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Abstract
Isothermal titration calorimetry (ITC) is a widely used tool to experimentally probe the heat signal of the formation of the
protein corona around macromolecules or nanoparticles. If an appropriate binding model is applied to the ITC data, the
heat of binding and the binding stoichiometry as well as the binding affinity per protein can be quantified and interpreted.
However, the binding of the protein to the macromolecule is governed by complex microscopic interactions. In particular, due
to the steric and electrostatic protein–protein interactions within the corona as well as cooperative, charge renormalization
effects of the total complex, the application of standard (e.g., Langmuir) binding models is questionable and the development
of more appropriate binding models is very challenging. Here, we discuss recent developments in the interpretation of the
Langmuir model applied to ITC data of protein corona formation, exemplified for the well-defined case of lysozyme coating
highly charged dendritic polyglycerol sulfate (dPGS), and demonstrate that meaningful data can be extracted from the fits if
properly analyzed. As we show, this is particular useful for the interpretation of ITC data by molecular computer simulations
where binding affinities can be calculated but it is often not clear how to consistently compare them with the ITC data.
Moreover, we discuss the connection of Langmuir models to continuum binding models (where no discrete binding sites
have to be assumed) and their possible extensions toward the inclusion of leading order cooperative electrostatic effects.

Keywords Binding models · Molecular simulations · Electrostatic cooperativity

Introduction

The rational design of macromolecular polymeric drugs and
nanocarriers has become a central task in medicine and
pharmacy in the recent years [1–3]. Proteins typically bind
strongly to the macromolecular or nanoparticle surface and
thereby form a protein “corona,” a dense shell of proteins
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that can entirely coat the macromolecule [3–12]. As a
consequence, the solution environment, be it in vivo or in
vitro, does not see the macromolecule anymore but only
the protein corona, which has important implications for
the biological immune response to the macromolecule, its
metabolic fate, and thus the function of such a complex in
biomedical or biotechnological applications [3–12]. Many
fundamental questions about the properties of the corona
have kept the scientific community busy in the last years,
for example, what is the protein composition of such a
corona [4], how does it change dynamically in time [13,
14], and what are the underlying microscopic mechanisms
and interactions that control the formation, evolution, and
stability of such a corona [15]?

Calorimetry, in particular isothermal titration calorimetry
(ITC), has become an important tool to characterize
the protein corona [4–6, 9, 10, 17–19]. ITC provides
the calorimetric heat, and, if a suitable binding model
for data analysis is applied and correctly interpreted, it
delivers important quantities such as the stoichiometry of
binding and the binding affinity (binding constant) Kb
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of the proteins, as well as the heat of binding [19, 20].
However, the full quantification of the macromolecule-
protein complexation based on ITC is often out of reach
because the molecular and mechanistic processes are not
well understood, and the application of standard binding
models questionable. Naturally, the underlying interactions
are governed by a complex interplay between electrostatic,
solvation, and steric effects. Theoretical and simulation
concepts are in need that allow a quantitative assessment
of these forces [21–24]. Moreover, for the protein corona,
cooperative effects must be discussed because the proteins
interact with each other and also change some properties of
the macromolecule; in particular, electrostatic interactions
play a decisive role [6, 10, 13, 19]. Similar challenges
arise also in the sorption of proteins to charged nano- and
microgels [25]. The interpretation of ITC data and the
definition and application of appropriate binding models are
therefore very important but challenging tasks.

Hence, it is desirable to identify well-defined model
experimental systems where the protein corona is suffi-
ciently simple and accessible for interpretation. “Simple”
should mean that the binding partners are structurally well
characterized and the corona has only one protein com-
ponent in a fully binding equilibrium. For such a simple
system, also computer simulations and theoretical, physi-
cal binding models are easier to devise. Recently, Xu et
al. presented a study of such a simple system by combin-
ing coarse-grained (CG) molecular computer simulations
and ITC data of the corona formation of only one type of
protein on the dendritic polyglycerol macromolecule termi-
nated with sulfate (dPGS) [16, 26, 27]. dPGS has received
much attention in the last decade because of its high poten-
tial in drug design: it exhibits significant anti-inflammatory

action during disordered immune response [28–31] and has
high efficacy and functionality in many other biomedical
problems [32–36]. The dPGS is well characterized by now
theoretically [37, 38] and experimentally [39]. In their work,
Xu et al. analyzed ITC data of dPGS-protein complexa-
tion for various generations (sizes) of dPGS in particular
using lysozyme as a well-defined model protein. Due to its
almost complete sulfate termination, dPGS is highly neg-
atively charged at relevant pH values, while the lysozyme
proteins carry a positive net charge. Lysozyme complexes
strongly with dPGS and forms a well-developed protein
corona: Fig. 1 illustrates the lysozyme corona by snapshots
taken from the CG computer simulation model [16].

In the CG simulation model, the solvent acts only
as implicit background, while salt and dPGS monomers,
as well as protein amino acids, are modeled as coarse-
grained beads. Importantly, the original shape and charge
structure are conserved in this model. In particular, the
salt ions, sulfate groups, and charged acidic and basic
amino acids carry monovalent integer charges of appropriate
sign. Hence, while most hydration effects (i.e., those
beyond simple dielectric screening) are neglected, all steric
and electrostatic interactions are still well resolved and
accounted for. The simulations showed strong cooperative
effects in protein binding due to (excluded-volume)
packing and electrostatic interactions in the dense protein
corona. Consequently, binding affinities were found to
depend on the density (coverage) of the proteins on the
macromolecular surface. Despite this complexity, Xu et al.
showed that still meaningful comparisons to ITC data are
possible if the fits by the applied binding models, such as the
standard Langmuir binding model, are properly analyzed
and interpreted [16].

