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ABSTRACT
A ternary, orthorhombic κ-(AlxGa1−x)2O3 thin film was synthesized by combinatorial pulsed laser deposition on a 2 in. in diameter c-sapphire
substrate with a composition gradient. Structural, morphological, and optical properties were studied as a function of the alloy composition.
The thin film crystallized in the orthorhombic polymorph for Al contents of 0.07 ≤ x ≤ 0.46, enabling bandgap engineering from 5.03 eV
to 5.85 eV. The direct optical bandgap and the c-lattice constant, as well, show a linear dependence on the cation composition. XRD mea-
surements, especially 2θ-ω- and ϕ-scans, revealed the growth of κ-(AlxGa1−x)2O3 in [001]-direction and in three rotational domains. The
surface morphology was investigated by atomic force microscopy and reveals root mean square surface roughnesses below 1 nm. Further-
more, the dielectric function (DF) and the refractive index, determined by spectroscopic ellipsometry, were investigated in dependence on the
Al content. Certain features of the DF show a blue shift with increasing Al concentration.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5141041., s

I. INTRODUCTION

Monoclinic β-Ga2O3 can potentially be used in high-power
electronics,1–4 as solar-blind photo detectors,5 gas sensors,6 or thin
film transistors,7 because of its beneficial material properties such
as a large Baliga’s figure of merit, a large breakdown field8 of 8 MV
cm−1, and a high bandgap energy of 4.6–5 eV.3

Another interesting polymorph of the wide bandgap material
is its orthorhombic modification, denoted as κ-Ga2O3 and being
isostructural to κ-Al2O3, making the growth of κ-(Al,Ga)2O3 for
any cation composition seem possible. Ternary alloying enables the
fabrication of thin films with tailored bandgaps2–4 in a wide range,
which leads to an extended application field. Up to now, just a few
publications deal with the solubility limit of Al in κ-Ga2O3 or Ga
in κ-Al2O3 as well as the dependence of chemical, structural, and
optical properties on the cation composition. First investigations of
orthorhombic (AlxGa1−x)2O3 thin films grown on an AlN buffer

layer on (00.1)Al2O3 for defined x were published by Tahara et al.9

They report single phase thin films up to x = 0.395 with a direct opti-
cal bandgap of 5.9 eV. Storm et al. presented pulsed laser deposition
(PLD) grown thin films on (00.1)Al2O3 with a maximum Al content
of x = 0.38, which was increased by growth on a κ-Ga2O3 template
up to x = 0.65.10

Binary κ-Ga2O3 can be fabricated by halide vapor phase epi-
taxy11 (HVPE), atomic layer deposition12 (ALD), metal-organic
chemical vapor deposition13–18 (MOCVD), plasma-assisted,19 and
tin-assisted20 molecular beam epitaxy (MBE), as well as tin-assisted
pulsed-laser deposition21,22 (PLD). Alloys with In or Al were realized
by mist CVD9,23 and PLD10,24,25 on c-plane sapphire substrates. The
predicted large spontaneous polarization P of 23 μC/cm2 along its c-
axis26 turns the orthorhombic structure, e.g., as κ-(AlxGa1−x)2O3/κ-
Ga2O3 heterostructure, to a promising alternative for the fabrication
of high power devices. At the interface of heterostructures, P will
change abruptly, resulting in an accumulation of free charge carriers.
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In the present study, a κ-(AlxGa1−x)2O3 thin film with a lat-
eral variation of the alloy composition was grown by PLD using the
continuous composition spread approach (CCS-PLD) described by
von Wenckstern et al.27 Tin was offered during growth to induce
the orthorhombic phase as shown for binary κ-Ga2O3 by Kracht
et al.20 (MBE) and Kneiß et al.22 (PLD). The highest achieved Al
content in the present work amounts to x = 0.46. The chemical,
structural, and optical material properties, namely crystal structure,
surface morphology, optical bandgap energy, dielectric function,
and refractive index will be discussed in dependence on the cation
composition.

