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ABSTRACT

Highly porous, In-filled CoSb3 skutterudite materials with an attractive ther-

moelectric figure of merit (ZT * 1) and corresponding dense samples were

fabricated through the cost-effective method of reduction in oxides in dry

hydrogen and the pulsed electric current sintering (PECS) method, respectively.

The reduction process was described in detail using in situ thermogravimetric

analysis of Co2O3, Sb2O3 and In(NO3)3�5H2O separately and in a mixture. Two

methods to synthesise the same material were examined: (a) free sintering of an

initially reduced powder and (b) PECS. The free-sintered materials with higher

porosities (up to * 40%) exhibited lower values of electrical conductivity than

the dense PECS samples (porosity up to * 5%), but the benefit of an even

sixfold reduction in thermal conductivity resulted in higher ZT values. The

theoretical values of thermal conductivity for various effective media models

considering randomly oriented spheroid pores are in good agreement with the

experimental thermal conductivity data. The assumed distribution and shape of

the pores correlated well with the scanning electron microscope analysis of the

microstructure. The lowest value of thermal conductivity, equal to 0.5 W/m K,

was measured at 523 K for In0.1Co4Sb12 with 41% porosity. The highest value of

ZTmax = 1.0 at 673 K was found for the In0.2Co4Sb12 sample in which the

porosity was 36%.
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GRAPHIC ABSTRACT

Introduction

Thermoelectric (TE) materials are being widely

investigated and developed due to their potential

applications for the construction of devices that allow

direct conversion of heat into electrical energy. The

advantages of these devices, i.e. small weight and

size, simple construction and high reliability, are

attractive for the construction of devices improving

the efficiency of, for example, automotive drivetrains,

power plants and other energetic devices for the

recovery of waste heat. The main barriers to this

technology are their still inadequate efficiency and

quite high costs of production. However, continuous

progress in thermoelectric materials engineering

results in the improvement in energy conversion

efficiency and the reduction in production costs.

The thermoelectric performance of a thermoelectric

material is characterised by the so-called dimen-

sionless figure of merit, ZT = T(S2r)/jtot, where S is

the Seebeck coefficient, r is the electrical conductivity

and jtot is the total thermal conductivity, which

consists of two components: the lattice thermal con-

ductivity jl and the electrical thermal conductivity je.
Therefore, to obtain satisfactory performance of TE

materials, it is necessary to enhance their thermo-

electric properties, such as their Seebeck coefficient

and electrical conductivity, and to decrease their total

thermal conductivity.

Among various thermoelectric materials, skut-

terudites, particularly those based on cobalt

triantimonide CoSb3, have attracted the attention of

researchers [1–5] mainly due to their excellent elec-

tronic properties and the relatively low price of their

constituent elements. Skutterudites crystallise in the

Im-3 body-centred cubic structure. The structure,

presented in Fig. 1, consists of Sb atoms in the 24 g (0,

x, y) Wyckoff position. The strongest Sb–Sb bonds

form rectangles with shorter bonds (2.92 Å, all given

bond lengths are obtained from a Rietveld refinement

Figure 1 Crystal structure of In-filled CoSb3. Orange atoms—Sb,

blue—Co, purple—In. For clarity, the figure presents fully filled

skutterudite, corresponding to the InCo4Sb12 composition.
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of the PECS01 sample investigated in this paper)

forming polyhedra marked in purple, and longer

ones (2.97 Å) between the polyhedra. The other Sb–

Sb bonds on the polyhedra are weaker (3.71 Å). The

antimony rectangles are joined by Co atoms in posi-

tion 8c (0.25, 0.25, 0.25) with 2.52 Å bonds. The unit

cell contains two cages (polyhedra marked in purple

in Fig. 1), centred in the 2a (0, 0, 0) position that are

large enough to accommodate a metal atom and

create a so-called filled skutterudite (RCo4Sb12) [6].

The filling atom, R, is weakly bound to the antimony

atoms. The length of the bonds is 3.36 Å, which is

more than the sum of the corresponding atomic radii

of 3.00 Å (in the case of In filling). Thus, the filling

atom may act as a ‘‘rattler’’, which can enhance

phonon scattering and thus lower the thermal con-

ductivity. Additionally, the filling atom acts as elec-

tron donor, improving the electrical conductivity.

The lower values of thermal conductivity and higher

electrical conductivity of filled skutterudites are in

agreement with the phonon glass–electron crystal

(PGEC) concept [7]. Many dopants are considered to

be promising candidates, i.e. alkaline metals (Na [8],

Li [9], Ba [10],) rare-earth metals (e.g. Yb ZTmax = 1.4

at 823 K [11], Ce ZTmax = 1.3 at 850 K [1]) and In

(ZTmax = 1.5 at 725 K) [12]. The intermediate tem-

perature range (670–870 �C) at which the skutteru-

dites’ ZT parameter is the highest makes these

materials excellent candidates for many applications,

for example in the automotive industry [13, 14].