Fig. 1 Illustrating the protein corona for a lysozyme-dPGS (dendritic
polyglycerol sulfate) system. Panel (a): Top of the panel: Coarse-
grained representation of the highly charged dPGS macromolecule
(charged surface groups in red with a shell of counterions in yel-
low). Bottom of the panel: Coarse-grained representation of the protein
lysozyme. Positively charged beads are in green, negative charges
in red. Panel (b): The lysozyme proteins adsorb strongly on the

dPGS surface and form the protein corona. Snapshot taken from
coarse-grained computer simulations [16]. Panel (c): Simplified two-
dimensional sketch of the protein corona around dPGS. Proteins (green
spheres) of radius Rp and charge Qp adsorb in a shell of width δ on
the dPGS macromolecule (red sphere of radius Rm and charge Q0

m) to
form a dense shell (corona)
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In this contribution, we systematically describe the
challenges and new developments in the interpretation of
ITC data probing the protein corona. We start by recalling
what is actually measured by ITC and what information
is usually obtainable. We then introduce and derive the
concept of a coverage-dependent binding affinity in the
Langmuir model that serves for a better interpretation of
the ITC data as well as for extensions of standard binding
models. With these prerequisites, we show how binding
affinities from simulations, namely the free energy of
binding per protein extracted from a potential of mean
force calculation, can be compared with ITC data fitted by
the standard Langmuir model. Moreover, we discuss the
relation of Langmuir models to continuum binding models
(where no discrete binding sites have to be assumed) as
well as simple extensions of binding models toward the
inclusion of leading order cooperative electrostatic effects.
Our perspectives and extensions serve as starting points for
the development of more elaborate binding models that may
be directly applicable to fit ITC data in future studies.

Analysis of ITC data

The adsorption of a protein onto a macromolecule is
accompanied by the release of heat, �HITC, as measured
by ITC. In general, we have to assume for cooperative
adsorption that this heat per adsorbing protein depends on
the number of already bound proteins, i.e., it is a function
of coverage θ , usually defined as the ratio of bound proteins
Nb

p to the total number of binding sites N , i.e., θ = Nb
p/N .

We note that typically linked equilibria can contribute to
the measured heat by ITC, not directly related to the
binding event [19]. �HITC is thus described often as marker
enthalpy and is not necessarily the same as the binding
enthalpy �Hb (see, e.g., discussions and references in [19,
25]). The total in ITC released heat can then be written for
a total of Nb

p bound proteins as:

Q(Nb
p) = cmV

Nb
p∑

i=1

�HITC(i), (1)

where �HITC(i) is the measured heat by ITC for the
titration of the ith protein, cm the concentration of
macromolecules, and V is the total solution volume. In
the ITC experiments, Q is measured vs. the total protein
concentration ctot

p . Introducing the molar ratio x = ctot
p /cm

and going to the continuum limit we can write formally:

Q(x) = cmV

∫ HITC

0
dH ′

ITC(x)

= cmV

∫ x

0
dx′ ∂HITC(Nb

p(x′))
∂x′ (2)

where HITC(Nb
p) is the total heat generated per macro-

molecule after the adsorption of Nb
p proteins, and Nb

p(x)

represents the binding isotherm, i.e., the number of bound
proteins versus molar ratio at fixed temperature.

Instead of the total heat, the incremental heat Q′(x) =
dQ/dx is typically employed for fitting to better track the
changes in the heat during titration. The quantity of interest
is the incremental heat per increment of protein, given by:

1

V cm

Q′(x) = ∂HITC(Nb
p)

∂Nb
p

∂Nb
p(x)

∂x
. (3)

Due to the rather complex molecular interactions governing
the protein adsorption process, the function HITC(Nb

p) is
typically unknown and it is virtually always assumed that
�HITC is constant and independent of coverage. In that
case, it is:

1

V cm

Q′(x) = �HITC
∂Nb

p(x)

∂x
. (4)

Let us discuss in the following the behavior of this relation
for the typical case of a standard Langmuir isotherm.
The latter is based on identifying the simple association
reaction equilibrium A+B→AB, with a binding constant
Kb = [AB]/[A][B], where the square brackets denote
concentrations. The binding constant is associated with a
binding energy �Gb through Kb = v0 exp(−β�Gb), where
v0 = l/mol is the standard volume [20, 21, 40]. Strictly
speaking, �Gb is a free energy, but we will call it in the
following simply binding energy or Langmuir energy to
distinguish from other free energies we will approach in
our disucssions. With the assumption of N discrete binding
sites, the standard Langmuir model yields then [20, 41–43]:

Nb
p(x)/N = θ(x) = cp(x)Kb

1 + cp(x)Kb

, (5)

where cp(x) = cm[x − Nb
p(x)] is the free (bulk) protein

concentration. The latter depends on Nb
p in the experiments

with a fixed number of proteins in the sample (i.e.,
a canonical thermodynamic ensemble). In the standard
Langmuir model, the binding constant Kb is independent of
protein concentration, and solving (5) for Nb

p(x) yields:

Nb
p(x) = 1

2
N

[
ξ −

√
ξ2 − 4x/N

]
(6)

with ξ = 1 +x/N + 1/(NKbcm). Using Eq. 6 in Eq. 1 with
constant �HITC gives the total heat as:

Q(x) = 1

2
N�HITCcmV

[
ξ −

√
ξ2 − 4x/N

]
. (7)

The incremental heat is then [44]:

1

V cm

Q′(x) = 1

2
�HITC

[
1 − ξ − 2

√
ξ2 − 4x/N

]
. (8)
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The fitting of Q′(x) to the experimental data then yields
the unknown constants Kb, N , and �HITC. Equation 8
describes a sigmoidal curve typically measured by ITC. In
particular, deeper inspection of Eq. 6 shows that for large
binding affinities, Kb � 1/(Ncm), and very small x � N ,
it is Nb

p(x) = x (independent of Kb), and Eq. 8 exhibits
a plateau at the beginning of the ITC titration of height
�HITC, independent of the binding constant. This is indeed
a typical ITC signature in strongly associating systems [44].
In the limit of very large molar ratios x → ∞, all of the
titrated proteins will adsorb for a non-vanishing Kb and
Nb

p(x) saturates to a constant value, the maximum coverage.
Then Q′(x) = 0 and the ITC curve carries not much
information anymore. For large Kb, the inflection point
between the two saturating limits is at x � N , becoming
exactly equal for Kb → ∞. For low affinities Kb �
1/(Ncm), the curve behaves differently, but these “low-
signal” cases are often not well accessible by ITC [44]. The
just explained behavior is illustrated in Fig. 2 for various
values of the so-called Wiseman parameter c = cmKb [44].