II. EXPERIMENTAL DETAILS
The ternary (AlxGa1−x)2O3 thin film was grown by CCS-PLD

using a two-fold segmented ceramic target. One segment consists of
Ga2O3 (purity 99.999%, Alfa Aeser), and the other of Al2O3 (purity
99.997%, Alfa Aeser). Both have been admixed with 1.5 at. % SnO2
to facilitate the growth in the orthorhombic structure. The oxygen
partial pressure in the PLD chamber was 0.006 mbar and the growth
temperature 640 ○C. The KrF excimer laser radiation (248 nm) had
an energy density of 2.6 J cm−2 on the target, which is located
10 cm away from the 2 in. in diameter (00.1)Al2O3 substrate. The
pulse repetition frequency was 1 Hz for the first 300 pulses to cre-
ate a nucleation layer and 10 Hz for the subsequent main layer, for
which 30.000 pulses were applied. The chemical cation composition
of the whole wafer was determined by energy-dispersive X-ray spec-
troscopy (EDX) performed with a FEI Nova Nanolab 200 equipped
with an Ametek EDAX detector on 49 positions on the 2 in. wafer.
Along the gradient, the cation concentration was additionally mea-
sured with higher spatial resolution by EDX as well as X-ray photo-
electron spectroscopy (XPS). The XPS measurements were done at
the Humboldt-Universität zu Berlin utilizing a JEOL JPS-9030 setup
using non-monochromated Al Kα radiation for the excitation. The
binding energy scale was referenced to C1s at 248.8 eV. The survey
in Fig. 2 was recorded at the ENERGIZE endstation at Bessy II, using
the Mg anode of a DAR400 X-ray source from ScientaOmicron for
the excitation and a DA30 analyzer from ScientaOmicron for detec-
tion of the emitted photoelectrons. Here, the O1s peak was set to
531 eV, as the C1s peak was overlapped by Ga Auger peaks. Crystal
structure screening was done with X-ray diffraction (XRD) mea-
surements utilizing a PANalytical X’pert PRO MRD diffractometer
equipped with a PIXcel3D detector operating in 1D scanning line
mode with 255 channels. The c-lattice constant for each detected
XRD spectra was determined by fitting the (002), (004), (006), (008),
and (0010) reflection peak positions with a pseudo-Voigt function,
and subsequently, the lattice plane distances were extrapolated to a
diffraction angle of θ = 90○ using the formula c = f (0.5[tan(θ)−1

+ cos(θ)tan(θ)−1]) to minimize the goniometer error.28 The direct
optical bandgaps (Eg) were deduced from transmission measure-
ments utilizing a PerkinElmer Lambda 19 spectrometer equipped
with a deuterium lamp for the UV-region and a tungsten-halogen
lamp for the visible and near-infrared region. From the transmis-
sion spectra (T), the absorption coefficient α was calculated via
α = (−ln(T)/d)2 with d being the film thickness. By extrapolation,
the linear part of (αhν)2 to zero, Eg was estimated. Spectroscopic
ellipsometry was employed to determine also Eg, d, the dielectric
functions and refractive indexes utilizing a J.A. Woollam M2000

dual rotating compensator ellipsometer RC2 with a spot size of about
300 × 500 μm2.

III. RESULTS AND DISCUSSION
A. Structural properties

With the implemented CCS technique for thin film prepara-
tion, the cation concentration varies across the wafer. The resulting
composition and the exact direction of the cation gradient was iden-
tified by EDX measurements on positions marked in Fig. 1(a) as
black dots to determine the Al incorporation x, locally. In the figure,
the compositions between the measurement points were interpo-
lated, indicating the direction of the cation gradient. Additionally,
along the gradient EDX and XPS mesurements were employed every
mm (EDX) or every second mm (XPS). The Al content ranges from
x = 0.07 to x = 0.79. These in principle identical results are presented
in Fig. 1(b). In accordance with the surfactant-mediated growth
model described by Kneiß et al.,22 tin is not detected in the bulk
(measured by EDX), but with the surface sensitive technique (XPS),
tin-related peaks can be observed and are attributed to the Sn surfac-
tant layer. The survey spectrum in Fig. 2 shows these tin peaks as well
as peaks assigned to gallium, oxygen, and aluminum, as expected for
(AlxGa1−x)2O3.

The crystal structure was investigated in dependence on the
Al content by 55 single XRD 2θ-ω scans recorded along the direc-
tion of the composition gradient. All measurements are presented
as a false color map in Fig. 3(a). Three single XRD patterns for
selected x values are depicted in Fig. 3(b). Over the whole composi-
tion range, reflection peaks of the c-sapphire substrate are visible at
2θ = 41.58○ and 90.64○. For x > 0.46, no additional reflections can be
observed, which indicates the amorphous growth of (AlxGa1−x)2O3
in this composition range. For x ≤ 0.46, reflection peaks assigned to
the (002) n-lattice planes of the orthorhombic crystal structure are
visible.