Skutterudites are relatively cheap in comparison with

other materials currently used in thermoelectric

modules. For example, the estimated cost of pro-

duction of 1 kg of raw material in the case of Si–Ge

alloy is USD 679; for Bi2Te3, it is USD 110; and for

skutterudites, it is USD 10–37 [15–17]. However,

large-scale and low-cost production technologies

have not been developed yet for these materials.

Typical powder metallurgy methods, commonly

used in laboratories for the synthesis of skutterudites,

often require pure metals as raw elements and a long

synthesis procedure lasting up to 7 days and con-

sisting of several stages, such as annealing, grinding

and consolidation [18, 19]. Moreover, because of the

high volatility of Sb, sealed quartz ampules are usu-

ally applied, which influences the costs of synthesis

[18–21]. Therefore, for large-scale production of TE

materials, faster and cheaper production methods

need to be developed. Several rapid fabrication

techniques have been proposed for the Co–Sb system.

Melt-spinning [22], microwave synthesis [23] and

melting and quenching in air [12] have been suc-

cessfully used to produce CoSb3-based skutterudites.

The reduction in reagents in the form of metal

oxides in a hydrogen atmosphere may be an alter-

native route to large-scale production of TE materials.

This method may be cheaper because of the lower

price of oxides in relation to high purity metals, and

due to the shorter synthesis time. Furthermore, it

does not require any specialised and expensive

equipment. And finally, most importantly, it is pos-

sible to obtain a relatively large porosity, which may

be favourable for the further reduction in costs and

increase in the materials’ ZT. The reduction in oxides

with gaseous agents generally takes place at the

surface of the oxide grains where surface defects have

been found to play an important role in the reaction

[24, 25]. Therefore, milling of the reduced powder

prior to the reduction process enhances the rate of

this process and allows it to be performed at a lower

temperature. Additionally, in some mixtures of oxi-

des, these oxides or reduced metals can have a cat-

alytic effect on the process [26].

Synthesis of porous thermoelectric materials such

as Bi2Te3 [27–29], (Bi,Sb)2Te3 [29–31], Ge0.77Ag0.1
Sb0.13Te (TAGS) [32], Bi2Te1-xSex [33, 34] and CsBi4-
Te6 [35] via this technique has been previously

reported. In this method, a mixture of oxides is

reduced at a given temperature in a dry hydrogen

flow. Controlling the temperature and time of the

reduction, as well as the initial stoichiometry, leads to

different final compositions, grain sizes, porosities

and the overall thermoelectric properties of the

material. Reduction in hydrogen was also used as

part of a CoSb3 chemical alloying fabrication process

by Khan et al. [36] and chemical co-precipitation by

Kim et al. [37]; however, the porosities of the

obtained materials were relatively low

(\ 10%). Other thermoelectric materials with slightly

higher porosity (* 14%) were recently reported

[38, 39], and in both cases, significant enhancement of

the ZT parameter was observed due to the presence

of pores.

The idea of a bulk skutterudite material with high

(e.g. / = 30–40%) porosity, which maintains high TE

performance, is in our opinion worthy of further

exploration. Therefore, in this study, the PECS and a

cost-effective method of reduction in oxide reagents

in hydrogen were used to fabricate highly porous, In-

filled CoSb3 skutterudite InxCo4Sb12 (x = 0.1, 0.2, 0.4,
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1). The microstructural and structural properties of

the materials were analysed and compared with

dense samples prepared by pulsed electric current

sintering (PECS). Detailed analyses of the impact of

the porosity (e.g. the shape and orientation of the

pores) on the thermal and electrical transport prop-

erties, as well as the thermoelectric performance of

the materials, were performed.

Experimental

The InxCo4Sb12 (x = 0.1, 0.2, 0.4, 1) materials were

prepared by the reduction in metal oxides in dry

hydrogen. A stoichiometric mixture of Co2O3 (99%),

Sb2O3 (Sigma Aldrich, 99.99%) and In(NO3)3�5H2O

(Sigma Aldrich, 99.9%) was ball-milled for 22 h at a

rate of 350 rpm in a zirconia vessel with zirconia balls

(diameter 3 mm). The ingredients were mixed with

isopropanol with a ball-to-powder-weight ratio of 3:1.