Further analysis of Eq. 8 shows that for large Kb the
binding affinity is determined essentially by the slope
of the inflection point of Q′(x = N), where we find
d2Q/dx2|x=N ∝ √

Kb (see Appendix). For larger slopes,
automatically, the transition becomes also sharper, cf. Fig.
2. Hence, as an important conclusion, we find that fitting the
standard Langmuir model to any sigmoidal function with
sharp transitions probes essentially only the very vicinity of
the inflection point x = N of the Q′(x) curves. In other
words, fitting to Langmuir isotherms is thus most sensitive

Fig. 2 Exemplification of the behavior of the incremental heat Q′
versus rescaled molar ratio x/N for the standard Langmuir description
(8) for various Wiseman parameters c = cmKb [44] (that is, rescaled
binding constant Kb = c/cm). Only for large Kb � 1/(Ncm) the
curve develops a plateau for small x/N and the inflection point is at
x � N

close to x � N , where the molar ratio equals the number of
available binding sites. Importantly, the extracted apparent
binding constant Kb thus describes only the binding affinity
right at x = N . This finding comes in useful when we
have situations, like here for the protein corona, where the
binding constant is actually not a constant but depends on
the coverage (and thus on the molar ratio x).

In Fig. 3a, we show the experimental ITC data for
Q′(x) (symbols) for the specific case of lysozyme adsorbing
onto dPGS of various generations G2, G4, G4.5, and G5.5
(with fractional values due to incomplete synthesis [16])
at a relatively low salt concentration of cs = 10 mM.
Indeed we see that the systems exhibit wide plateau regions
and very sharp transitions, indicating very large binding
affinities. The standard Langmuir model fits relatively
well and extracts thus the binding constant right at the
inflection point x = N . The binding coordination, i.e.,
the maximum number of proteins constituting the protein
corona, increases with dPGS generation (size) from about
N = 3 for G2 to about N = 13 for G5.5. For increasing
salt concentrations cs , we see in Fig. 3b for generation G2
how the curves shift and the transition becomes softer, as
demonstrated also in Fig. 2, pointing to decreasing binding
affinities with increasing salt concentration.

The Langmuir model
with coverage-dependent binding constant

If cooperativity effects are at play, we need to consider
that the binding affinity of a protein depends on the
number of already bound proteins. One way of dealing with
cooperativity is to introduce binding polynomials [43, 45,
46], where every binding step A+B→AB, A+AB→2AB,
A+2AB→3AB, etc., has its individual binding constant and
equilibrium coverages are calculated by averaging over all
states. Here, we choose a different but, as we will see,
related route: we assume a Langmuir binding energy that
continuously changes with successive binding and thus with
coverage θ , i.e., �Gb = �Gb(x) = �Gb(θ). As we show
in the following, this can be readily incorporated into the
derivation of the Langmuir model in the canonical ensemble
and leads to a proper definition of a coverage-dependent
binding constant Kb(θ).

For this, consider a finite region with volume V in which
a much smaller subspace (macromolecule on which the
proteins bind) with N binding sites available. The binding
sites can be all of the same kind. The cooperativity is
assumed to enter through protein–protein interactions as
well as the change of global properties (like the total
charge of the macromolecule–protein complex). We assume
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Fig. 3 a Differential heat from ITC of lysozyme-dPGS complexa-
tion for dPGS generations G2 to G5.5 at a temperature of 310 K and
cs = 10 mM salt concentration [16]. The solid lines correspond to
the fits by the standard Langmuir model, Eq. 8. b ITC isotherms of
lysozyme-G2 complexation at different salt concentrations cs (see leg-
end) and fitted by the Langmuir model. The inset displays the salt
dependence of the binding constant Kb on a log-log scale. According
to limiting laws [19], −d ln Kb/d ln cs = NCR = 3.1 ± 0.1 counte-
rions are released upon binding. c CG simulation results of the PMF,

Gi(r), as a function of the center-of-mass distance r between G5 and
lysozyme for the successive binding of i = 1 to 15 proteins in 10 mM
salt concentration [16], color-coded according to the scale. d The simu-
lation binding free energy �Gsim(θ) (solid symbols; units kBT = 1/β)
plotted versus coverage θ for G2, G4, and G5, respectively, reads off
from the global minimum of the PMFs, as such in (c). The large open
circle, triangle, and square symbols indicate the simulation-referenced
Langmuir binding free energy �GITC

sim (θ∗), Eq. 25, for G2, G4, and
G5.5 at their respective coverage θ∗ � 0.95

a canonical ensemble with in total Ntot
p proteins in the cell

volume V which now contains only one macromolecule. We
define the fraction of bound protein particles by θ = Nb

p/N .
The number of available and independent binding states is
then [42, 47, 48]

W = ζNb
pN !

Nb
p!(N − Nb

p)! , (9)

from the combinatorial possibilities of distributing Nb
p

indistinguishable proteins on N sites, and ζ is the
microscopic partition sum of a single protein particle in the
bound state [21, 49, 50]. Different to the standard Langmuir
model, we now introduce a coverage-dependent binding
energy �Gb(N

b
p) associated with the binding of a protein

from a reference state to one Langmuir site, given that

Nb
p − 1 proteins are already adsorbed. This leads to the

partition sum:

Z = ζNb
pN !

Nb
p!(N − Nb

p)! [exp(−β�Gb(N
b
p))]Nb

p , (10)

and we can define the free energy of the macromolecule-
protein complex as

Fm

kBT
= − ln Z. (11)

Using the Stirling approximation ln(m!) = m ln(m) − m

leads (within an unimportant constant) to the free energy of
the complex normalized per binding site:

βFm

N
= θ ln θ + (1 − θ) ln(1 − θ) − θ ln(v0/�

3) (12)

+ βNb
p�Gb(N

b
p), (13)
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where we defined ζNb
p = (v0/�

3)N
b
p in terms of an

effective configurational volume v0 divided by the cubed
thermal (de Broglie) wavelength �3. “Effective” means that
also restrictions on internal vibrational and orientational
degrees of freedom upon binding as expressed by the full
microscopic partition sum [21, 49, 50] are adsorbed in the
volume v0.

