state discussed
in Sec. IIC.

Due to these properties, one would expect that, similar to
model III, the system hosts six vortex types which condense
into a kagome superstructure. However, our numerical data
never shows regular vortex lattices. A typical outcome at
—K;, = —K3 = 1.5 is plotted in Fig. 8(c), where the site
energies ¢; clearly indicate local defects but without arranging
in a regular pattern. We speculate that this might be due to
the increased unit cell of the honeycomb lattice and/or due to
the more complicated underlying spin model with interactions
ranging up to third neighbors.

V. CONCLUSIONS

In this paper, we have studied the generation of Z,-vortex
phases and vortex crystals in Kitaev-Heisenberg models, in
various geometries and parent orders beyond the 120° Néel
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FIG. 8. Spin vortices for model IV from iterative minimization. (a), (b) Bloch sphere illustration of a single vortex at —K, = —K3 = 1.41

with a cubic ordered parent state where (a) shows the sublattices 1, 2, 3, 4 while (b) depicts the sublattices 1,2, 3, 4, colored red, green, blue,
yellow in each case [see Fig. 2(b)(i) for the definition of sublattices]. The vortex properties in (a) and (b) are identical to those of model III.
(c) Local sites energies for a numerical outcome at —K, = —K3 = 1.5 showing an irregular pattern of defects. This spin configuration has an
energy per site which is 0.063|J; | smaller than the lowest undisturbed parent state.

state. We have probed large classes of systems, following a
two step approach: Using an analytical mean-field method,
we first searched for the characteristic peak shift in reciprocal
space which allowed us to reduce the number of systems to
a few candidate models. These remaining models have then
been treated with the iterative minimization technique to study
vortex formation in their real-space ground-state spin con-
figurations. In all numerical outcomes showing vortices we
checked that their energies are smaller than the corresponding
parent states, confirming that the systems gain energy by
forming vortices.

We have identified and discussed four different vortex
phases where two of them are based on the 120° Néel state
(models I and II) while the other two rely on the tetrahedral
order or variants thereof (models III and I'V). Note that model
I is identical to the system studied in Ref. [24]. One of our
main findings is that these two groups of models show striking
differences in the nature of their vortices. The two systems
with 120° Néel parent order host type-II vortices where the
winding of the planar tripods of spins around the vortex cores
features an in-plane rotation axis. This axis points along one
of the diagonal (1,1,1)-type directions in spin space, revealing
a spin-locking mechanism which is typical for many Kitaev
systems [53]. While in model I the rotation axis is oriented
such that the spin directions in one sublattice remain fixed in
the vicinity of a vortex core, model II also allows for vortices
where all three sublattices show a rotation.

Models III and IV feature distinctly different vortex prop-
erties which are rooted in the fact that their tetrahedral and
cubic parent orders exhibit a continuous degeneracy (that may
be parametrized by two angles). In contrast to the previous
models where the local tripods of spins rotate like a rigid
body, these systems show vortices where the sublattices of the
tetrahedral /cubic orders split up into two groups which rotate
around a common axis but with an opposite sense of rotation.
We, hence, conclude that by exploring parts of the degenerate
manifold of states, these vortices gain energy compared to
a “rigid body rotation”. Another difference to the previous

systems is that the special rotation axes are given by the cubic
(1,0,0)-type directions.

Vortices with parent orders beyond the 120° Néel state
open up various interesting future directions of research.
While Kitaev couplings are essential for stabilizing Z, vor-
tices in the ground state, one can still ask whether the types
of vortices described here also occur in the absence of Kitaev
interactions but at finite temperatures. One may, for example,
search for thermally induced vortices from tetrahedral order
in the pure parent J,-J, Heisenberg model on the triangular
lattice, i.e., without Kitaev interactions. This model possibly
exhibits similar phenomena as the nearest-neighbor triangular
Heisenberg model where Z, vortices from 120° Néel order
are stabilized by thermal fluctuations and undergo a BKT-
like vortex binding-unbinding transition at finite temperatures
[20]. Furthermore, one may try to stabilize a vortex phase
where the nonplanar local spin arrangements show a “rigid
body rotation” around the vortex cores. In models III and
IV, this might become possible when adding further types
of anisotropic interactions, such as Dzyaloshinskii-Moriya
couplings or I' exchange, which have not been considered
here. An alternative would be to try to generate such phases
based on the 12-sublattice cuboc 1 or cuboc 2 parent orders
on the kagome lattice. These states are (up to global rotations
and global spin inversions) nondegenerate in the classical
kagome Heisenberg model and, hence, do not permit the
sublattice-splitting mechanism of models III and IV. We have
already started to search for such phases, however, at least for
Kitaev interactions up to third neighbors, the cuboc orders
were never seen to evolve into vortex phases. It would still
be worth adding Dzyaloshinskii-Moriya and/or I" interactions
which may potentially stabilize novel and unexplored vortex
phases.
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