The 2θ angles of these reflections shift with increasing Al con-
tent to higher values, due to the smaller ionic radius of Al com-
pared to that of Ga. In accordance to this, the c-lattice constant,
presented in Fig. 4(a), decreases with increasing x and shows two
slightly different linear dependencies described by

FIG. 1. (a) Al content x at 49 points across the thin film surface, marked in the
graph as black dots and determined by EDX. The data between the measurement
points was interpolated, the black arrow represents the direction of the gradient.
(b) Cation ratio x acquired along the in (a) indicated gradient by EDX and XPS,
respectively.
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FIG. 2. XPS survey spectrum for (AlxGa1−x )2O3.

c(x)(Å) =
⎧⎪⎪⎨⎪⎪⎩

(9.271 ± 0.001) − (0.333 ± 0.008) ⋅ x, for 0.07 ≤ x ≤ 0.13

(9.276 ± 0.001) − (0.357 ± 0.002) ⋅ x, for 0.14 ≤ x ≤ 0.46.
(1)

For higher Al-contents (x > 0.46) the c-lattice constant
saturates, indicating the solubility limit of κ-(AlxGa1−x)2O3.
Further, to investigate the crystalline quality of the thin film, the
full width half maximum (FWHM) of the (004)-lattice plane reflec-
tion peaks is plotted in Fig. 4(a) in dependence on x exhibiting
an increase from 0.07○ for x = 0.07 to 0.15○ for x = 0.46, indi-
cating a high crystalline quality over the whole composition range.
Comparisons with binary κ-Ga2O3 thin films grown by PLD on c-
sapphire reveal similarly FWHM’s of the (004) reflections below
0.06○ for various growth temperatures and pressures.22 XRD ϕ-
scans of the skew-symmetric (131) and asymmetric (206) reflec-
tions, exemplarily shown in Fig. 4(b) for an Al concentration of
x = 0.13, indicate the epitaxial growth on c-plane sapphire as well
as the appearance of three rotational domains of the orthorhombic
unit cell separated by 120○,29 which were also present for κ-Ga2O3

22

FIG. 3. (a) False color map of 2θ-ω scans of orthorhombic κ-(AlxGa1−x )2O3 recorded along the composition gradient indicated in Fig. 1(a). (b) XRD patterns for x = 0.13,
x = 0.39, and x = 0.69. Peak positions of the (002) n lattice planes as well as the substrate (subs.) reflection are labeled.

FIG. 4. (a) c lattice constant, estimated
from the (002) n (n = 1–5) reflection
peaks, as well as FWHM of the (004)-
lattice plane reflection peak from XRD
patterns determined in dependence on x.
(b) XRD ϕ-scans of the (131), (122) and
(206) reflections as well as the substrate
(102) reflection performed for x = 0.13.
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FIG. 5. 2 × 3 μm2 AFM scans of surface morphologies of κ-(AlxGa1−x )2O3 for
different Al contents x as labeled recorded by AFM. Rq denotes the root mean
square surface roughness.

and κ-(InxGa1−x)2O3
24 thin films grown by PLD. The in-plane epi-

taxial relationships can be described by κ-(AlxGa1−x)2O3 ⟨010⟩ ∥
α-Al2O3 ⟨101̄0⟩ and κ-(AlxGa1−x)2O3 ⟨100⟩ ∥ α-Al2O3 ⟨21̄1̄0⟩. Fur-
thermore, the twelve-fold (122) reflection, originating from an addi-
tional two-fold splitting on mirror planes, proofs the orthorhombic
structure of the thin film.

B. Surface morphology
The surface morphology was recorded along the cation gradi-

ent by atomic force microscopy. Exemplary images for four different
Al-contents (x = 0.09, 0.16, 0.21, and 0.38) are shown in Fig. 5 and
exhibit smooth surfaces consisting of spherically shaped grains with
diameters of approximately 100 nm. Based on the recorded images,
root mean square surface roughnesses (Rq) and corresponding peak-
valley-distances (dPV, described by the scale next to the recorded
images) were determined. For x ≤ 0.21, Rq and dPV decrease with
increasing x and stay roughly constant for x > 0.21.

C. Optical properties
The determination of the direct optical bandgap Eg in depen-

dence on x was performed by two different measurement methods.

Along the composition gradient, transmission spectroscopy and
spectroscopic ellipsometry measurements were conducted. The first
one was performed in 5 mm steps starting after 4 mm (equals 6 posi-
tions) and the second one in 1 mm steps (equals 32 positions) only
on the κ-phase part of the thin film. Figure 6(a) presents transmis-
sion spectra as well as the calculated absorption spectra for different
Al contents. The bandgap energies Eg,T were obtained by extrapo-
lating the linear part of the absorption spectra expressed as (αhν)2

to the zero line. The resulted direct optical bandgaps show a shift to
higher energies with increasing x, which is also visible in Fig. 6(b).
Linear fitting of Eg,T yields

Eg,T(x)(eV) = (4.92 ± 0.06) + (2.17 ± 0.08) ⋅ x. (2)

For comparison, the bandgap variation was determined via spectro-
scopic ellipsometry and is displayed in Fig. 6(b), too. The deduced
change of the bandgap energy is almost linear and resulted in the
fitting equation,

Eg,E(x)(eV) = (4.85 ± 0.01) + (2.14 ± 0.03) ⋅ x. (3)