The total Helmholtz free energy F of the canonical
system (including the finite bath of free protein surrounding
the macromolecule) is thus:

βF(Nb
p) = βFid + βFm (14)

where we introduced the ideal gas free energy βFid =
(Ntot

p − Nb
p)[ln((Ntot

p − Nb
p)�3/V ) − 1] of the canonical

reservoir. Then, cp = Np/V = (Ntot
p − Nb

p)/V is the
density of unbound (i.e., free bulk) proteins in V . The total
free energy f̃ = βF/N per binding site is then:

f̃ (θ) = (Ntot
p /N − θ)[ln((Ntot

p /N − θ)N�3/V ) − 1](15)

+ θ ln θ + (1 − θ) ln(1 − θ)

− θ ln(v0/�
3) + βθ�Gb(θ).

The minimization of the free energy with respect to the
coverage of bound proteins:

∂f̃ /∂θ = 0 (16)

yields then the final relation between the binding energy
and the fraction of bound proteins in dependence of the free
protein concentration cp:

Kb(θ) := v0 exp[−β(�Gb(θ) + θ�G′
b(θ))] = θ

(1 − θ)cp

, (17)

where �G′
b(θ) = ∂�Gb/∂θ . The left-hand side of the

equation defines a coverage-dependent binding constant
Kb(θ). As we see, we cannot simply define Kb(θ) solely by
�Gb(θ) but have to consider also the changes (derivative)
of the latter with θ . The physical interpretation of this term
is that a newly binding protein changes the coverage and
thus the binding energy (and thus binding equilibrium) for
all other bound proteins. If �G′

b = 0 for all θ , then �Gb =
const ., and we recover the standard Langmuir model with
Kb = v0 exp(−β�Gb) = const. In some cases, like in the
application discussed in this work, it is θ�G′

b � �Gb,
and the second term in the exponent can be neglected. Note
also, that if we rewrite (17) in θ = cpKb(θ)/(1+cpKb(θ)),
it is relatively simple to see that we can generate the
conventional binding polynomials [43, 45, 46] by a Taylor
expansion of Kb(θ(x)) with respect to molar ratio x, i.e.,
Kb(θ) � K0 + K1x + K2x

2 + ..., which may serve for
interesting interpretations of the constant coefficients Ki in
future work.

It is for analysis of some problems reasonable to assume
that the binding energy �Gb splits into an intrinsic process,
�Gb,int which is independent of any cooperative effects,

and an excess contribution, �Gb,exc(θ), that accounts for
the cooperativity. With this and neglecting the �G′

b term in
Eq. 17, we can write:

Kb(θ) = Kb,intKb,exc(θ) (18)

= v0 exp[−β(�Gb,int + �Gb,exc(θ))] = θ

(1 − θ)cp

.

Such a splitting was applied, e.g., in the case of charged
proteins binding to hydrogels [51], or in the splitting of
electrostatic contributions from intrinsic ones for small
molecular ligands binding to membranes [52–54]. Note
again that Eq. 18 is only accurate strictly if θ�G′

b � �Gb,
that is, the explicit variation of the binding energy with
coverage is much smaller than the absolute binding energy.

It is important to note that the volume v0 depends on
the exact nature of the bound state and is typically not
known. Per convention in experiments, the standard volume
v0 = l/mol � 1.6 nm3, corresponding to the standard
concentration co = 1 M (1 mol/l) is employed. In that case,
the determined �Gb = �Go is then called the standard
free energy of binding [20]. Hence, in experiments, the
discussion of origins or values of v0 and �Gb individually
without knowing microscopic details is in principle not
feasible. However, if we consider computer simulations
(see section “Comparing Langmuir to computer simulation
binding free energies”) where those quantities can (or must)
be calculated independently, one has to discuss the origins
and microscopic definition of v0 much more thoroughly.
Since, in general, v0 will depend on the specific microscopic
processes, one has to take care how to convert a theoretical
or simulation derived free energy to the standard energy of
binding �Go, as already discussed in a comprehensive way
for other associating systems [21, 40].

Connection to continuum bindingmodels

It is helpful for interpretation of ITC data to also
consider continuum binding models, i.e., to dismiss the
assumption of discrete binding sites. In particular, for
proteins binding to a macromolecule, it is often not clear
what the presumed discrete binding sites actually are.
For a relatively homogeneous macromolecular/nanoparticle
surface, a continuum picture, where adsorbed proteins may
freely move and diffuse on the macromolecule surface,
could be much more appropriate. Inspired from our
previous work on protein–hydrogel interactions [51], such a
continuum binding model for the current case of a protein
corona could be sketched as in the following. We make
the following Boltzmann ansatz for the number of adsorbed
proteins via:

Nb
p(x) = cpVb exp[−β(�Gmp(x) + �Gpp(x))], (19)
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where we split (for reasons becoming clear below) the
total binding free energy in the Boltzmann exponent
into a macromolecule–protein, �Gmp(x), and a protein–
protein, �Gpp(x), contribution. (We intentionally avoided
the subscript “b” here to make this free energy of binding
in the continuum model distinct from the Langmuir binding
energy discussed above.) Furthermore, Vb = Amδ is
the effective binding volume (say a spherical shell of
thickness δ, cf. Fig. 1) on the macromolecular surface with
area Am = 4π(Rm + Rp)2, where Rm and Rp are the
macromolecule and protein radii, respectively. A surface
density τ(x) (number per area) can now be defined by
τ(x) = Nb

p(x)/Am, and accordingly a surface packing

fraction Apτ < 1, where Ap � πR2
p is the area taken

effectively by a protein.
We stay in line with the coverage-dependent Langmuir

model Eq. 17 introduced in the previous section and assume
in Eq. 19 that the macromolecule–protein binding free
energy �Gmp(θ) is in general coverage dependent, thus
also a function of x, �Gmp(x). The free energy �Gpp(x)

considers the change of free energy of inserting one protein
into the quasi-two-dimensional liquid of already adsorbed
proteins on the surface. It is a contribution purely coming
from direct protein–protein interactions. It thus vanishes, in
contrast to �Gmp(x), in the limit τ(x) → 0. For proteins
interacting only with hard cores, it could be modeled by
the excess free energy of hard discs where the equation
of state is well known [55]. Disregarding any specific
protein–protein interactions right now, we can always make
a virial expansion in orders of the density τ . Considering
only the first leading order, β�Gpp(τ) � 2B2τ , where
B2 is the (two-dimensional) second virial coefficient,
expanding the exponent in Eq. 19 for small coverages via
exp[−β�Gpp(τ)] � (1 − 2B2τ), and rearranging to solve
for Nb

p(x), we obtain a closed form for the binding isotherm
through:

Nb
p(x) = cpVb exp[−β�Gmp(x)]

1 + 2B2cpVb exp[−β�Gmp(x)]/Am

. (20)

If we now make the substitution N = Am/(2B2) (for
reasons becoming clearer below), express Nb

p by coverage

θ = Nb
p/N , and define a binding constant K̃b(x) =

ṽ0 exp[−β�Gmp(x)] with ṽ0 = 2VbB2/Am = Vb/N , we
find exactly the Langmuir type of form:

θ(x) = cpK̃b(x)

1 + cpK̃b(x)
. (21)

The key steps for such a mapping of the continuum
model to the Langmuir model is on one hand the two-
body approximation in the protein–protein correlations, and
on the other hand, the definition of the effective binding
volume ṽ0 = Vb/N . With that we recognize that in the limit
of not too large coverages (where only 2-body interactions

dominate), the continuum model and the discrete Langmuir
model constitute essentially (mathematically) the same
binding models, albeit with different interpretations. N =
Am/(2B2) in the continuum picture is not the number of
binding sites but defines the maximal number of binding
spaces limited by the (2-body) protein–protein interactions.
This becomes immediately clear if we identify B2 with the
excluded interaction area, e.g., for the case for hard-disk like
particles of radius R where BHD

2 = 2πR2. Then, not more
than N adsorbed particles will fit on the surface simply by
packing constraints.

Note that if B2 < 0 or higher order terms contribute,
that is, protein–protein interactions are attractive or strongly
correlated, respectively, such a simple interpretation of N

and relation to Langmuir would not be so easily possible
anymore. Hence, while a mapping of the more general
continuum picture on the specific Langmuir model is in
principle possible in some limits, details are subtle, in
particular, how to define which interaction contributions
actually enter the binding constant Kb and which enter
in the effective binding volume. A direct connection of
the continuum free energy of binding to the coverage-
dependent model Eq. 17 is thus generally not possible—it
may be feasible only for certain specific physical binding
processes. As we will see in the following, the continuum
view is important for the comparison of ITC fits to computer
simulation data.

Comparing Langmuir to computer
simulation binding free energies

Now we come to one of the key questions, how can we
connect and compare the free energy of binding calculated
from a computer simulation to the one obtained from a
binding model fitted to ITC data. In particular, we want to
address the non-trivial question of what can be done if the
(typically complex) binding mechanisms and cooperative
effects are not known, and an appropriate binding model is
missing.

Let us briefly summarize what we typically do in a
computer simulation. In a canonical ensemble simulation
setup (that is, a fixed box volume V and fixed number
of proteins), we can access the equilibrium free energy
of binding of a protein i to a binding region by
calculating the so-called potential of mean force (PMF)
Gi(r) [49, 50]. This is done along the reaction coordinate
r , which is typically the center-of-mass distance between
a protein and the macromolecule/protein complex. Such a
simulation setup is illustrated in Fig. 4 for a coarse-grained,
implicit-solvent simulation of lysozyme associating with
dPGS [16]. Since the degrees of freedom are massively
reduced in such a coarse-grained representation, the
equilibrium PMF, as shown in [16], can be well sampled
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Fig. 4 Illustration of a PMF (potential of mean force) calculation in
a coarse-grained computer simulation [16] to obtain the equilibrium
binding free energy of a protein binding into an incomplete corona. A
single protein (right) is continuously moved along the center-to-center
distance r between the protein and the complex (left; dPGS in red),

where already a few proteins are bound. The PMF, Gi(r) (blue curve),
obtained from sampling and integrating the equilibrium mean force
along r , exhibits a deep global binding minimum at a close distance
r0. With Gi(r � r0) = 0, the value of Gi(r0) defines the simulation
binding free energy �Gsim

by simple statistical averages for every constraint of the
distance reaction coordinate r , in contrast to explicit-water
all-atom simulations which are usually harder to converge.
The calculations can be done for a single protein i also if
already i − 1 proteins are adsorbed. We can thus evaluate
the PMF for every successive binding event in the protein
corona. PMFs calculated from coarse-grained simulations
for the specific example of lysozyme to dPGS of generation
G5 are shown in Fig. 3c. For large distances r , Gi(r �
r0) = 0 is set to 0 to define the free unbound reference
system. For small r � 3–4 nm, we see a deep global
minimum which defines the bound state at distance r0.
The simulation binding free energy �Gsim(Nb

p) is then
calculated from the PMF differences between the global
minimum at the bound state at r0 and the free bulk state for
large r � r0, that is �Gsim(Nb

p) = Gi=Nb
p
(r = r0), if

Nb
p − 1 proteins are already present in the corona.
The cooperativity effects in the protein binding can be

clearly observed in the simulation results for �Gsim(Nb
p),

summarized in Fig. 3d: the attraction per protein decreases
with successive binding, indicating negative cooperativ-
ity, i.e., the more proteins are loaded into the corona
the less favorable the binding becomes. From equilib-
rium simulations [16], it was found that for dGPS G5
the maximum protein occupancy was N = 13. The
PMF for this in Fig. 3c is the third (reddish color) from
the top. The two top ones still exhibit a global bind-
ing minimum but also a significant barrier for crossing
at r � 6 nm, kinetically hindering the binding of the
corresponding proteins. (Note that for radial crossing of
barriers in 3D space, the effective free energy landscape
has to be corrected by a distance-dependent entropic fac-
tor [56, 57].) We see also from Fig. 3d that the assumption
θ�G′

b � �Gb made in section “The Langmuir model

with coverage-dependent binding constant” for the consid-
ered system holds well, that is, the changes θ [�Gsim(Nb

p)-
�Gsim(Nb

p + 1)] are typically much smaller than
�Gsim(Nb

p). However, the simulation binding free energy
cannot be related directly to the binding energy derived from
ITC, as we will argue in the following paragraphs.