Then, the mixed starting reactants were cold-pressed

at a uniaxial pressure of 6 MPa and reduced in an

atmosphere of flowing H2 at 600 �C for 2 h. It should

be noted that in the case of In(NO3)3�5H2O as a

reactant, the step preceding the actual reduction

process in hydrogen is the prior dehydration and

decomposition of nitrate. After preliminary reduc-

tion, the materials were ground in an agate mortar,

and 1.3 ml of 2% polyvinyl alcohol (PVA) in a water

solution per 1 g of the powder was added as a binder

and pore-forming agent. The powders were subse-

quently cold-pressed into disks with a 13 mm diam-

eter and * 2.5 mm thickness at a uniaxial pressure

of 11 MPa and free-sintered in a hydrogen atmo-

sphere at 600 �C for 8 h. An extended time of the

reduction procedure was applied to ensure the total

decomposition of the PVA, which begins above

300 �C [40]. For comparison, a set of dense poly-

crystalline samples with the same level of In impurity

were produced, as detailed below. First, InxCo4Sb12-
Oy (x = 0.1, 0.2, 0.4, 1) powders were synthesised as

described above. Next, the samples were pressed at

11.2 MPa and reduced in hydrogen at 600 �C for 8 h.

Then, the samples were ground and subsequently

sintered in a graphite die at 550 �C for 5 min at a

pressure of 40 MPa using PECS under Ar atmo-

sphere. Disk samples of 10 mm in diameter and *
2.5 mm in thickness were obtained to determine the

thermal and electrical transport properties. The

reaction scheme for both routes is presented in Fig. 2.

The phase composition of the materials was

investigated by the X-ray diffraction (XRD) method

(X’Pert Pro MPD Philips diffractometer) using CuKa

radiation (k = 1.542 Å) at room temperature. The

XRD patterns were analysed by the LeBail method

[41] using the FullProf software. The lattice parame-

ters of the investigated samples were obtained as

profile-fitting parameters. Uncertainty was estimated

at 0.002 Å, on the basis of the difference between the

parameters obtained in different fits. The

microstructure and morphology of the investigated

materials were analysed using an FEI Quanta FEG

250 scanning electron microscope (SEM) with a sec-

ondary electron detector operating in high vacuum

mode with an accelerating voltage of 30 kV. A

quantitative elemental composition analysis using an

energy-dispersive X-ray spectroscopy (EDX) by

EDAX Genesis APEX 2i with an ApolloX SDD spec-

trometer was performed. In order to determine the

valence states of the elements, X-ray photoemission

spectroscopy (XPS) analyses were performed at room

temperature under a pressure below 1.1 9 10-9

mBar. The photoelectrons were excited by an Mg-Ka
X-ray anode operated at 15 keV and 300 W. An

Omicron Argus hemispherical electron analyser with

a round aperture of 4 mm was used to analyse the

emitted photoelectrons. Measurements were carried

out in constant analyser energy (CAE) mode with a

pass energy equal to 50 eV. To remove contamina-

tions and oxides, each surface was etched before the

measurement. An argon ion gun with an energy up to

5 keV was used for etching for 5 min.

The electrical conductivity and Seebeck coefficient

were measured using a direct-current four-probe

method (Linseis LSR-3 platform) over the tempera-

ture range of 50–500 �C in a helium atmosphere. The

Figure 2 Scheme presenting synthesis process for free-sintered

and PECS-sintered samples.
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accuracy of the method given by the manufacturer

for both parameters is ± 5%. The charge carrier

concentration was determined using a Linseis HCS

system. The measurements were performed at room

temperature and in an air atmosphere. A series of

repeated measurements of the Hall effect revealed a

50% uncertainty of the measurement. Consequently,

the obtained results provide information about the

order of magnitude of the measured values. Thermal

diffusivity ad was measured by Laser Flash Analysis

(LFA 457 MicroFlash, HgCdTe detector, Netzsch

GmbH & Co.) under an Ar flow of 30 cm3/min in a

temperature range of 50–400 �C. The accuracy of the

ad measurement was estimated by the manufacturer

to ± 5%. The densities (q) and total porosities of the

samples were determined using a hydrostatic

method after pore filling with kerosene under vac-

uum conditions. The estimated accuracy of this

measurement is ± 5%. Thermal conductivity j was

calculated as:

j ¼ ad � cp � q ð1Þ

where cp is the specific heat capacity evaluated from

the Dulong–Petit law. The uncertainty of j values

is ± 7%, and it was estimated from cumulative

uncertainty of thermal conductivity components.

The kinetics of the reduction process was investi-

gated by means of TG (thermogravimetric) analysis

using a custom-made apparatus. A sample of the

reduced material was put in a stainless steel crucible

lined with aluminium foil. The crucible was then

placed on the top of a stainless steel rod, transferring

the load onto a balance (AXIS ALZ120), measuring

with a 0.1 mg accuracy. The temperature was mea-

sured on top of the rod with a thermocouple placed

inside it with a maximum uncertainty equal to 1.6%.

The measurements were performed under a

160 cm3/min hydrogen flow. The lower part of the

column was cooled. Additionally, silica gel was put

in the cooled area of the reaction chamber to capture

water vapour. The experiments were performed in

nonisothermal conditions, with a 5 K/min heating

rate, similar to that used for the synthesis, and were

performed on milled powders, with the milling pro-

cedure being exactly the same as that for the prepa-

ration of the samples.