The resulting maximum bandgap energy is 5.85 eV for x = 0.46. In
a previous publication of Schmidt-Grund et al.,30 optical properties
of an (AlxGa1−x)2O3 thin film with the CCS-PLD technique on a
2 in. (001)-oriented MgO substrate was discussed. For x < 0.4, they
observed the monoclinic β-modification and estimated the direct
optical bandgap for this phase from spectroscopic ellipsometry to
Eg−dir(x)(eV) = 4.811 + 2.138 ⋅ x. This is in accordance to the pre-
sented Eg,E in our study, indicating a similar bandgap dependence of
monoclinic and orthorhombic (AlxGa1−x)2O3. The film thicknesses
deduced from the spectroscopic ellipsometry data were divided by
the applied pulse number to obtain the composition dependent
growth rate r(x) that is displayed in Fig. 6(b), too. It exhibits a max-
imum of 15.7 pm/pulse for x = 0.07 and decreases to 12.0 pm/pulse
for x = 0.46.

Further, the dielectric function (DF) was obtained by using a
layer stack model consisting of a c-plane sapphire substrate layer,
where the DF was taken from literature,31 a layer describing the thin
film and a surface layer. Due to the presence of rotational domains,
the film is effectively optical uniaxial, i.e., the tensor of the film DF
is given by ε� = εxx = εyy ≠ ε∥ = εzz and εij = 0 for i ≠ j. The line
shape of each tensor component was described by model dielectric
functions. Due to the absence of sharp features in the experimental
spectra, it was sufficient to describe the onset of the absorption in

FIG. 6. (a) Transmission spectra for
increasing Al contents as labeled. The
inset shows corresponding absorption
spectra expressed as (αhν)2. (b) Direct
optical bandgap and growth rate r as
a function of x. The values are deter-
mined by transmission spectroscopy
[Eg,T, shown in (a)] by and spectroscopic
ellipsometry (Eg,E), respectively.
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FIG. 7. Real (a) and imaginary part [(b)
and (c)] of the dielectric function for dif-
ferent Al concentration as labeled.

FIG. 8. (a) Refractive index n depend-
ing on the photon energy for various x
as labeled. (b) Cauchy parameters A, B,
and C in dependence of x.

the observed spectral range by band-to-band transitions (χCPM0 ) as
proposed by Adachi.32 The contributions of the energetic transitions
to the imaginary part of the DF is described by Gaussian oscillators
(χgauss), whereas the contributions of these transitions to the real part
of the DF was described by means of a pole function (χpole) due to
the Kramers-Kronig transformation. Thus, the entire DF for each
component is given by

εi = 1 +
2

∑
j=1

χCPM0
j,i + χgauss

j,i + χpole
i , (4)

with i = �, ∥. Finally, the dielectric function of the surface layer was
described by an effective medium approach,33 where the dielectric
function of the underlaying (Al,Ga)2O3 film and void was mixed 1:1.

The DF for various x is presented in Fig. 7 and shows that incor-
poration of Al leads to a blue shift of the transition energies and thus
to a blue shift of the entire dielectric function. This is accompanied
by a decrease of the real part of the DF in the visible spectral range
and thus of the refractive index displayed in Fig. 8(a). A compari-
son of the tensor components yields that the absorption sets in at
lower energies for light polarized parallel to the surface normal than
for light polarized perpendicular to the surface normal. Additionally,
the Cauchy function n = A + B/λ2 + C/λ4 describes the dispersion of
the refractive index up to 4.5 eV. Figure 8(b) presents the Cauchy
parameters A, B, and C as a function of x.

IV. CONCLUSION
In this study, an orthorhombic (AlxGa1−x)2O3 thin film with

a lateral varying cation composition gradient (0.07 ≤ x ≤ 0.46) was

examined for a variety of structural and optical material properties in
dependence on x. For the highest Al incorporation of x = 0.46 in the
crystalline phase, the optical bandgap at RT is 5.85 eV, which is up
to now the highest reported Al content and Eg for κ-(AlxGa1−x)2O3
thin films grown on c-plane sapphire. Chemical investigations con-
firmed a tin enrichment on the layer surface, not in the bulk, indi-
cating a surfactant-mediated growth of the thin film. Heteroepitaxial
growth in three rotational domains was presented and compared to
heteroepitaxial grown monoclinic thin films, the sample shown here
has higher crystalline quality, higher growth rates, and lower surface
roughnesses. The c-lattice constant exhibits a linear increase with
increasing x following Vegard’s law. Furthermore, dielectric func-
tions and refractive indexes were investigated in a wide composition
range. Based on our findings, κ-(AlxGa1−x)2O3 seems to be well
suited for possible usage, e.g., in high electron mobility transistors,
as wave-length selective UV - or quantum-well infrared photode-
tectors and more. Future investigations should target the suppres-
sion of rotational domains as well as doping to achieve electrically
conductive samples.
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