We now show how to connect the simulation free
energy to the Langmuir results. In the simulations, with the
constraint of having Nb

p−1 proteins bound in the simulation,
we are probing the equilibrium N

p
b − 1 � Nb

p binding in
a domain (say spherical shell) of volume Vb � V . This
translates into the Boltzmann equilibrium:

Nb
p/Vb = cp exp(−β�Gsim(Nb

p)), (22)

where in this case cp is the concentration of the free
(unbound) proteins for which the equilibrium of Nb

p bound
proteins is established. The binding volume Vb is a quantity
that can be calculated in the simulations [16]. Equation 22
is similar to the continuum binding model introduced in the
previous section in Eq. 19, but all the binding contributions
are clumped together in one single binding free energy
�Gsim.

We emphasize again the nature of �Gsim(Nb
p) in the

simulations: it includes all entropic (including steric)
and energetic interactions of the Nb

pth protein with the
macromolecule and already bound proteins. In comparison,
in the Langmuir model with coverage-dependent binding
constant Kb(θ), Eq. 17, the binding equilibrium for the
protein coverage θ at concentration cp is:

θ = Nb
p

N
= cpKb(θ)(1 − θ) = cpv0 exp(−β�Gb)(1 − θ). (23)
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Fig. 5 Top panels: Protein coverage θ(x) as a function of molar ratio
x for the generations (a) G2 and (b) G5.5. In the lower panel, the cor-
responding ITC differential heat Q′(x) is displayed. θ is obtained by
integration of Q′(x), see Eq. 26. The dashed line indicates the binding

stoichiometry N defined by the inflection point. The slope of Q′(x)

at this point yields the binding affinity K(θ∗) from the Langmuir fits
(see section “Analysis of ITC data” and the Appendix). The coverage
at this point is θ∗(x = N) = Nb∗

p /N

Comparing Eqs. 22 and 23 shows that there is the
following relation between the simulation free energy
�Gsim and the Langmuir binding energy �Gb:

�Gsim(θ) = �Gb(θ) − kBT ln(1 − θ) − kBT ln(v0N/Vb). (24)

�Gsim includes all contributions to the transfer free energy
from bulk to the binding volume Vb. The Langmuir energy
�Gb in contrast considers only the energy of binding into
one of the Langmuir binding boxes with effective volume
v0. Thus, to link to the simulation free energy we have to
add the entropic correction terms (the ln-terms) which take
care of the confinement and configurational arrangements
in the N Langmuir binding boxes of volume v0. Hence,
the right side of the equation represents the total Langmuir
free energy, with entropy in reference to simulation binding
volume. This allows a direct comparison between the ITC
evaluation and the simulation PMFs on the full free energy
level. As a conclusion, �Gsim and �Gb (or the standard
energy �G0 ) cannot be compared directly, unless we are
in the low coverage limit θ � 1 and the simulation binding
volume is for some reason exactly given by the standard
binding volume.

This mapping is directly related to section “Connection
to continuum binding models,” Eq. 21, where we showed
that the Langmuir picture can be translated to a continuum
picture if v0 = Vb/N and v0 can be interpreted as an
effective configurational volume constrained by the binding
shell and pair interactions. Contributions from �Gsim are
thus split into �Gb, kBT ln(1 − θ), and kBT ln(v0N/Vb)

terms in rather non-trivial ways. Then, Eq. 24 can also be
interpreted such that the Langmuir binding free energy �Gb

includes all transfer free energy contributions, apart from
1- and 2-body confinement and protein–protein interaction
contributions, implicitly included in the definition of v0

and the Langmuir assumption of discrete binding boxes.

Hence, the ITC/Langmuir derived �Gb includes apart
from the energetic macromolecule–protein contributions
also many-body (larger than 2-body) packing correlations,
which makes it difficult to compare specific interaction
contributions between simulations and the Langmuir fit.

We can now use Eq. 24 to make a one-to-one comparison
between the simulation results reported in Fig. 3c and the
Langmuir fits to ITC in Fig. 3a. Recall from our discussion
in section “Analysis of ITC data” (cf. Fig. 2) that the ITC fit
provides information about the binding affinity Kb(θ) only
for a certain coverage θ∗ := θ(x = N). Only there Eq. 24
can be evaluated and we formally rewrite:

�GITC
sim (θ∗) = �Gb(θ

∗) − kBT ln(1 − θ∗)
− kBT ln(v0N/Vb). (25)

where �GITC
sim (θ∗) defines the total binding free energy of

ITC that can be compared with simulation results. Thus, we
can refer to it as the “simulation-referenced” Langmuir free
energy [16].

How do we evaluate the coverage θ∗? Given the
sigmoidal differential heat as in Fig. 3a, Q′(x), the
inflection point directly delivers the binding stoichiometry
N . The protein coverage θ follows from the normalized
integrated incremental heat as:

θ(x) =
∫ x

0
Q′(x′)dx′ /

∫ ∞

0
Q′(x′)dx′. (26)

With that, one can define the protein coverage at which
the binding affinity is evaluated by θ∗ = θ(x = N) as
well as the mean coordination number Nb∗

p = Nθ∗ at
the respective binding equilibrium. In Fig. 5, we exemplify
the calculation of θ∗ for dPGS generations G2 and G5.5-
dPGS, respectively, directly from the ITC measurements.
The coverage θ∗ is found as θ∗ = 0.92 for G2 and θ∗ =
0.97 for G5.5, which corresponds to the mean coordination
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numbers Nb∗
p = 2.2 for G2 and Nb∗

p = 12.2 for G5.5,
respectively.

Thus, as an important finding, the coverages at which
the binding affinity is probed by ITC are already very
close to saturation. The binding affinity is therefore related
to those few, 1-2 proteins which finally complete the
protein corona at high protein concentration. As we see
from the simulations in Fig. 3d, the proteins that start
forming the corona have a very different, about 10kBT

more attractive, binding free energy than the finally binding
ones. In Fig. 3d, we also plot the results for the simulation-
referenced Langmuir free energy (25), for generations G =
2, 4, and 5.5. The ITC-based results are all very similar for
the various generations at around �GITC

sim � 14 to 15 kBT

and depicted by large open symbols at θ∗ in Fig. 2d. They
match very well the simulation free energies at coverages of
θ � 0.95, consistently right at the θ∗ values where the ITC
binding affinity was determined. Hence, our comparison
on the total free energy level shows good quantitative
agreement between ITC and the computer simulations.
Some more physical interpretation of the data based on the
dominant electrostatic interactions in this system follows in
the next section.