Results and discussion

Optimisation of the reduction process

In order to optimise the process of chemical reduction

in oxides, several TG experiments were performed.

The selected results of the TG and derivative ther-

mogravimetry (DTG) analyses, both for the pure

cobalt and antimony oxides and for their mixtures,

are presented in Figs. 3 and 4. The data for Co2O3

were multiplied by a factor of 0.25, and 0.75 for

Sb2O3, according to the content in the oxide mixture.

The reduction in the cobalt oxide initiates at a low

temperature of about 180 �C. This process has two

clearly visible steps, corresponding to the two max-

ima on the DTG curve in Fig. 3a. The first can be

assigned to the Co2O3 ? Co3O4 reaction (TG curve,

Fig. 4). The second can be further divided into two

strongly overlapping reactions (Co3O4 ? CoO and

CoO ? Co). The measured mass change and pro-

posed reduction mechanism are in agreement with

the results of others [42–45]. The whole process

reaches conversion degree x equal to 92%. The

reduction in antimony oxide occurs at a significantly

higher temperature, starting at 480 �C. In the case of

this oxide, the measured mass change corresponds to

132% of conversion degree x. This apparent effect is a

result of the high volatility of antimony and anti-

mony oxide [46]. However, during the synthesis of

CoSb3, the Sb loss is expected to be lower, due to the

binding of antimony atoms in the compound. In the
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Figure 3 DTG signal (reaction rate) versus the temperature for

the reduction in indium(III) nitrate hydrate, Co and Sb oxides in a

hydrogen atmosphere.
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case of the mixture of oxides, both steps of cobalt

oxide reduction are moved towards higher tempera-

tures. The reduction in cobalt oxide seems to be

suppressed by the presence of antimony oxide.

Conversion equal to 25% (corresponding to the oxide

in Co2O3) is reached at 440 �C, which is lower than

the starting temperature of the pure Sb2O3 reduction.

Finally, the reduction in a mixture of oxide mate-

rials corresponding to the composition of the product

of InCo4Sb12 (labelled as ICS10 in Fig. 3) was per-

formed. The reduction process follows the pattern

presented in Fig. 3b. Firstly, below 300 �C, the

In(NO3)3�5H2O decomposes in a few steps into In2O3.

A comparison of the plots for the mixtures of oxides

with and without In(NO3)3�5H2O (Fig. 3b) indicates

that the presence of this compound enhances the

reduction in antimony oxide because the corre-

sponding peak in the DTG curve is shifted towards

low temperatures. However, a separate peak for

cobalt oxide reduction cannot be observed. The

reduction in antimony oxide may be partially over-

lapped by In(NO3)3�5H2O. The reduction in Co2O3

probably occurs simultaneously with the Sb2O3

reduction. The strong influence of the presence of

In2O3 on the Sb2O3 reduction process was confirmed

in a separate experiment without Co2O3.

After all of the TG experiments had been per-

formed, a metallic product was found in the crucible.

This shows that the reduction in the investigated

oxides can be successfully performed. Under mea-

surement conditions, part of the oxide remained

unreacted. However, during the synthesis of the

samples, a longer, two-step process was allowed for a

complete reduction in the starting materials, which

was further confirmed by the XRD structural

analysis.

Structural and microstructural analysis

To determine the structure of the materials, XRD

measurements were performed on the cold-pressed

and PECS-sintered InxCo4Sb12 (x = 0.1, 0.2, 0.4, 1)

samples (Fig. 5). The XRD diffraction patterns reveal

that all free-sintered InxCo4Sb12 (x = 0.1, 0.2, 0.4, 1)

samples contain only a small amount of the CoSb2
impurity phase. The calculated values of the lattice

constant of the main phase are presented in Fig. 6.

The expansion of the unit cell with increasing indium

content, for x\ 0.4, confirms that the In is incorpo-

rated into the CoSb3 structure. The lattice constants of

the samples with indium content x = 0.2 and x = 0.4

are close to each other, which is consistent with the

EDX quantitative analysis (Table 1). The actual com-

position of the In1Co4Sb12 PECS-sintered sample

shows a smaller In content. The higher In quantity in

the In1Co4Sb12 free-sintered sample correlates with a

more distinguished InSb XRD maximum. The

amount of the indium atoms incorporated into the

voids is expected to be similar, corresponding to the

maximum value. A deficiency of antimony is

observed in all of the samples. The Sb deficiency is

smaller in the PECS-sintered samples due to the

shorter sintering time and is compensated by the

presence of an Sb-poor CoSb2 phase. For the PECS-

sintered samples with x = 0.1, 0.2, no reflections

corresponding to CoSb2 precipitation were observed

in the X-ray diffraction patterns.