Electrostatic excess contributions
and cooperativity

When many charged proteins bind to a charged region
cooperativity effects come into play, in leading order simply
due to the change of the global electrostatic properties
during adsorption. This has been formulated, for instance, in
the Guoy-Chapman-Stern theory for the binding of charged
ligands to charged surfaces [52–54] or the binding of net-
charged proteins to microgels [51], where the successive
binding incrementally changes the overall surface or
Donnan electrostatic potential, respectively. Consequently,
the total binding constant Kb = Kb(x) = Kb(θ) has to
be defined more generally and split up into an intrinsic
part Kb,int and an excess part Kb,exc, as discussed before
in Eq. 18. For the purpose here, we can equate the excess
contribution with a cooperative electrostatic contribution,
via:

Kb(x) = Kb,intKb,elec(x) = θ(x)

[1 − θ(x)]cp

, (27)

i.e., �Gb(x) = �Gb,int + �Gb,elec(x). Per definition,
the intrinsic, x-independent binding constant Kb,int only
contains contributions from local and specific interaction
between the protein and the macromolecule, and the
nonspecific, global, and cooperative electrostatic effect has
been separated out. To be more precise with the word
“global,” we have in mind a leading order multipole

expansion (monopole, dipole, etc.) of the electrostatic
potential of the whole complex, whose electrostatic
properties are changing during binding. Specific local
interactions may include local solvation effects, e.g.,
hydrophobic, or possibly highly localized interactions, such
as H-bonds or salt bridges.

For proteins interacting with the highly charged
dPGS macromolecule, it was found that the intrin-
sic part is dominated by a highly localized electro-
static effect, the counterion-release (CR) contribution: For
the highly charged dPGS macromolecule, strong charge-
renormalization was observed by a massive uptake of coun-
terions [37]. A few of those counterions “condensed” on the
dPGS surface layer are liberated when the protein binds,
whereupon an oppositely charged protein patch becomes a
multivalent counterion for the polyelectrolyte [58–64]. The
resulting favorable (purely entropic) free energy in depen-
dence of the salt concentration cs can be formulated as:

�Gb,int = �GCR = −NCRkBT ln(cci/cs), (28)

where cci (typically � cs) is the local concentration
of condensed counterions, cs the bulk salt concentration,
and NCR denotes the number of those counterions
released after binding. Equation 28 follows in some
limits from the pioneering considerations of Record,
Anderson, and Lohman [65] in the realm of DNA-
protein complexation that culminated in the leading-order
expression for the binding constant purely from counterion
release, d ln Kb/d ln cs = −NCR. More detailed discussions
on the derivation and consequences of these processes and
the interpretation of NCR can be found in the original
work [65] and partially in more recent references [19, 66].

Apart from some extreme scenarios, e.g., total charge
reversal of the complex, or large bulk salt concentration
changes with titration, it can be safely assumed that the
counterion-release part is an intrinsic contribution to the
macromolecule-protein binding term (cf. Eq. 19) whose
magnitude does not depend on protein coverage. The CR
mechanism should play a role for every protein that carries a
significant positive patch (even net-neutral or net-negatively
charged ones [16, 26, 27]) and according to Eq. 28 it
can be assumed that the number of released ions, NCR,
scales with patch size, that is, this interaction is protein
specific. We see in the inset of Fig. 3b that indeed the
CR signature is found very well expressed in the dPGS-
lysozyme system, where ln Kb is a linear function of ln cs .
The slope delivers the number of released counterions for
the dPGS G2 of about NCR � 3, which well matches the
computer simulation results in which ions can be explicitly
counted [16]. CR is a very large driving force because the
local concentration of condensed ions, cci , is typically in
the molar range compared with only millimolar salt bulk
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concentrations cs . As a consequence, Eq. 28 predicts that
only a single released ion can contribute as much as 3–4
kBT (entropic) free energy to the binding. More details on
computational characterization of the CR effects in dPGS-
lysozyme complexation can be found in the previous joint
simulation/ITC works [16, 26, 27, 66].

For the non-specific electrostatic part, one could envision
a multipole expansion for the charged binding partners. In
first order, the proteins are simply charged spheres of size
Rp carrying a net charge Qp = Zpe. Analogously in first
order the macromolecule/protein complex is a sphere of size
Rm + Rp and a coverage-dependent charge

Qm(Nb
p) = Q0

m + Nb
pQp, (29)

depending on the number of bound proteins, because they
modify the net charge of the complex. This is arguably the
simplest realization of electrostatic cooperativity, in which
the screened monopole electrostatic potential between
the complex (including macromolecule and corona) and
an approaching protein depends on the coverage which
renormalizes the charge Q0

m. This effect can be positively
or negatively cooperative depending on the signs of the
involved charges. On a simple Debye-Hückel level, we can
write for �Gb,elec(N

b
p):

β�Gb,elec(N
b
p) = λB

Rp + Rm

Qm(Nb
p − 1)Qp

(1 + κRp)(1 + κRm)
, (30)

where λB = e2/(4πε0εkBT ) is the Bjerrum length and
κ = √

4πλBcs the inverse (Debye) screening length for
a monovalent salt at concentration cs . Note that Eq. 30
with the simple addition of macromolecule and protein
charges as defined in Eq. 29 involves both macromolecule–
protein and protein–protein interactions which would enter
in principle in both binding energies in the continuum ansatz
Eq. 19, respectively.

Together with Eq. 28, the non-specific electrostatic
contribution Eq. 30 in the coverage-dependent Langmuir
model Eq. 27 would be a first attempt of a binding
model that includes electrostatic cooperativity effects. If
we compare back to Eq. 17, however, we see that we
would need to include the first derivative of Eq. 30 with
respect to coverage (the �G′

b term in Eq. 19) to include the
cooperative effect more completely to consistently describe
the total binding equilibrium. Similar models, additionally
including Born self-energy terms and dipolar contributions,
albeit neglecting the �G′

b term, were devised for proteins
binding to hydrogels in equilibrium [51, 67] as well as for
protein sorption kinetics to core-shell hydrogels [68] and
molecular cargo to hollow hydrogels [69].