Selected SEM images of the porous InxCo4Sb12
(x = 0.1, 0.2, 0.4, 1) materials are shown in Fig. 7. The

SEM micrograph of the free-sintered In0.2Co4Sb12
sample shows a highly porous structure with an

average grain size in the range of 450–900 nm which

also forms agglomerates. The pores are uniformly

distributed. Samples with varying indium content

did not exhibit significant differences with respect to

the sample homogeneity, grain size or grain growth

during the process. The major difference was

observed in the varying porosities, which is dis-

cussed in the following paragraphs. On the other

hand, the SEM image of the In0.2Co4Sb12 PECS-sin-

tered sample shows a highly dense structure. A close-

Figure 4 TG and DTG curve of Co2O3 reduced in H2. Dashed

lines correspond to the calculated values of the mass of the sample

with a given chemical composition.
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up of the cold-pressed In1Co4Sb12 SEM image shows

the precipitations, marked with circles and arrows,

with a size in a range of 40–50 nm, which occur as

islands at the grain surface and grain boundary.

These precipitations were also found in the In0.4Co4
Sb12 sample. The precipitations are believed to be the

secondary InSb phase noticeable in the XRD patterns.

The formation of a nanometre-sized InSb phase at the

boundaries of the In1Co4Sb12 grains was previously

reported in [20, 42].

XPS measurement was performed in order to find

out whether the oxides were fully reduced. The

binding energies were corrected using the back-

ground C1s line (285.0 eV) as a reference. XPS spectra

were analysed using a Shirley background subtrac-

tion and Gaussian–Lorentzian curve. The results are

presented in Fig. 8.

The XPS spectrum for the In3d region can be fitted

by one spin–orbit doublet (2d3/2 and 3d5/2). The

position of the 3d5/2 peak is slightly higher than for

In0 and lower than for the oxide compounds [47, 48].

It could be correlated with an electron transfer to the

matrix in the In-filled CoSb3 [49], confirming the

electron-donor character of In atoms. This is in

agreement with the covalent character of In–Sb

bonding [50]. In the Co2p region, only the Co2p3/2
line was analysed due to interference with Sb MNN

Auger electrons in a higher binding energies region.

The recorded binding energy was equal to 777.76 eV,

which is close to those previously obtained for filled

CoSb3 [49, 51]. No additional maxima were found

between 779 and 781 eV, which are binding energies

characteristic for cobalt oxides [52]. In the Sb3d re-

gion, the spectrum can be fitted by only one doublet,

similarly to the results presented in [53]. This effect,

Figure 5 X-ray diffraction

patterns of free-sintered and

PECS-sintered InxCo4Sb12
(x = 0.1, 0.2, 0.4, 1) samples.

Marked reflections correspond

to the CoSb2 and InSb phases.
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Figure 6 Lattice constant versus the actual amount of indium

(x) in the structure of InxCo4Sb12 prepared by free sintering and

PECS sintering. The dashed line is a guide for an eye.
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resulting from the different character of Sb bonding,

is clearly visible in the XPS spectra presented in

[49, 51]. The obtained Sb3d5/2 binding energy is close

to that found in [51, 49]. Additionally, the O1s maxi-

mum was present. Because no oxides were found in

the material, the oxide found with the XPS can be

assigned to surface contamination. It can be clearly

seen that the values of the recorded binding energies

of the photoelectrons are close to values characteristic

for the elemental (metallic) states for all three mea-

sured elements, which is typical for intermetallic

Table 1 Porosity, Hall carrier concentration and mobility of the InxCo4Sb12 (x = 0.1, 0.2, 0.4, 1) materials

Nominal

composition

EDX area

composition

Porosity

U (%)

Carrier concentration

(measured) ± 50% (1019 cm-3)

Carrier concentration

(corrected) (1019 cm-3)

Carrier

mobility ± 55%

(cm2/V s)

In0.1Co4Sb12 In0.11(3)Co4Sb10.6 41 - 2.0 3.0 54.8

In0.2Co4Sb12 In0.24(5)Co4Sb10.8 36 - 5.5 7.8 41.5

In0.4Co4Sb12 In0.32(3)Co4Sb10.2 30 - 5.5 7.3 64.8

In1Co4Sb12 In0.97(4)Co4Sb11.4 28 - 62.0 80.0 6.5

In0.1Co4Sb12-

PECS

In0.15(3)Co4Sb11.1 4.7 - 6.8 7.1 19.3

In0.2Co4Sb12-

PECS

In0.29(2)Co4Sb11.4 5.5 - 4.0 4.2 103.9

In0.4Co4Sb12-

PECS

In0.33(2)Co4Sb12.4 2.5 - 11.4 11.7 31.2

In1Co4Sb12-

PECS

In0.77(4)Co4Sb11.3 5.4 - 116.0 121.0 4.5

Figure 7 SEM images of the

surface of the samples: a free-

sintered In0.2Co4Sb12,

b PECS-sintered In0.2Co4Sb12,

c free-sintered In0.4Co4Sb12,

d InSb precipitations at the

boundaries and on the surface

of In1Co4Sb12 sample grains.
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compounds. It is also typical for covalent bonding

with a small charge transfer between atoms [54].

Table 1 contains the results of measurements of the

porosity and Hall carrier concentration for the pre-

pared samples. The porosities of the free-sintered

samples range from 28 to 41% and decrease with the

nominal In content. It is worth noting that despite the

exceptionally high porosities, the grains are strongly

bonded and thus the samples are not fragile. Varia-

tions in the porosities of samples with different

nominal In contents could be explained by the pres-

ence of the InSb secondary phase, which is likely to

form an eutectic at the primary grain surface, which

improves grain connectivity during the second sin-

tering [55]. Thus, some undetectable, residual InSb

phase may occur in the In0.2Co4Sb12 sample as well.

PECS-sintered materials exhibit lower porosity,

ranging from 2.5 to 5.5%. In this case, the correlation

between the In content and porosity was not

observed. In both cases, samples with the highest

indium content have significantly increased carrier

concentration. The literature data show different

carrier concentrations for similar compositions

[5, 56, 57]. The results obtained in this work are

comparable to those reported in [56]. All materials

show n-type semiconductor behaviour. Furthermore,

the carrier mobility was calculated on the basis of the

charge carrier concentration and electrical

conductivity with porosity correction, with a total

uncertainty of 55%. In the case of the conductivity, a

standard Bruggeman correction was used. For the

carrier concentration, a method proposed by Jur-

etschke et al. [58] for spherical pores was used. These

simplified models result in an additional error in the

estimation of the porosity-corrected values, especially

in the case of the free-sintered samples. The samples

with traces of InSb and CoSb2 phases have different

carrier concentrations, but also exhibit differences in

carrier mobility which entail electrical conductivity

behaviour. The additional phases may impair the

electrical conductivity [59]. In the case of the In1Co4-
Sb12 samples, the significantly higher carrier con-

centration is caused by a significant amount of Sb

vacancies in the structure, resulting from the mea-

sured Sb deficiency and the formation of the InSb

phase. These vacancies induce defect bands in the

energy gap and can even result in a semimetallic

character of the material [52].

Electrical properties

Figure 9 shows the temperature dependence of elec-

trical conductivity (r) for the InxCo4Sb12 (x = 0.1, 0.2,

0.4, 1) samples with different densities. The samples

sintered under pressure using the PECS technique

exhibit higher r values than the free-sintered mate-

rials. The r increases with the increasing indium

content, which confirms that the In inside the voids of

the crystal structure acts as an electron donor. The

Figure 8 In3d, Co2p1/2 and Sb3d regions of an XPS spectrum of

the In1Co4Sb12 porous sample.
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Figure 9 Dependence of the electrical conductivity versus

temperature for the cold-pressed and PECS InxCo4Sb12 (x = 0.1,

0.2, 0.4, 1) samples.
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highest electrical conductivity is reported for the

In1Co4Sb12 samples, for both free-sintered and PECS-

densified materials, which could be explained by the

highest carrier concentration. The greater grain con-

nectivity for the composition with lower porosities

also alters the conductivity transport for the free-

sintered samples. The values of r for this material are

higher than reported previously [12], reaching 806 S/

cm for the In1Co4Sb12-PECS sample. All samples

exhibit the behaviour of heavily doped

semiconductors.

The Seebeck coefficient values of the InxCo4Sb12
(x = 0.1, 0.2, 0.4, 1) samples are presented in Fig. 10.

The negative Seebeck coefficient of all samples sug-

gests an n-type semiconducting mechanism, which is

in agreement with the results of the Hall effect mea-

surements (Table 1). The a of the In0.1Co4Sb12-PECS

reaches - 277 lV/K at 470 K. The absolute Seebeck

coefficient decreases with the increasing In content.

This correlation is in agreement with the charge car-

rier concentrations of the investigated materials [60].

The InSb secondary phase should not have a signifi-

cant influence on the Seebeck effect, because its

grains do not form a continuous structure. The In0.1-
Co4Sb12 and In0.2Co4Sb12 samples, both free-sintered

and PECS-sintered, exhibit an upturn in their

a(T) dependence. This behaviour is probably caused

by the bipolar conduction, where thermal excitation

of the electrons over the bang gap causes the forma-

tion of holes in the valence band. A similar depen-

dence was observed by Sesselmann et al. [19]. The

phenomenon occurred in filled skutterudites with a

small indium content (x = 0.05), which may indicate

that the real indium content of these samples is

smaller than the nominal one. Li et al. [18] observed

this phenomenon in all samples (x = 0.05–0.4); how-

ever, in the In0.05Co4Sb12 sample, the upturn was

significant.

According to the previous research [59], Seebeck

coefficient values are inversely proportional to the

carrier mobility in porous materials. In the case of our

materials, we find this dependence to be true as well.