We finally note that some of the findings in the ITC and
simulation data for the dPGS-lysozyme complexation can
be already well interpreted by such a simple electrostatic

extension of the binding models. For instance, we observe
in Fig. 3d that the binding affinity does not depend much on
the dPGS generation. The reason is that charge renormaliza-
tion of the dPGS leads to effective macromolecular charges
that change only little with generations (although the bare
charge changes substantially) [37]. As a consequence, the
global electrostatics in leading order is very similar for the
various generations. For high coverages θ∗ near saturation,
where we evaluated the ITC data in section “Comparing
Langmuir to computer simulation binding free energies,”
the dPGS is almost completely neutralized by proteins and
the binding affinity reflects mostly the intrinsic contribu-
tion, that is, the CR contribution, Eq. 28. Comparing the
binding free energy at θ∗ to Eq. 28 with independent esti-
mates of cci and NCR indeed confirmed that CR is the
dominant intrinsic mechanism to binding [16]. Recall that
the CR process is well captured in the (implicit water)
coarse-grained simulations due to the explicit resolution of
the ions. The good agreement of simulations and exper-
iments in Fig. 3d indicates that water hardly contributes
to the total free energy of binding. A deeper discussion
of water effects on the (temperature-dependent) binding
enthalpy �Hb and the corresponding entropy of binding can
be found in a recent publication [66].

Summary and concluding remarks

Clearly, the complexation of proteins with a macromolecule
or a nanoparticle involves complex processes. ITC can
probe these processes but only implicitly by measuring the
incremental heat released in the complexation equilibrium.
Binding models are thus in need which either take into
account the microscopic interaction details, or, if not
available, standard binding models need to be properly
interpreted. Nowadays, with the great help of molecular
computer simulations of increasing quality and efficiency
we are in a position to learn a lot about the complexation
process and devise, modify, and interpret binding models
more systematically. As a start, in this work, we introduced
the concept of a coverage-dependent binding affinity in the
Langmuir model that serves for better interpretation of ITC
data as well as for extensions of standard binding models.
We showed how binding affinities calculated from computer
simulations, namely the free energy of binding per protein
extracted from a potential of mean force calculation, can be
consistently compared with experimental ITC data fitted by
the standard Langmuir model. Moreover, we discussed the
relation of Langmuir models to continuum binding models
as well as simple extensions of binding models toward the
inclusion of leading order cooperative electrostatic effects.
Our perspectives will hopefully serve as starting points for
the development of more elaborate binding models that
may be directly applicable to fit ITC data in future studies
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of the protein corona or similar complex and cooperative
problems.

Appendix

The equation to fit a ITC sigmoidal curve according to the
Langmuir isotherm reads:

1

V cm

Q′(x) = 1

2
�HITC

[
1 − ξ − 2

√
ξ2 − 4x/N

]
, (31)

with ξ = 1 +x/N + 1/(NKbcm). Now, we write x′ = x/N

as the fraction between the molar ratio and the number of the
binding sites, f = 1

V cm�HITC
Q′(x) denoting the normalized

sigmoidal curve, and c = Kbcm as the Wiseman parameter
of the ITC experiment [44]. With that, the derivative df/dx

with respect to the molar ratio x is:

df

dx
= −2

Nc(ξ2 − 4x′)3/2
, (32)

On that basis, the second-order derivative d2f/d2x follows:

d2f

d2x
= 6

N2c

(x′ − 1) + (1/c)

[(1 − x′)2 + 2
c
(1 + x′) + 1

c2 ]5/2
. (33)

The inflection point of the sigmoidal curve with d2f /d2x =
0 is then determined as x′ = 1 − 1/c, which approaches 1
in the limit of c → ∞. In that case, the corresponding slope
of the titration isotherm at the inflection point is:
(

df

dx

)

x′=1−1/c,c→∞
= −

√
c

4N
=

√
cm

4N

√
Kb, (34)

which is found proportional to the square root of the binding
constant Kb. Thereby, the binding constant is provided by
the slope at the inflection point of the sigmoidal curve in
the framework of the Langmuir isotherm. Given a coverage-
dependent Kb(θ((x)), the Langmuir fit then returns the
binding constant Kb(x = N) associated with the inflection
point at x′ = x/N = 1 in the limit of c → ∞.
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10. Schöttler S, Landfester K, Mailänder V (2016) Angew Chem
(Intern Ed) 55:8806

11. Giudice MCL, Herda LM, Polo E, Dawson KA (2016) Nat
Commun 7:13475

12. Boselli L, Polo E, Castagnola V, Dawson KA (2017) Angew
Chem Int Ed 56(15):4215

13. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) ACS
Nano 4:3623

14. Angioletti-Uberti S, Ballauff M, Dzubiella J (2018) Mol Phys
116:3154

15. Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C,
Neffe AT, Lendlein A, Ballauff M, Haag R (2014) Angew Chem
(Intern Ed) 53:8004

16. Xu X, Ran Q, Dey P, Nikam R, Haag R, Ballauff M, Dzubiella J
(2018) Biomacromolecules 19:409

17. Jelesarov I, Bosshard HR (1999) J Mol Recognit 12(1):3
18. Chaires JB (2008) Annu Rev Biophys 37:135
19. Xu X, Ballauff M (2019) J Phys Chem B 123(39):8222
20. Atkins P, de Paula J (2010) Physical chemistry. W. H Freeman and

Company
21. Gilson MK, Zhou HX (2007) Annu Rev Biophys 36:21
22. Durrant JD, McCammon JA (2011) BMC Biol 9:71
23. Wang RX, Lai LH, Wang SM (2002) J Comput-Aided Molec Des

16:11
24. Perez A, Morrone JA, Simmerling C, Dill KA (2016) Curr Opin

Struct Biol 36:25
25. Welsch N, Becker AL, Dzubiella J, Ballauff M (2012) Soft Matter

8:1428
26. Ran Q, Xu X, Dzubiella J, Haag R, M Ballauff (2018) (3), 9086
27. Ran Q, Xu X, Dey P, Yu S, Dzubiella J, Haag R, Ballauff M (2018)

J Chem Phys 149:163324
28. Türk H, Haag R, Alban S (2004) Bioconjug Chem 15:162

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Colloid Polym Sci

29. Dernedde J, Rausch A, Weinhart M, Enders S, Tauber R, Licha
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