In a single parabolic band model, the Seebeck coef-

ficient is directly proportional to the effective mass. In

turn, the effective mass is inversely proportional to

the mobility of the carriers, which gives the a * 1/l
relation. The mobility in the investigated porous

materials is higher than in the corresponding dense

PECS samples, and the absolute value of the Seebeck

coefficient for samples with pores is smaller.

Thermal conductivity

The measured values of thermal conductivities j of

the InxCo4Sb12 (0.1, 0.2, 0.4, 1) samples are shown in

Fig. 11. At the low-temperature range, j decreases

with the increasing temperature, and at 520 K, starts

to increase with the increasing temperature. Many

research results indicate that the lowest lattice ther-

mal conductivity is observed for the filled skutteru-

dites with the highest indium content [12, 18, 19, 61].

However, in our research, the lowest total thermal
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Figure 10 Dependence of the Seebeck coefficient versus

temperature for the free-sintered and PECS InxCo4Sb12 (x = 0.1,

0.2, 0.4, 1) samples.

Figure 11 Thermal conductivity versus temperature for the free-

sintered and PECS InxCo4Sb12 (x = 0.1, 0.2, 0.4, 1) samples.
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conductivity is obtained for the free-sintered In0.1-
Co4Sb12 sample (0.5 W/m K at 523 K). In this case,

the material exhibits the highest porosity (41%),

which seems to have the greatest impact on the

decrease in the thermal conductivity.

Analyses of heat transport in composites and por-

ous thermoelectric materials have been widely

reported [62–66]. The commonly applied effective

media theory (EMT) [67] is a very useful tool for

predicting the value of the thermal or electrical con-

ductivity of a composite using the properties and

content of its components. The most complex models

can take into account, for example, the presence of

microcracks [68], the type of gas inside the pores, the

radiative contribution to the thermal conductivity

[69], the presence of open porosity [69] or a porosity

system consisting of various types of pores [70–72].

We have focused only on the application of effective

media theory to the thermal conductivity. One of the

assumptions of EMT is that components maintain

their properties in a composite (i.e. porous material).

In our case, the two preparation procedures (free

sintering in hydrogen and PECS) of the same material

result in different electrical properties, which are

presented in Table 1. Thus, the application of effec-

tive media theory for electrical conductivity is not

possible in this case. It is also important to mention

that for heterogeneous media (i.e. porous materials),

there are difficulties in the calculation of the electrical

and lattice components of the thermal conductivity.

The current state of knowledge does not contain a

reliable method of estimating the Lorenz number for

these materials; thus, the application of the Wiede-

mann–Franz law in this case is not trivial.

For a better understanding of the influence of

porosity on the reduction in thermal conductivity, the

experimental results were compared with selected

generally used theoretical models for open porosity.

All of the models applied in our analysis assume that

(a) all pores are of identical shape, (b) radiation inside

the pores can be neglected and thus its contribution

to the total thermal conductivity can be omitted

(T\ 350 K), (c) the shape of the pores can be

described by a sphere or spheroid and (d) each single

pore is embedded in a continuous matrix. One of the

simplest models was created by Maxwell [73]:

jc
jm

¼ 1� 3

2
f

� �
ð2Þ

where jc and jm are the thermal conductivities of the

porous material and the matrix, respectively, and f is

the volume fraction of the porosity. In fact, this model

should be applied only for materials with f\ 0.1 and

assumes a spherical shape of the pores. More

advanced models are based on the Maxwell model

and also take into account different pore shapes (eg.

lamellae, cylinders, spheroids).

One of the most commonly used is the Bruggeman

model [74]:

jc
jm

¼ 1� fð ÞX ð3Þ

X ¼ 1� cos bð Þ2

1� F
þ cos bð Þ2

2F
ð4Þ

where b is the angle between the heat flux direction

and the rotational axis of the spheroid [75], and F is

shape factor of the spheroid, described by the

formula:

F ¼ 1

2
1� 1

1þ 1:6 a
c þ 0:4 a

c

� �2
 !

ð5Þ

and also presented graphically and described in more

detail in Fig. 12. It should be noted that, for boundary

conditions F = 0 and F = 0.5, Eqs. (3)–(5) can describe

lamellae and cylinders, respectively. The Bruggeman

model can characterise materials with the whole

range of a volumetric fraction of the pores (0\ f\ 1).

Equation (4) is used for the particular case when all

pores are oriented identically in relation to the heat

Figure 12 Shape factor F for a spheroid pore with axes a, b, and

c (where b = c) calculated as a function of the a/c ratio, where a is

a rotational axis of the spheroid.
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flux direction. For the more general situation of ran-

domly oriented pores, Eq. (4) can be rewritten as

follows [76]:

X ¼ 1

3

1

2F
þ 2

1� F

� �
ð6Þ

For a visualisation of how the jc/jm values change

according to the Bruggeman model for various

shapes and orientations of porosity, please refer to

the Mendeley Data Repository [77]. Meredith and

Tobias [76] proposed a similar model for randomly

oriented spheroidal-shaped porosity:

jc
jm

¼ 2� f

2þ X � 1ð Þf

� �
� 2 1� fð Þ

2 1� fð Þ þ Xf

� �
ð7Þ

Theoretical values of the jc
jm

ratio calculated for

selected models and experimental values are pre-

sented in Fig. 13. For experimental data, the thermal

conductivity of matrix jm (perfectly dense material)

was estimated for each composition by linear

regression on two values of j—for the sample pre-

pared by free sintering and by the PECS method. jm
was assumed as coefficient b from the obtained

equation of the line y = ax ? b, where y is the thermal

conductivity and x is the porosity (%). For the pur-

pose of this estimation, an assumption was made that

porosity is the main factor affecting the change in

thermal conductivity. The low porosity of the PECS

samples allowed the matrix thermal conductivities to

be correctly estimated, which are presented in

Table 2.

Theoretical values of jc
jm

for sphere-shaped pores

are marked with a dashed line, while the solid lines

represent the results for spheroidal pores. The cor-

responding values of shape factor F are also given. It

is clear that the models where the pores are assumed

to be sphere-shaped do not describe well the exper-

imental data which is in agreement with the SEM

analysis. In Fig. 7a, c, we can observe a large number

of pores, but their shapes are far from perfect spheres.

The Bruggeman model considering randomly ori-

ented pores in the shape of a prolate spheroid (green

solid line) also does not fit the sample data. This

suggests that in the case of InxCo4Sb12 prepared by

free sintering, cylindrical or cigar-shaped pores are

rare. Without a doubt, models that assume the

majority of pores are in the shape of an oblate

spheroid (back and red solid lines) describe experi-

mental data the best. Additionally, an area around

the black line is presented to visualise the range of

values of shape factor that correspond to the experi-

mental data. The largest F values of this area are 0.04

and 0.07, which correlate to a/c ratios of 0.05 and 0.1,

respectively. Between the Bruggeman model and the

Meredith and Tobias model, the more accurate in this

case is the former. These curves were fitted to the

experimental points using the least square method.

For the Bruggeman model, the square of correlation

coefficient R2 = 0.94, and for the Meredith and Tobias

model, R2 = 0.89.

Interestingly, both models are in agreement with

the shape of porosity—oblate pores with relatively

similar values of the shape factor.

Thermoelectric figure of merit

The calculated ZT values are shown in Fig. 14. The

highest ZT value is observed for the free-sintered

In0.2Co4Sb12 sample (ZT = 1 at 673 K). In many

samples, the figure of merit increases with the tem-

perature, and at around 500 K, reaches a plateau. The

high ZT values remain almost constant across a wide

range of temperatures, which is interesting consid-

ering the use of the material in thermoelectric

modules.
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Figure 13 Experimental values of jc/jm and theoretical models

as a function of the volumetric fraction of porosity (f) for different

pore shapes. All models in this graph with spheroid-shaped

porosity assume its random orientation in the material.
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Conclusions

In-filled CoSb3 skutterudites were synthesised using

the oxide reduction method. A basic kinetic analysis

of this process revealed that it can be successfully

performed in temperatures even lower than the

reduction in single element oxides. The obtained

materials had a large amount of porosity (* 40%)

that maintains attractive thermoelectric properties.

They were also homogeneous except for a very small

amount of InSb secondary-phase nanoinclusions. For

comparison, high-density samples were prepared

using the PECS technique. The significant role of

porosity on a decrease in the thermal conductivity of

the fabricated material is presented. The thermal

conductivity of porous materials is significantly

decreased (0.50 W/m K at 523 K for In0.1Co4Sb12,

41% porosity). Samples with higher porosities exhibit

lower values of electrical conductivity, but the benefit

of lower thermal conductivity outweighs losses in r,
resulting in higher ZT values. The highest ZT was

obtained for a porous In0.2Co4Sb12 sample (ZT = 1 at

673 K). Experimental values of thermal conductivity

were analysed using the effective media theory of

heat transport in porous media. The best correlation

between the theoretical and measured values is seen

by the Bruggeman, and Meredith and Tobias models.

The calculations showed that the assumption of

randomly orientated pores with a shape of oblate

spheroids best fits the experimental data and also

corresponds with the observed microstructure of the

material.

Materials in which 41% of the volume consists of

pores while still showing higher ZT parameters than

dense samples could be very serious candidates for

the production of cheaper and more efficient TE

modules.
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Table 2 Approximated values

of the thermal conductivity of
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In0.1Co4Sb12 7.18

In0.2Co4Sb12 6.77

In0.4Co4Sb12 3.95

In1Co4Sb12 4.96
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